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Demodulating the modulated signals used in digital communication on the receiver side is necessary in terms of communication.
­e currently used systems are systems with a variety of hardware. ­ese systems are used separately for each type of com-
munication signal. A single algorithm facilitates the classi�cation and subsequent demodulation of signals without needing
hardware instead of extra hardware cost and complex systems. ­is study, which aims to make modulation classi�cation by using
images of signals, provides this convenience. In this study, a classi�cation and demodulation process is done by using images of
digital modulation signals. Convolutional neural network (CNN), a deep learning algorithm, has been used for classi�cation and
recognition. Images of the signals of quadrate amplitude shift keying (QASK), quadrate frequency shift keying (QFSK), and
quadrate phase shift keying (QPSK) digital modulation types at noise levels of 0 dB, 5 dB, 10 dB, and 15 dB were used. ­anks to
this algorithm, which works without hardware, the success achieved is around 98%. Python programming language and libraries
have been used in training and testing the algorithm. Demodulation processes of these signals have been performed for de-
modulation using the nonlinear autoregressive network with exogenous inputs (NARX) algorithm, an arti�cial neural network. As
a result of using MATLAB, the NARX algorithm achieved approximately 94% success in obtaining the information signal. ­anks
to the work done, it will be possible to classify and demodulate other communication signals without extra hardware.

1. Introduction

­e communication systems used today mostly use digital
communication methods. Additionally, the increase in
digital devices has highlighted the need for fast data
transmission. ­e receiver’s distance and the transmitter,
environmental reasons, and the devices used a�ect the
communication quality [1]. ­e basic communication sys-
tem given in Figure 1 includes the stages of transmitting
an information signal. It is an important communication
rule that this information can be transmitted quickly and
without loss.

While the information signal is expressed as a baseband
signal in digital communication, it is called passband

modulation with a high-frequency carrier [2]. ­e de-
modulation process must be performed following the
modulation type of the transmitted signal [3]. However, in
some cases, the modulation type of the signal obtained is
unknown. In this case, the demodulation process is com-
plicated, and extreme time loss occurs. In this study, it has
been provided that the classi�cation of the modulation
signals is made by using the images, and thus, the de-
modulation processes will be easier. ­e convenience in this
work, which is put forward for users such as security in-
telligence, where speed and time are valuable, will be a gain.
Furthermore, developing a single software system that can
receive and analyze di�erent modulation signals will provide
time and accuracy gains. Compared with the conventional
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demodulator systems, a single software system that can also
receive and analyze other modulation signals has been de-
veloped instead of systems that only receive a specific digital
modulation signal.

Classical algorithms have a low digital signal modulation
recognition rate at low signal-to-noise ratios [4]. Applica-
tions such as recognizing and classifying signals through
machine learning are the important point. Machine learning,
deep learning, and image processing methods achieve
classification in a short time by eliminating extra hardware
costs [5].

-e automatic modulation classification and demodu-
lation proposed in the studies in the literature show how
critical this area is. -e most important problem in mod-
ulation classification has been the noisy signals [6] because it
is very difficult to recognize and classify a noisy signal.
-anks to the convolutional neural network (CNN) model
developed to achieve swift and perfect accuracy results, the
algorithm successfully has been performed for automatic
modulation classification (AMC) [7]. Images of quadrate
amplitude shift keying (QASK), quadrate frequency shift
keying (QFSK), and quadrate phase-shift keying (QPSK)
modulation signals are stored in three different folders.
-ese images pertain to signals with 0 dB, 5 dB, 10 dB, and
15 dB noise ratios. Using images, folders belonging to in-
dividual signals were combined in a path, allowing them to
be read with Python libraries. -is model can understand
whether any image loaded into the algorithm belongs to
these three modulation types. If it is one of the QASK, QFSK,
or QPSK, we can recognize it automatically. -e created
CNN model trained the images it reads from the folders
according to the specified epoch number.

2. Related Work

Nandi et al. conducted experiments on modulation recog-
nition using an artificial neural network in the literature.
Using twomodulation classification approaches, namely, the
decision theory approach and the pattern recognition ap-
proach, they performed the recognition process with 100%
accuracy for 0 dB, 95% for 3 dB, and 75% for 10 dB [6]. -ey
used artificial neural networks in their studies by classifying
radio communication signals to detect unknown commu-
nication signal types and achieved the success of over 85%.
Wang et al. determined a 100% accuracy rate for images of

RZ-OOK, NRZ-OOK, RZ-DPSK, and PAM signals in the
10 dB to 25 dB noise range to select the modulation format
and the estimation of the noise ratio using a convolutional
neural network (CNN) [5]. In their study, Ali and Yangyu
classified digital modulation using unsupervised pretraining
and feed-forward deep neural network (DNN) for automatic
modulation classification [8]. Ma et al., using CNN, DBN,
and AdaBoost algorithms for demodulation of the signals,
achieved a success of approximately 96% by demodulating
these modulation types from the image set consisting of
QAM QPSK, PPM, and OOK modulation signals [4]. Lee
et al., in their studies, made a classification for BPSK (dual
phase shift keying), QPSK, PSK, PAM, and QAM modu-
lation types based on the images of these signals. -ey
achieved 83.3% success by extracting features using the CNN
algorithm and performing the classification process [9].
Daldal et al., in their study, used STFT and CNN-based
hybrid models to classify the digital modulation type and
achieved 99% success [10]. In Zhou et al.’s study, modulation
recognition applications were carried out using deep
learning. As they stated in the confusion matrix of the CNN
algorithm, they found a success rate of 96.25% [11].

3. Material and Method

3.1. Dataset and Structure of Quadrature Digital Modulation
Signals. Digital modulation means converting a baseband
digital message signal into a bandpass signal at a carrier
frequency [2]. Digital modulation is accomplished by
changing the amplitude, frequency, or phase of the high-
frequency sinusoidal analog carrier signal according to the
incoming information carrying the digital basebandmessage
signal [3, 12]. In quadrate or multilevel communications,
multiple information with a single carrier is transmitted [10].
In multilevel modulation types, 2-bit can be transmitted
simultaneously. -ese bit values consist of 00, 01, 10, and 11.
Each symbol (00, 10, 01, and 11) corresponds to a phase state
of the modulated carrier [12]. For QASK modulation, four
amplitudes for each pair of bit values, four frequencies for
each pair of bit values for QFSK modulation, and four phase
values for each pair of bit values for QPSK modulation were
determined [10].

-e formulas of the quadrate modulation types are
shown in Table 1. Modulated images were obtained by
applying these formulas in MATLAB. Additive white
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Figure 1: Basic communication system flowchart.
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Gaussian noise (AWGN) has been added as noise here. As a
result of using the procedure, the images given in Figure 2
are obtained. Signals of data between 1 and 255 were coded
according to the quadrate modulation type.

In addition, 5 dB, 10 dB, and 15 dB as Gaussian noise
have been added to these images. As shown in Table 1, QASK
has the same frequency and phase but different amplitude
for each logic level, while QFSK has the same amplitude and
phase but different frequency. For QPSK, the stages are
different for each logic level [2]. -e signals obtained from
changing the amplitude, frequency, or phase of the carrier
between more than two different values are called multilevel
transmission [1]. -uswise, it becomes possible to transmit
more information with a single carrier. -ese signals ob-
tained were saved as images. Images of each class were stored
in separate folders. -e images acquired are read from the
paths they are in using Python libraries. Classes are class 0
for QASK, class 1 for QFSK, and class 2 for QPSK.

3.2. Convolutional Neural Network (CNN). Convolutional
neural networks (CNN) that are trainable are made up of
multiple stages [13]. CNN is a type of algorithm consisting of
an input, an exit, and many hidden layers [14].

It includes the hidden, convolution, pooling, flattened
linear unit, fully connected, and classification sections. 8e
convolution layer and pooling layer have the task of editing
feature maps [15]. Convolution for one-dimensional data is
mathematically the name given to the process that a function
with a real value that runs through another part to generate a
new function [16]. -e convolution layer enables the ad-
justment of the neurons in the image matrix, which is de-
fined as the input called feature map and facilitates the
learning of the properties [17]. After the convolution layer is
detected locally, the same properties are combined thanks to
the pooling layer [15]. Otherwise, the size of the feature
matrix resulting from the convolution layer will increase and
affect the duration of the training [18]. Or it can lead to
overlearning. Each neuron in the featuremap is connected to
its previous neighbor thanks to filters, in other words,
trainable weights [15]. -e equation for the convolution
layer used for the images is as follows:

(I∗K)(i, j) � 􏽘
m

􏽘
n

I(m, n)K(i − m, j − n), (1)

used as [19]. -e rectified linear unit (ReLU) layer performs
the task of flattening the feature map that emerges after the
convolution process [20]. Converting negative values to zero
produces output between zero and positively infinite values
[21]. -ere is no change in the size of the data in this layer.
-e ReLU activation function enables it to increase by af-
fecting the nonlinear feature of the neural network. Other

activation functions, sigmoid, and tanh reduce the speed of
the neural network algorithm and show lower performance
than the ReLU activation function in terms of results [22]
(Figure 3). Calculation of the ReLU function is simpler than
other functions since it is not subjected to logarithmic
operations [23].

Moreover, the gradient of the ReLU activation function
is always 1. On the other hand, the different activation
functions take the value 0. -erefore, if the input functions
are not entered correctly, the gradient will always subtend to
zero in positive values. Such an undesirable situation pre-
vents the training set from working effectively [19, 24]. -e
max-pooling layer performs the size reduction operation by
performing the function operation defined as subsampling
[25]. Additionally, thanks to this layer, excessive memori-
zation is prevented. In this layer, the downsampling method
is applied to the feature map created in the convolution
layer, and the process of assigning the largest single value
instead of large-sized values is performed [22].

In CNN architecture, the features produced by the final
convolution layer correspond to a portion of the input
image because the receiving area does not cover the entire
spatial dimension of the image [24]. -erefore, the fully
connected layer becomes mandatory [26]. -anks to the
fully connected layer, the properties that appear in the
convolution and pooling layers become meaningful [17].
With each layer, the linear activation function in the
previous layer is generated by a nonlinear activation
function [25].

-e neurons in the fully connected layer are inter-
connected with the neurons in the entire previous layer.
-us, the output of this layer consists of the labels belonging
to the classes.

Regularization in the training phase in the convolutional
neural network is an essential element for data augmenta-
tion, regularization of weights, and batch normalization [15].
Hereby, the method called dropout is used. Its main use is to
prevent overfitting [27]. If the subtilization number is too
high, its use in some cases causes learning problems since it
dilutes the fully connected layer and filters in neural net-
works. -e subtilization process used in the pooling layer
instead of the convolution layers reduces the error rates in
the test data [28].

3.3. Nonlinear Autoregressive Network with Exogenous Inputs
(NARX). Nonlinear autoregressive network with exoge-
nous inputs (NARX) is the name given to neural networks
with feedback structure to reach target values [29]. It is
used for nonlinear modeling data. Autoregression is de-
fined as a concept that shows the relationship between the
previous value and other values in the network [30].

Table 1: Equations of QASK, QPSK, and QPSK modulation.

00 01 10 11
QASK A1 × CosWct A2 × CosWct A3 × CosWct A4 × CosWct

QFSK A × Cos (2.pi.f1t) A × Cos (2.pi.f2t) A × Cos (2.pi.f3t) A × Cos (2.pi.f4t)

QPSK A × Cos (Wct + θ1) A × Cos (Wct + θ2) A × Cos (Wct + θ3) A × Cos (Wct + θ4)
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Artificial neural networks are used in classification, clus-
tering, object recognition, and prediction, which have a
wide range of uses. Since it is a feedback neural network, it
has a structure that learns errors and takes advantage of
them. NARX model is a model that depends on nonlinear
dynamic variables [31]. It has many layers due to the
feedback it has. -e weights and feedback of the NARX
model can be randomly selected.

y(t) � f􏼂y(t − 1), y(t − 2), . . . , y t − ny􏼐 􏼑, u(t − 1),

· u(t − 2), . . . , u t − nu( 􏼁􏼃.
(2)

As shown in (1), the nonlinear function f represents the
NARX output y (t), the input values u (t), nu and ny the
input-output layers [32]. -e output value y (t) improves the
duration of the network by converging to the previous values
of independent or self-linked input signals. -e NARX
model is divided into two types. -ese are as follows.

Series-Parallel Model. In this structure, the next values of
y (t− 1) make predictions based on the current and past
values of x (t), as well as the actual past values of y (t).

Parallel Model. It estimates by gaining experience from
the values of x (t) and the predicted values of y (t) in the
past.

-eNARX neural network has a structure with feedback,
that is, progressing according to the error. Since the NARX
structure is a type of artificial neural network, it has many
hidden layers, convolution layers, pooling, and full con-
nection layers. -e flowchart of the NARX model used for
demodulation is shown in Figure 4. Figure 5 shows the
proposed CNN structure in our study.

4. Experimental Results

4.1.ClassificationResults. -e advantage of CNN is that they
can process data with different spatial dimensions, resulting
in less computational costs than traditional matrix multi-
plication neural networks [33]. Additionally, convolution is
simple to implement. Convolution is applied to images of
different widths and heights, a different number of times
depending on the input size. -e output of the convolution
process is scaled accordingly [34].

f (x)

f (x) = max (0, x)

f (x) = x

x
f (x) = 0

Figure 3: ReLU activation function.

0 dB
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5 dB 10 dB 15 dB

Figure 2: Images of QASK, QFSK, and QPSK modulation.
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-e dimensions are made the same thanks to the
pooling layer that comes after the convolution layer, in-
dependent of the dimensions. In the classification made
with CNN, images of the QASK, QFSK, and QPSK signals
of 0 dB, 5 dB, 10 dB, and 15 dB noise ratios were classified
into three different folders. Python libraries read these
folders from their location and make them ready for the
CNN algorithm. -e operation system library has been
used to read the images from the folders for processing.-e
images included in the algorithm were resized and brought
to 200 × 200 dimensions. -is ensures that if the images are
of different sizes, they are all the same format for CNN.
Image matrices were saved, and classes were created by
determining 0 for QASK, 1 for QFSK, and 2 for QPSK.

-en, the image matrices were assigned to a variable, and
their labels were transferred to another variable and stored
to be used for CNN.

CNN model was created using Keras. ReLU was
chosen as the activation function in the CNN model. In
the compiler of the model, the algorithm is run by
selecting the loss function sparse categorical cross-en-
tropy and Adam as the optimization function. Adam
optimization is known as an algorithm that follows a
probabilistic approach. -us, it works fast for high-di-
mensional datasets [35]. Further, CNN has chosen as a
good option for optimization problems for machine
learning. As seen in the functional diagram of the layers
belonging to the CNN model used, it is given. -ere are
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Getting Performance Results
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Figure 4: NARX algorithm flowchart.
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many regularization methods in the CNN model. Besides
dropout, data augmentation, normalization, and weight
decay are some of them [36]. -e sequential structure of
the CNN model because of compiling the code in Python
is given in Figure 6. While fitting the dataset to the model,
0.3 was determined as the validation split ratio, and 30% of
the dataset was used for validation.

As can be seen in the CNN model used, there is a
dropout layer, one of the regularization methods. In ad-
dition, data augmentation is also used.-e rotation angle is
30 degrees, the zoom ratio is 0.2, the horizontal and vertical
shift value is 0.1, and the horizontal and vertical random
flip is chosen as true.-e data augmentation stage is used to
avoid overfitting and increase the model’s predictive
power.

-anks to this stage, the quality of any input image or the
angle of the objects in the image becomes insignificant. Since
we have three classes and the targets are expressed in terms
of the index (0, 1, 2), we used sparse categorical cross-en-
tropy. -e formula for it is

CCE � −
1
N

􏽘

N

i�1
yilog 􏽢yi( 􏼁 + 1 − yi( 􏼁log 1 − 􏽢yi( 􏼁􏼂 􏼃, (3)

where yi represents true labels and 􏽢yi represents predicted
labels [37].

It was placed in two different folders to share the data
as train and test. -ese two folders have different folders
for every three classes. Each class comprises of 0 dB, 5 dB,
10 dB, and 15 dB signal images. -ese decibel values have
255 images. So, a class has 1020 images. Consequently, all
classes have a total of 3060 images (Figure 7). Visualizing
numbers of train and test data has a visualization of class
numbers using the seaborn library. Learning rate, which
is an important parameter in the training of the CNN
model, is used as the update rate of the estimated weight
errors. -e weights in the hidden layers have updated the
model. -e purpose of this is to minimize the loss of
function.

-e magnitude of the learning rate also affects the speed
of the training [38]. For example, a big ratio results in an
unacceptable level of the loss function, while small level
training is slow, and a very small amount of weight is
updated [19]. In other words, the optimal learning rate to be
selected for the model leads to approaching the best result.

4.2. Demodulation Results Using Deep Learning and NARX
Models. -e demodulation process using the NARX
structure is carried out to obtain the information signal
superimposed on the carrier. NARX consists of three parts:
training, testing, and verification. Performance evaluation is
made at the validation stage. At this stage, the success of the
model is predicted according to the training and test results.
70% of the dataset was reserved for training, and 15% of the
rest was divided for validation and 15% for testing. -e
dataset included in the algorithm from the MATLAB
workspace and consisting of 3060× 400 dimensions was
determined as target values, that is, information mark,

3060×1 sized sequences from 1 to 255 for each signal type.
Once the network is trained and used for prediction, the
output is reported back to the network to obtain the forecast
to generate the next prediction step. -e serial-parallel
model does the training by reducing the iteration time. -e
model is created for initial training by randomly assigning
the weights to the initial training. -en, in each iteration, the
model adjusts itself thanks to the feedback. -e structure of
the NARX model used is shown in Figure 8.

4.3. 8e Obtained Results. -e model’s results in training
performed according to these three learning rates of 0.01
and 0.001 are shown in Figure 9. -e epoch number is
chosen as 20, and the process is performed according to
the same epoch number. In consequence of compiling the
model in Python, approximately 1.6 million trainable
parameters were obtained. As can be seen in Figure 9,
after the two learning rate trainings, the graphics are
similar to each other. -e training time was longer for the
0.0001 rates. -e loss curve, which is one of the most used
graphs for error detection in CNN models, gives us visual
results to reveal the learning ability of the training
process and the network. -e lower the learning rate, the
more delayed the convergence [19]. As can be seen in
Figure 10, the convergence of the graph with a 0.001
learning rate was earlier. As it can be understood from the
graphics in both Figures 9 and 10, there is no overfitting
compatibility of the model in training. Although our
dataset is not large enough, the result shows that the
model is successful. According to the learning rates, the
success of the model was 98.37% for 0.001, while it was
99.45% for 0.0001.

Figure 11 represents the confusion matrices of CNN
models according to both learning rates. Using the CPU, the
model’s training took about 20 minutes for a learning rate of
0.001, compared with about 30 minutes at a rate of 0.0001.
However, the training time for both operations performed
when the GPU is used is less than oneminute.

As it can be seen in the classification report in Figures 11
and 12, there has been a slight increase in the amount of data
in the dataset as data increase is applied. Due to the clas-
sification report, individual precision, accuracy, and f-score
values can be obtained for each class. -ese values have been
revealed by using the sklearn library.

Figure 13 shows the closeness of demodulation esti-
mation data obtained frommodulated signals carrying 0-255
8-bit binary data in 0-5-10-15 dB noise of QASK, QFSK, and
QPSK signals collectively. -e first four signals belong to
QASK 0-5-10-15 dB, the next four to QFSK 0-5-10-15 dB,
and the last four to QPSK 0-5-10-15 dB. When looking at all
modulated signals, it is understood that the estimation of
demodulation estimation data of 5 dB noisy signals contains
more errors than others.

Mean square error rate (MSE), one of the methods
used for performance evaluation, provides information
about the success of the neural network. Figure 14 shows
the harmony between target values and estimated values.
-erefore, the predictions here should be along the
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points expressed with dashed lines starting from the
center point (0, 0).

As can be seen from Figure 14, the rate for validation is
around 94%. Demodulation of noiseless signal images has
been achieved with a high success rate. In addition, the
epoch value is 107 for the lowest mean square error rate, as
shown in Figure 15.

5. Discussion

As in the image given in Figure 16, individual test images
for each of the three types of signals were loaded into the
model and asked to classify. -e model was assigned one
for the images that made the class estimation correctly and
zero for the others. Finally, the saved model was loaded and
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run for test images. Test images tested anonymously are
different from images produced using MATLAB. -e
purpose of this is to measure the model’s reaction to other

images. Since the noiseless type of the QASK modulation
signal is easy to detect, the noisy signal is used. -e gen-
erated model is not affected by noise ratios, although the
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Figure 10: Loss plots according to train and test results of CNN model. (a) Learning rate graph selected as 0.001. (b) Learning rate graph
selected as 0.0001.
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Figure 12: Model output for 0.0001 learning rate. (a) Confusion matrices. (b) Classification report.
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Figure 11: Model output for 0.001 learning rate. (a) Confusion matrices. (b) Classification report.
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Figure 14: Error value graphics of the model’s output.
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noise makes it difficult to distinguish the modulation signal
type.

While demodulation of noiseless signals during the
demodulation phase is easy, the algorithm has been chal-
lenged, especially for signals with 5 dB noise. One of the
reasons for this is seen as the amount of data in the dataset.
-erefore, increasing the amount of data or applying feature
extraction can achieve higher success in obtaining the in-
formation signal from noisy signals.

6. Conclusions

-e study used JPEG format images of the signals of digital
modulation types QASK, QFSK, and QPSK with 0 dB, 5 dB,
10 dB, and 15 dB noise. -e CNN model created using
Python libraries has also been successful in 5 dB noisy
signals. -e model can be used for communication systems
because it is challenging for the human eye to distinguish the
images of signals with a 5 dB noise ratio, thanks to the

success rate of up to %99, the model can be used for
communication systems. In other words, even if the am-
plitude, frequency, and phase values of the digital modu-
lation signal are unknown, the signal’s type can be easily
understood.

Most of the studies for AMC are made from actual data
of modulation signals. However, it may not always be
possible to have all the data of a modulation signal. Mod-
ulation classification and demodulation, making it inde-
pendent of a snapshot and its structure, size, shooting angle,
or different contrasts, can provide great convenience.
-erefore, modulation classification from images has yielded
successful results thanks to this model without extra
hardware or software. It has been demonstrated that the
model has high success in terms of both training time and
accuracy.

As a result of demodulation using a single algorithm, a
beneficial effect has been obtained regarding time and cost.
Furthermore, in areas where fast and secure communication
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Figure 16: Test output of the model.
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is essential, communication is also critical to security
without different digital devices. -us, the development of
the algorithm will benefit users in areas where communi-
cation is vital.
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