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Estimation of population mean of study variable Y suffers loss of precision in the presence of high variation in the data set.(e use
of auxiliary information incorporated in construction of an estimator under ranked set sampling scheme results in efficient
estimation of population mean. In this paper, we propose an efficient generalized chain regression-cum-chain ratio type estimator
to estimate finite population mean of study variable under stratified extreme-cum-median ranked set sampling utilizing in-
formation on two auxiliary variables. Mean square error (MSE) of the proposed generalized estimator is derived up to first order of
approximation. (e applications of the proposed estimator under symmetrical and asymmetrical probability distributions are
discussed using simulation study and real-life data set for comparisons of efficiency. It is concluded that the proposed generalized
estimator performs efficiently as compared to some existing estimators. It is also observed that the efficiency of the proposed
estimator is directly proportional to the correlations between the study variable and its auxiliary variables.

1. Introduction

Survey sampling is a process to collect information on the
subject under study from population by choosing and an-
alyzing true subset from it [1].(e national and international
agencies regularly present estimates for different indicators
like family income, retail prices, poverty, inflation, and
wages of employees. Survey sampling has many advantages
over complete study of population (census), such as con-
suming fewer resources, less time, and less cost. Survey
sampling provides precise and efficient estimates for pa-
rameters of interest.(ese advantages of survey sampling are
achieved by incorporating suitable sample designs and es-
timation techniques.

Neyman [2] introduced stratified random sampling
(StRS) for efficient estimation of the population parameters
in heterogeneous environment. Neyman [3] proposed the
procedure of estimating population parameters by utilizing
auxiliary information in stratified random sampling. (e
sampling procedure of StRS helps to minimize biasness in

sample selection and ensures that every section of pop-
ulation gets appropriate representation in sample. (is
sampling design provides greater precision, so high level of
accuracy can be achieved even for small sample size.
However, the procedure of StRS requires more adminis-
trative work as compared to simple random sampling (SRS).
(e procedure of StRS is tedious and time consuming.

McIntyre [4] proposed a method for estimating mean of
pasture yield and later named this method as ranked set
sampling (RSS). (is ranked set sampling procedure is also
known as classical ranked set sampling. Takahasi and
Wakimoto [5] proved that RSS will be more efficient and
easily applicable in real life as compared to SRS when
ranking is perfect (i.e., ranking is done on the basis of study
variable itself ). Dell and Clutter [6] introduced the RSS
procedure when ranking is not perfect (i.e., ranking is not
done on the basis of study variable itself ).(ey conclude that
RSS provide unbiased estimates for parameters of interest.
Stokes [7] used the auxiliary variable in RSS and found that
amount of increase in precision depends on the correlation
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between study and auxiliary variable. Samawi [8] introduced
stratified ranked set sampling (StRSS) for obtaining unbi-
ased and efficient estimates of population mean. (e un-
biased StRSS estimator for population mean of variable of
interest Y and its variance are given as

μ⌢y,StRSS � 􏽘
k
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where φ2
(i)h � (μy(i)h − μ(y)h)2.

RSS is the best competitor of SRS and StRS due to many
advantages. Some of the most important advantages are
saving resources, cost, and time, while increasing efficiency
and precision.

Survey statisticians aim to increase efficiency and pre-
cision of the estimators. For this purpose, statisticians move
toward the use of auxiliary variables. Use of single or more
auxiliary variables depends only on study variable and easy
availability of data. An auxiliary variable in survey sampling
is assumed to be easily and cheaply available and highly
correlated with study variable. Graunt [9] utilizes the aux-
iliary variable to estimate the population of London. (e
author applied this method for estimating the proportion of
burials per year in families and considered the average family
size as an auxiliary variable. To obtain more precise and
efficient estimators, selection of proper estimation technique
is very important. Some well-known estimation techniques
in literature are ratio estimation, product estimation, re-
gression estimation, exponential estimation, and mixture of
at least two of the aforementioned estimation techniques.

Samawi and Saeid [10] introduced stratified extreme
ranked set sampling (StERSS) by combining StRSS and
ERSS. (ey showed that estimates of population mean
computed by StERSS will be more efficient than those by
StRS and SRS. Ibrahim et al. [11] suggested stratified median
ranked set sampling (StMRSS) for estimating population
mean. (ey showed that under symmetrical distribution,
StMRSS will provide unbiased estimates of populationmean.
Khan et al. [12] introduced stratified double ranked set
sampling (StDRSS) for estimating populationmean. Ali et al.
[13] introduced stratified extreme-cum-median ranked set
sampling (StEMRSS) for estimation of mean of heteroge-
neous populations in the presence of outliers. (ey showed
that StEMRSS performs efficiently as compared to other
StRSS schemes. Iqbal et al. [14] proposed mixture regres-
sion-cum-ratio type estimator for population mean under
stratified random sampling. Ali et al. [15] suggested gen-
eralized family of estimators for estimating population mean
under classical RSS.

Olkin [16] concluded that efficiency of estimators increases
by using two or more auxiliary variables in the construction of
estimators. (erefore, there is a need to utilize two auxiliary
variables in the construction of generalized estimators under
RSS design to increase their efficiency. Khan and Shabbir [17]
utilized the aforementioned theory of two auxiliary variables
and suggested generalized exponential-type ratio-cum-ratio
estimator to estimate population mean of study variable under
StRSS scheme. (ey compared the proposed estimator with
some existing estimators with the help of relative bias (RB),
relative mean square error (RMSE), and percentage relative
efficiency (PRE). (ey concluded that the proposed estimator
performs efficiently when study variable and auxiliary variables
follow trivariate normal distribution.

1.1. General Notations, Symbols, and Relations. Let Ω� {1, 2,
. . ., N} be a finite population of N units and ‘Nh’ be used as
population size from hth stratum, where ‘k’ is the number of
strata and h� 1, 2, 3, . . ., k. Y is the variable under study, and
X and Z are auxiliary variables which are highly correlated
with study variable Y. (e sample size is ‘n,’ and ‘nh’ will be
used as sample points from hth stratum. (e set size in
ranked set sampling schemes is ‘m,’ and ‘mh’ will be used as
set size from hth stratum, where j� 1, 2, 3, . . ., m. (e
number of cycles in ranked set sampling schemes is ‘r,’ where
i� 1, 2, 3, . . ., r. Overall sample size will be denoted as
n � rm � 􏽐

k
h�1nh � 􏽐

k
h�1rmh. (e correction factor is

c � 1/n − 1/N � 1/rm − 1/N � 1/rm; for large population
size, we ignore 1/N in the equation of c. Wh � Nh/N is the
stratum weight. Population means of Y, X, and Z variables
are denoted by µy, µx, and µz, respectively. Sample means of
Y,X, and Z, variables are denoted by y, x, and z, respectively.
Population variances of Y, X, and Z variables are denoted by
σ2y, σ

2
x, and σ2z, respectively. Sample variances of Y, X, and Z

variables are denoted by s2y, s2x, and s2z, respectively. Pop-
ulation coefficients of variation of Y, X, and Z variables are
denoted by C2

y � σ2y/μ
2
y, C2

x � σ2x/μ
2
x, and C2

z � σ2z/μ
2
z, re-

spectively. Population covariances between X, Y, and Z
variables are denoted by Sxy � 􏽐

N
i�1(yi − μy)(xi − μx)/N,

Syz � 􏽐
N
i�1(yi − μy)(zi − μz)/N, and Sxz � 􏽐

N
i�1(xi − μx)

(zi − μz)/N, respectively. Population coefficients of corre-
lation between X, Y, and Z variables are denoted by
ρxy � Sxy/σxσy, ρxz � Sxz/σxσz, and ρyz � Syz/σyσz,
respectively.

To obtain biases and mean square error, we consider the
following notations under StEMRSS:

(i) yStEMRSS(j) � μy(1 + e0(j)(stemrss)), xStEMRSS(j) � μx

(1 + e1(j)(stemrss)), and zStEMRSS(j) � μz(1+

e2(j)(stemrss)), for j�Even (E) or Odd (O).
(ii) e0(j)(stemrss) � yStEMRSS(j) − μy/μy, e1(j)(stemrss) �

xStEMRSS(j) − μx/μx, and e2(j)(stemrss) � zStEMRSS(j)

−μz/μz.
(iii) E(e0(j)(stemrss)) � E(e1(j)(stemrss)) � E(e2(j)(stemrss))

� 0.
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2. Existing Estimators under StRSS with Two
Auxiliary Variables

Khan and Shabbir [17] suggested generalized exponential-
type ratio-cum-ratio estimator to estimate population mean
of study variable with two auxiliary variables under StRSS
scheme. (e mathematical expression of estimator under
StRSS is given as

μ⌢yKS,StRSS � 􏽘
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where α12 and α13 were suitably chosen constants and their
optimum values were given as
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(e mathematical expression of MSE was given as
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⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4)

3. The Proposed Estimator

Motivated by Zubair and Ali [18], we have proposed a class
of generalized chain regression-cum-chain ratio estimator

for populationmean using two auxiliary variables under new
modified ranked set sampling scheme called stratified
extreme-cum-median ranked set sampling (StEMRSS). (e
proposed estimator is given as

Mathematical Problems in Engineering 3



μ⌢y,(StEMRSS),G3 � y(StEMRSS) + β
⌢
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where β
⌢

xy and β
⌢

yz are estimates of coefficients of regression,
and α19 and α20 are any suitable chosen constants to min-
imize MSE of estimator. For derivation of MSE, the

proposed estimator can be written in the form of e0(i), e1(i),
and e2(i) as
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Squaring both sides of (8), we get
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⌢2

xyR
2
1 + 2α19β

⌢

xyR1􏼒 􏼓V
(stemrss)
xx

+ α220 + β
⌢2

yzR
2
2 + 2α20β

⌢

yzR2􏼒 􏼓V
(stemrss)
zz

− 2α19 + 2β
⌢

xyR1􏼒 􏼓V
(stemrss)
xy − 2α20 + 2β

⌢

yzR2􏼒 􏼓V
(stemrss)
yz

+ 2α19α20 + 2α19β
⌢

yzR2 + 2α20β
⌢

xyR1 + 2β
⌢

xyβ
⌢

yzR1R2􏼒 􏼓V
(stemrss)
xz

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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,

or

MSE μ⌢y,(StEMRSS),G3􏼐 􏼑 �

V
(stemrss)
yy + α19 + β

⌢

xyR1􏼒 􏼓
2
V

(stemrss)
xx + α20 + β

⌢

yzR2􏼒 􏼓
2
V

(stemrss)
zz

−2 α19 + β
⌢

xyR1􏼒 􏼓V
(stemrss)
xy − 2 α20 + β

⌢

yzR2􏼒 􏼓V
(stemrss)
yz

+2 α19 + β
⌢

xyR1􏼒 􏼓 α20 + β
⌢

yzR2􏼒 􏼓V
(stemrss)
xz

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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,

(10)

where R1 � μx/μy and R2 � μz/μy.
To minimize MSE of proposed estimator-I, optimum

values of α19 and α20 have been derived by taking partial

derivative of (10) and equating to zero. First, we take partial
derivative of (10) with respect to α19 as follows:

zMSE μ⌢y,(StEMRSS),G3􏼐 􏼑

zα19
�

z

zα19

V
(stemrss)
yy + α219 + β

⌢2

xyR
2
1 + 2α19β

⌢

xyR1􏼒 􏼓V
(stemrss)
xx

+ α220 + β
⌢2

yzR
2
2 + 2α20β

⌢

yzR2􏼒 􏼓V
(stemrss)
zz

− 2α19 + 2β
⌢

xyR1􏼒 􏼓V
(stemrss)
xy − 2α20 + 2β

⌢

yzR2􏼒 􏼓V
(stemrss)
yz

+ 2α19α20 + 2α19β
⌢

yzR2 + 2α20β
⌢

xyR1 + 2β
⌢

xyβ
⌢

yzR1R2􏼒 􏼓V
(stemrss)
xz
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� 0,

or

α19 �
−α20V

(stemrss)
xz + V

(stemrss)
xy − β

⌢

xyR1V
(stemrss)
xx − β

⌢

yzR2V
(stemrss)
xz

V
(stemrss)
xx

.

(11)
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On the same line, we take partial derivative of (10) with
respect to α20 as follows:

zMSE μ⌢y,(StEMRSS),G3􏼐 􏼑

zα20
�

z

zα20

V
(stemrss)
yy + α219 + β

⌢2

xyR
2
1 + 2α19β

⌢

xyR1􏼒 􏼓V
(stemrss)
xx

+ α220 + β
⌢2

yzR
2
2 + 2α20β

⌢

yzR2􏼒 􏼓V
(stemrss)
zz

− 2α19 + 2β
⌢

xyR1􏼒 􏼓V
(stemrss)
xy − 2α20 + 2β

⌢

yzR2􏼒 􏼓V
(stemrss)
yz

+ 2α19α20 + 2α19β
⌢

yzR2 + 2α20β
⌢

xyR1 + 2β
⌢

xyβ
⌢

yzR1R2􏼒 􏼓V
(stemrss)
xz
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� 0,

or

α20 �
−α19V

(stemrss)
xz + V

(stemrss)
yz − β

⌢

yzR2V
(stemrss)
zz − β

⌢

xyR1V
(stemrss)
xz

V
(stemrss)
zz

.

(12)

Now, we put value of α20 in the value of α19 as

α19 � −α20
V

(stemrss)
xz

V
(stemrss)
xx

+
V

(stemrss)
xy − β

⌢

xyR1V
(stemrss)
xx − β

⌢

yzR2V
(stemrss)
xz

V
(stemrss)
xx

,

or

α19opt �
V

(stemrss)
xy V

(stemrss)
zz − V

(stemrss)
yz V

(stemrss)
xz + β

⌢

xyR1V
(stemrss)
xz V

(stemrss)
xz − β

⌢

xyR1V
(stemrss)
xx V

(stemrss)
zz􏼒 􏼓

V
(stemrss)
xx V

(stemrss)
zz − V

(stemrss)
xz V

(stemrss)
xz􏼐 􏼑

.

(13)

On the same line, we get

α20opt �
V

(stemrss)
yz V

(stemrss)
xx − V

(stemrss)
xy V

(stemrss)
xz − β

⌢

yzR2V
(stemrss)
xx V

(stemrss)
zz + β

⌢

yzR2V
(stemrss)
xz V

(stemrss)
xz􏼒 􏼓

V
(stemrss)
xx V

(stemrss)
zz − V

(stemrss)
xz V

(stemrss)
xz􏼐 􏼑

. (14)

Substituting values of α19 and α20 in (9), we get

MSE μ⌢y,(StEMRSS),G3􏼐 􏼑min �

V
(stemrss)
yy + α19opt + β

⌢

xyR1􏼒 􏼓
2
V

(stemrss)
xx + α20opt + β

⌢

yzR2􏼒 􏼓
2
V

(stemrss)
zz

−2 α19opt + β
⌢

xyR1􏼒 􏼓V
(stemrss)
xy − 2 α20opt + β

⌢

yzR2􏼒 􏼓V
(stemrss)
yz

+2 α19opt + β
⌢

xyR1􏼒 􏼓 α20opt + β
⌢

yzR2􏼒 􏼓V
(stemrss)
xz
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. (15)
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(e mathematical expression of minimum MSE in (15)
will be used when population parameters are exactly known.
However, this is very difficult in real-life situations.

(erefore, we present the mathematical form of estimated
minimum MSE for real-life situations as follows:

MSE μ⌢y,(StEMRSS),G3􏼐 􏼑min �

V
⌢(stemrss)

yy + α⌢19opt + β
⌢

xyR
⌢

1􏼒 􏼓
2
V
⌢(stemrss)

xx + α⌢20opt + β
⌢

yzR
⌢

2􏼒 􏼓
2
V
⌢(stemrss)

zz

−2 α⌢19opt + β
⌢

xyR
⌢

1􏼒 􏼓V
⌢(stemrss)

xy − 2 α⌢20opt + β
⌢

yzR
⌢

2􏼒 􏼓V
⌢(stemrss)

yz

+2 α⌢19opt + β
⌢

xyR
⌢

1􏼒 􏼓 α⌢20opt + β
⌢

yzR
⌢

2􏼒 􏼓V
⌢(stemrss)

xz

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (16)

(e mathematical expression of minimum MSE in (16)
only depends on sample observations of study and auxiliary
variables. (erefore, it is recommended that (16) is used for
estimating minimumMSE of proposed estimator in real-life
situations.

3.1. Special Cases of Proposed Estimator. In this section, we
discuss some special cases of proposed estimator by putting
different values of constants. In Table 1, some special cases of
proposed estimator have been presented, but one may
present more special cases by using other combinations of
constants as well.

4. Simulation Study of Proposed Estimator

In this section, we conduct a Monte Carlo simulation for the
efficiency comparison of proposed estimator. We compare
the performance of proposed estimator with some existing
estimators under RSS sampling schemes with stratification
using two auxiliary variables. Percent relative efficiency
(PRE) is used as performance criterion for estimators. In
Monte Carlo simulation study, hypothetical data have been
generated from any probability distribution by specifying
values of its parameters. Mean square errors (MSEs) of
desired estimator have been computed by using hypothetical
data, and the results have been iterated by any desired
number. In this study, Monte Carlo simulation has been
carried out through the following steps:

(i) We generate a hypothetical population of variables
X and Z (auxiliary variables) of size 1000 from
symmetric distributions (normal and uniform) and
asymmetric distributions (Gamma and Weibull)
with some specific values of parameters as described
in Table 2.

(ii) Study variable Y is computed using the following
regression model:

Y � ρxyX + ρyzZ + e, (17)

where ρxy and ρyz are coefficients of correlations
and ‘e’ is the normally distributed error term having
mean zero and variance one.

(iii) (e number of iterations is one million.

(iv) (e performance of estimators has been computed
by taking different number of cycles r, set size m,
and number of strata h.

(v) Percent relative efficiencies (PREs) of estimators for
symmetric distributions have been calculated by
using the following equation:

PRE �
var μ⌢y,SRS􏼐 􏼑

var μ⌢y,i􏼐 􏼑
× 100, (18)

where var(μ⌢y,SRS) � σ2y/n and ‘i’ stand for any estimator or
sampling scheme whose performance has to be compared.
For asymmetric distributions, the equation for percent
relative efficiency is

PRE �
var μ⌢y,SRS􏼐 􏼑

MSE μ⌢y,i􏼐 􏼑
× 100, (19)

where MSE(μ⌢y,i) is the mean square error of estimators with
‘i’ standing for any estimator or sampling scheme whose
performance has to be compared.

Tables 3–8 show percent relative efficiencies (PREs) of
proposed estimator and existing estimators under stratified
ranked set sampling scheme with respect to SRS. As we use
auxiliary variable (X) for ranking purpose, there is chance of
ranking error. To minimize the effect of ranking error, we
should utilize strong positive correlations (ρxy) between
study and auxiliary variable. (erefore, we calculate PREs of
proposed and existing estimators for moderate and strong
positive calculations to monitor their effect. In Table 3,
hypothetical data of study and auxiliary variables with r� 3,
correlation coefficient of 0.5, and m � 10 and 15 are gen-
erated from normal, uniform, Gamma, and Weibull dis-
tributions. Results show that underm� 10 and 15, proposed
estimator under StEMRSS has the highest PREs (bold values)
for all choices of probability distributions. Under normal
distribution, PREs of proposed estimator for m� 10 and 15
are 324.718 and 352.862, respectively. Under uniform dis-
tribution, PREs of proposed estimator for m� 10 and 15 are
311.495 and 341.206, respectively. Under Gamma distri-
bution, PREs of proposed estimator for m� 10 and 15 are
315.748 and 334.984, respectively. Under Weibull distri-
bution, PREs of proposed estimator for m� 10 and 15 are
310.399 and 354.558, respectively. Results also show that

Mathematical Problems in Engineering 7



proposed estimator and its special cases are more efficient
than existing estimators, revealing that PRE of proposed
estimator increases with the increase in sample size.

In Table 4, hypothetical data of study and auxiliary
variables with r� 3, correlation coefficient of 0.75, and m �

10 and 15 are generated from normal, uniform, Gamma, and

Table 2: Parametric values for variables X and Z.

Strata Parameter
Normal Uniform Gamma Weibull

X Z X Z X Z X Z

1 μ 500 600 0 5 4 12 5 10
σ2 480 475 9 20 3 7 1.5 4.5

2 μ 1500 2000 4 8 8 14 10 18
σ2 500 775 16 15 5 6 4.5 9.5

Table 1: Some special cases of proposed estimator.

α19 α20 Estimator

0 0 μ⌢y,(StEMRSS),s1 � [y(StEMRSS) + β
⌢

xy(μx − x(StEMRSS)) + β
⌢

yz(μz − z(StEMRSS))]

1 0 μ⌢y,(StEMRSS),s2 � [y(StEMRSS) + β
⌢

xy(μx − x(StEMRSS)) + β
⌢

yz(μz − z(StEMRSS))](μx/x(StEMRSS))

0 1 μ⌢y,(StEMRSS),s3 � [y(StEMRSS) + β
⌢

xy(μx − x(StEMRSS)) + β
⌢

yz(μz − z(StEMRSS))](μz/z(StEMRSS))

1 1 μ⌢y,(StEMRSS),G4 � [y(StEMRSS) + β
⌢

xy(μx − x(StEMRSS)) + β
⌢

yz(μz − z(StEMRSS))](μx/x(StEMRSS))(μz/z(StEMRSS))

−1 0 μ⌢y,(StEMRSS),s5 � [y(StEMRSS) + β
⌢

xy(μx − x(StEMRSS)) + β
⌢

yz(μz − z(StEMRSS))](x(StEMRSS)/μx)

0 −1 μ⌢y,(StEMRSS),s6 � [y(StEMRSS) + β
⌢

xy(μx − x(StEMRSS)) + β
⌢

yz(μz − z(StEMRSS))](z(StEMRSS)/μz)

−1 −1 μ⌢y,(StEMRSS),s7 � [y(StEMRSS) + β
⌢

xy(μx − x(StEMRSS)) + β
⌢

yz(μz − z(StEMRSS))](x(StEMRSS)/μx)(z(StEMRSS)/μz)

Table 3: PRE of proposed estimator and existing estimators with respect to SRS for r� 3 and ρxy � 0.5.

Estimator Normal Uniform Gamma Weibull Normal Uniform Gamma Weibull
m� 10 m� 15

μ⌢yKS,StRSS 180.329 208.256 192.827 186.596 219.443 211.922 218.445 213.16
μ⌢y,StEMRSS,s1 195.838 212.777 198.664 210.714 246.84 217.715 231.998 220.36
μ⌢y,StEMRSS,s2 208.152 275.307 242.639 217.001 256.551 250.857 240.882 246.853
μ⌢y,StEMRSS,s3 272.41 282.139 258.124 246.803 227.032 232.795 256.551 279.65
μ⌢y,StEMRSS,s4 295.838 282.777 272.664 250.714 276.84 267.715 241.998 290.36
μ⌢y,StEMRSS,G3 324.718 311.495 315.748 310.399 352.862 341.206 334.984 354.558

Table 5: PRE of proposed estimator and existing estimators with respect to SRS for r� 3 and ρxy � 0.99.

Estimator Normal Uniform Gamma Weibull Normal Uniform Gamma Weibull
m� 10 m� 15

μ⌢yKS,StRSS 202.83 211.154 192.196 207.142 225.175 229.263 222.275 219.735
μ⌢y,StEMRSS,s1 217.816 242.185 212.478 230.758 258.765 231.681 241.851 233.852
μ⌢y,StEMRSS,s2 222.951 265.234 253.382 222.751 269.344 262.197 257.385 257.968
μ⌢y,StEMRSS,s3 285.154 296.858 276.987 261.254 235.374 248.254 269.861 295.186
μ⌢y,StEMRSS,s4 315.256 299.186 291.142 262.645 285.295 270.783 296.196 299.85
μ⌢y,StEMRSS,G3 345.813 321.745 331.867 332.927 361.978 359.785 362.535 372.672

Table 4: PRE of proposed estimator and existing estimators with respect to SRS for r� 3 and ρxy � 0.75.

Estimator Normal Uniform Gamma Weibull Normal Uniform Gamma Weibull
m� 10 m� 15

μ⌢yKS,StRSS 186.628 210.133 189.468 199.347 220.186 217.198 220.979 216.207
μ⌢y,StEMRSS,s1 198.926 232.398 201.296 221.532 248.286 222.356 238.088 231.297
μ⌢y,StEMRSS,s2 218.164 277.189 248.392 219.823 261.275 259.196 251.178 248.366
μ⌢y,StEMRSS,s3 277.936 281.175 263.088 255.254 224.471 241.345 258.129 289.144
μ⌢y,StEMRSS,s4 299.256 292.176 275.83 256.197 279.196 268.113 246.389 293.974
μ⌢y,StEMRSS,G3 332.672 315.196 325.745 328.927 358.187 351.391 344.186 368.352
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Weibull distributions. Results show that under m� 10 and
15, proposed estimator under StEMRSS has the highest PREs
(bold values) for all choices of probability distributions.
Under normal distribution, PREs of proposed estimator for
m� 10 and 15 are 332.672 and 358.187, respectively. Under
uniform distribution, PREs of proposed estimator form� 10
and 15 are 315.196 and 351.391, respectively. Under Gamma
distribution, PREs of proposed estimator for m� 10 and 15
are 325.745 and 344.186, respectively. Under Weibull dis-
tribution, PREs of proposed estimator for m� 10 and 15 are
328.927 and 368.352, respectively. Results also show that
proposed estimator and its special cases are more efficient
than existing estimators, revealing that PRE of proposed
estimator increases with the increase in sample size. Results
also indicate that PRE of proposed estimator increases when
correlation increases from 0.5 to 0.75.

In Table 5, hypothetical data of study and auxiliary
variables with r� 3, correlation coefficient of 0.99, and m �

10 and 15 are generated from normal, uniform, Gamma, and
Weibull distributions. Results show that under m� 10 and
15, proposed estimator under StEMRSS has the highest PREs
(bold values) for all choices of probability distributions.
Under normal distribution, PREs of proposed estimator for
m� 10 and 15 are 345.813 and 361.978, respectively. Under
uniform distribution, PREs of proposed estimator form� 10

and 15 are 321.745 and 359.785, respectively. Under Gamma
distribution, PREs of proposed estimator for m� 10 and 15
are 331.867 and 362.535, respectively. Under Weibull dis-
tribution, PREs of proposed estimator for m� 10 and 15 are
332.927 and 372.672, respectively. Results in Table 5 also
show that proposed estimator and its special cases are more
efficient than existing estimators, revealing that PRE of
proposed estimator increases with the increase in sample
size. Results also indicate that PRE of proposed estimator
increases when correlation increases from 0.75 to 0.99.

In Table 6, hypothetical data of study and auxiliary
variables with r� 5, correlation coefficient of 0.5, andm � 10
and 15 are generated from normal, uniform, Gamma, and
Weibull distributions. Results show that under m� 10 and
15, proposed estimator under StEMRSS has the highest PREs
(bold values) for all choices of probability distributions.
Under normal distribution, PREs of proposed estimator for
m� 10 and 15 are 315.199 and 350.362, respectively. Under
uniform distribution, PREs of proposed estimator form� 10
and 15 are 319.815 and 357.482, respectively. Under Gamma
distribution, PREs of proposed estimator for m� 10 and 15
are 325.131 and 358.478, respectively. Under Weibull dis-
tribution, PREs of proposed estimator for m� 10 and 15 are
330.385 and 362.208, respectively. Results also show that
proposed estimator and its special cases are more efficient

Table 6: PRE of proposed estimator and existing estimators with respect to SRS for r� 5 and ρxy � 0.5.

Estimator Normal Uniform Gamma Weibull Normal Uniform Gamma Weibull
m� 10 m� 15

μ⌢yKS,StRSS 196.862 201.754 185.623 201.852 220.368 219.184 220.853 213.762
μ⌢y,StEMRSS,s1 199.286 232.285 203.722 215.268 251.623 225.746 237.354 228.296
μ⌢y,StEMRSS,s2 201.723 247.972 247.861 207.718 258.344 258.296 241.571 253.285
μ⌢y,StEMRSS,s3 245.835 287.254 270.868 252.979 221.381 241.854 247.297 287.488
μ⌢y,StEMRSS,s4 287.123 282.926 284.754 251.175 276.964 263.186 289.867 279.197
μ⌢y,StEMRSS,G3 315.199 319.815 325.131 330.385 350.362 357.482 358.478 362.208

Table 7: PRE of proposed estimator and existing estimators with respect to SRS for r� 5 and ρxy � 0.75.

Estimator Normal Uniform Gamma Weibull Normal Uniform Gamma Weibull
m� 10 m� 15

μ⌢yKS,StRSS 206.824 216.846 188.386 212.586 228.355 229.487 231.586 218.497
μ⌢y,StEMRSS,s1 210.296 245.194 217.978 229.386 261.873 227.397 246.395 238.243
μ⌢y,StEMRSS,s2 216.723 257.083 251.153 222.978 274.867 264.586 258.593 258.187
μ⌢y,StEMRSS,s3 255.227 292.275 283.196 261.354 239.376 244.397 253.933 290.907
μ⌢y,StEMRSS,s4 299.589 299.097 290.472 273.099 287.988 269.597 297.397 284.847
μ⌢y,StEMRSS,G3 335.475 327.164 331.586 349.486 362.486 364.386 364.275 368.486

Table 8: PRE of proposed estimator and existing estimators with respect to SRS for r� 5 and ρxy � 0.99.

Estimator Normal Uniform Gamma Weibull Normal Uniform Gamma Weibull
m� 10 m� 15

μ⌢yKS,StRSS 210.835 229.286 195.296 228.133 238.987 236.386 237.386 225.384
μ⌢y,StEMRSS,s1 219.296 255.294 222.573 237.386 275.486 232.687 252.875 248.856
μ⌢y,StEMRSS,s2 223.164 263.283 264.967 229.586 284.274 272.836 268.186 262.197
μ⌢y,StEMRSS,s3 269.496 306.296 291.242 274.354 249.496 248.976 262.799 308.195
μ⌢y,StEMRSS,s4 304.253 317.866 301.682 279.286 292.297 278.386 318.476 291.292
μ⌢y,StEMRSS,G3 345.968 338.114 357.286 353.385 374.381 372.186 388.196 371.143
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than existing estimators, revealing that PRE of proposed
estimator increases with the increase in sample size.

In Table 7, hypothetical data of study and auxiliary
variables with r� 5, correlation coefficient of 0.75, and m �

10 and 15 are generated from normal, uniform, Gamma, and
Weibull distributions. Results show that under m� 10 and
15, proposed estimator under StEMRSS has the highest PREs
(bold values) for all choices of probability distributions.
Under normal distribution, PREs of proposed estimator for
m� 10 and 15 are 335.475 and 362.486, respectively. Under
uniform distribution, PREs of proposed estimator form� 10
and 15 are 327.164 and 364.386, respectively. Under Gamma
distribution, PREs of proposed estimator for m� 10 and 15
are 331.586 and 364.275, respectively. Under Weibull dis-
tribution, PREs of proposed estimator for m� 10 and 15 are
349.486 and 368.486, respectively. Results also show that
proposed estimator and its special cases are more efficient
than existing estimators, revealing that PRE of proposed
estimator increases with the increase in sample size. Results
also indicate that PRE of proposed estimator increases when
correlation increases from 0.5 to 0.75.

In Table 8, hypothetical data of study and auxiliary
variables with r� 5, correlation coefficient of 0.99, and m �

10 and 15 are generated from normal, uniform, Gamma, and
Weibull distributions. Results show that under m� 10 and
15, proposed estimator under StEMRSS has the highest PREs
(bold values) for all choices of probability distributions.
Under normal distribution, PREs of proposed estimator for
m� 10 and 15 are 345.968 and 374.381, respectively. Under
uniform distribution, PREs of proposed estimator form� 10
and 15 are 338.114 and 372.186, respectively. Under Gamma
distribution, PREs of proposed estimator for m� 10 and 15
are 357.286 and 388.196, respectively. Under Weibull dis-
tribution, PREs of proposed estimator for m� 10 and 15 are
353.385 and 371.143, respectively. Results also show that
proposed estimator and its special cases are more efficient
than existing estimators, revealing that PRE of proposed
estimator increases with the increase in sample size. Results
also indicate that PRE of proposed estimator increases when
correlation increases from 0.75 to 0.99.

Results in Tables 3–8 reveal that PRE of proposed es-
timator increases when set size m increases with fixed
number of cycles r and coefficient of correlation. Results also
show that PRE of proposed estimator is directly proportional
to r and coefficient of correlation. From the above results, we
conclude that our proposed estimator performs efficiently
under symmetrical as well as asymmetrical distributions.

5. Real-Life Application of Proposed Estimator

To compare the percent relative efficiencies (PREs) of
proposed estimator and existing estimator under StRSS, a
real-life data set given by Bierens and Ginther [19] has been
utilized. Data consists of 4 variables related to wages of
employees in USA: wage (in dollars per week) is selected as
study variable Y, number of years of education and number
of years of work experience are selected as auxiliary variables
(X and Z), and variable ‘does the individual work part time
or not?’ has been used for stratification purpose. Stratum 1

consists of those individuals who are regular employees, and
the rest are placed in stratum 2. We also utilized t-test for
comparison of means in two strata. Summary statistics of
data and results of t-test are presented in Table 9.

Results in Table 9 show that population of size 28155 is
divided into two strata of sizes 25631 and 2524, respectively.
Average wage (in dollars per week) in stratum 1 is 640.1625
whereas in stratum 2 its value is 233.7264. Variations in wage
(in dollars per week) in strata 1 and 2 are 197379.9 and
139784.5, respectively. P value of t-test is 0.000, which shows
that we reject our H0 (μy1 � μy2) and conclude that there is
statistically significant difference between means of two
strata.

(e best fitted probability distributions of study and
auxiliary variables are presented in Table 10. (e study
variable (wage (in dollars per week)) follows Gamma dis-
tribution with values of shape parameter, scale parameter,
and location parameter computed as 3.332, 177.320, and
−12.628, respectively. (e auxiliary variable X (number of
years of education) also follows Gamma distribution with
values of shape parameter, scale parameter, and location
parameter computed as 210.170, 0.182, and −25.284, re-
spectively. Moreover, the auxiliary variable Z (number of
years of work experience) follows Weibull distribution with
values of shape parameter, scale parameter, and location
parameter computed as 1.482, 21.873, and −1.499, respec-
tively. Results of Tables 9 and 10 reveal that this data has
heterogeneity and outliers. (erefore, in this type of data, we
suggest the use of our proposed generalized estimator under
stratified extreme-cum-median ranked set sampling. (e
distributional graphs of all variables are presented in
Figures 1–3. For simplicity of analysis, we select r� 1, 2, 3,
and 4 and m� 10 and 15.

Table 11 shows percent relative efficiencies (PREs) of
proposed estimator and existing estimators under stratified
ranked set sampling scheme with respect to SRS for real-life
data. Samples from real-life data set have been taken by using
r � 1, 2, 3, and 4 and m � 10 and 15. Proposed estimator
under StEMRSS has the highest PREs (bold values) for all
choices of r and m. For r� 1 and m� 10 and 15, PREs of
proposed estimator are 326.363 and 339.367, respectively.
For r� 2 andm� 10 and 15, PREs of proposed estimator are
342.497 and 354.834, respectively. For r� 3 and m� 10 and
15, PREs of proposed estimator are 350.1887 and 357.264,
respectively. For r� 4 and m� 10 and 15, PREs of proposed
estimator are 356.194 and 379.278, respectively. Results also
show that proposed estimator and its special cases are more
efficient than existing estimators, revealing that PRE of
proposed estimator increases with the increase in sample
size.

6. Distribution of Proposed Estimator for
Simulated Data

In this section, we identify the best fitted probability dis-
tribution of proposed estimator under StEMRSS. (e aux-
iliary variables are generated by using normal distribution
with parameters defined in Table 2. One million samples of
size n� 75, with r� 5, m� 15, and ρxy � 0.99, are taken, and
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Table 9: Summary statistics of wage (in dollars per week).

Strata Size Mean Variance Minimum Maximum t statistic P value
1 25631 640.1625 197387.624 50.39 18777.2 51.163 0.0002 2524 233.7263 139839.896 50.05 9269.26

Table 10: Probability distributions of variables with parametric values.

Variable Distribution
Parameters

Shape Scale Location
Wages Gamma 3.332 177.320 −12.628
Education Gamma 210.170 0.182 −25.284
Experience Weibull 1.482 21.873 −1.499
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Figure 1: Probability distribution of variable “wage (in dollars per week).”.

Probability Density Function

x
18161412108642

0.48
0.44

0.4
0.36
0.32
0.28
0.24

0.2
0.16
0.12
0.08
0.04

0

f (
x)

Histogram
Gamma (3P)

Figure 2: Probability distribution of variable “number of years of education.”.
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Figure 3: Probability distribution of variable “number of years of work experience.”.

Table 11: PRE of proposed estimator and existing estimators with respect to SRS for real-life data.

Estimator r� 1 r� 2 r� 3 r� 4 r� 1 r� 2 r� 3 r� 4
m� 10 m� 15

μ⌢yKS,StRSS 225.753 225.974 228.836 238.286 229.268 228.848 242.164 248.267
μ⌢y,StEMRSS,s1 228.862 236.865 245.286 247.482 233.197 246.977 249.083 257.478
μ⌢y,StEMRSS,s2 230.197 260.274 265.284 273.297 245.138 263.682 282.861 292.276
μ⌢y,StEMRSS,s3 244.386 256.387 283.274 296.973 250.389 284.867 299.235 324.278
μ⌢y,StEMRSS,s4 290.287 293.486 295.903 299.284 91.297 297.397 329.489 332.476
μ⌢y,StEMRSS,G3 326.363 342.497 350.187 356.194 339.367 354.834 357.264 379.278

Probability Density Function

Histogram
Normal

x
140130120110

0.3
0.28
0.26
0.24
0.22

0.2
0.18
0.16
0.14
0.12

0.1
0.08
0.06
0.04
0.02

0

f (
x)

Figure 4: Probability distribution of proposed estimator under StEMRSS.
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sampling distribution of proposed estimator is constructed.
It is found out that proposed estimator under StEMRSS
follows normal distribution with mean of 127.56 and
standard deviation of 6.7945. Figure 4 shows the probability
distribution of proposed estimator under StEMRSS.

7. Conclusion

(e objective of this study is to propose a class of generalized
estimators under stratified extreme-cum-median ranked set
sampling (StEMRSS). To achieve this objective, a class of
generalized chain regression-cum-chain ratio estimator for
population mean is proposed using two auxiliary variables
under StEMRSS. Monte Carlo simulation study has been
conducted for comparison of proposed estimator under
StEMRSS with some existing estimators using two auxiliary
variables under StRSS. (e results show that the proposed
estimator under StEMRSS performs more efficiently as
compared to existing estimators under both symmetrical
and asymmetrical probability distributions. (e use of the
proposed estimator in real-life application includes an ex-
ample to estimate average wages (in dollars per week) of
employees in USA. (e results of real-life application show
that the proposed estimator efficiently estimates the average
wages of employees in USA as compared to existing esti-
mators using two auxiliary variables under RSS schemes.(e
probability distributions of study and auxiliary variables are
explored.(ese results are also compatible with the results of
Monte Carlo simulation, as both studies show the efficiency
of the proposed estimator in StEMRSS under the specified
distributions. (e distribution of the proposed estimator is
also identified, and it is found out that the proposed esti-
mator follows normal distribution. (erefore, we can use
any parametric test on the results obtained by the proposed
estimator. In the light of the above results and discussions, it
is recommended that the proposed estimator is used for
estimating population mean of study variable when there are
heterogeneity and outliers in the data sets.
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