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At present, COVID-19 is a severe infection leading to serious complications. �e target site of the SARS-CoV-2 infection is the
respiratory tract leading to pneumonia and lung lesions. At present, the severity of the infection is assessed using lung CT images.
However, due to the high caseload, it is di�cult for radiologists to analyze and stage a large number of CTimages every day. Hence,
an automated, computer-assisted technique for staging SARS-CoV-2 infection is required. In this work, a comparison of deep
learning techniques for the classi�cation and staging of di�erent COVID-19 lung CT images is performed. Four deep transfer
learning models, namely, ResNet101, ResNet50, ResNet18, and SqueezeNet, are considered. Initially, the lung CT images were
preprocessed and given as inputs to the deep learning models. Further, the models were trained, and the classi�cation of four
di�erent stages of the infection was performed using each of the models considered. Finally, the performance metrics of the
models were compared to select the best model for staging the infection. Results demonstrate that the ResNet50 model exhibits a
higher testing accuracy of 96.9% when compared to ResNet18 (91.9%), ResNet101 (91.7%), and SqueezeNet (88.9%). Also, the
ResNet50 model provides a higher sensitivity (96.6%), speci�city (98.9%), PPV (99.6%), NPV (98.9%), and F1-score (96.2%) when
compared to the other models. �is work appears to be of high clinical relevance since an e�cient automated framework is
required as a staging and prognostic tool to analyze lung CT images.

1. Introduction

In recent years, SARS-type respiratory infections are be-
coming humans’ most prevalent health condition[1–4]. Such
infections a�ect the lower and upper respiratory tract
leading to pneumonia and acute respiratory distress syn-
drome (ARDS) [5]. Among these lung disorders, one of the
recently rapidly spreading infectious communicable diseases
is COVID-19 [6, 7]. In the world, a massive part of the
population has been infected by SARS-CoV 2 irrespective of
age and gender [8]. At the beginning of 2022, several
countries, like China and Spain, faced the �fth wave of
COVID-19 despite taking two doses of vaccination [9, 10].
�is virus creates severe lesions of the lungs a�ecting their
functionality and leading to a decrease in oxygen saturation.
As reported by WHO, SARS-CoV-2 has �ve variants of
concern, namely, Alpha, Beta, Gamma, Delta, and Omicron

(https://www.who.int/en/activities/tracking-SARS-CoV-2-
variants/). �e �rst symptoms of COVID-19 infections are
fatigue, cold, fever, and shortness of breath [11].

An essential step in the �ght against COVID-19 is the
e�ective screening of infected patients so that they can receive
immediate treatment and care, as well as isolate and mitigate
the virus’s spread [12, 13]. �e primary screening method for
detecting COVID-19 cases is reverse transcriptase-polymerase
chain reaction (RT-PCR) testing, which can detect SARS-CoV-
2 RNA from the saliva and mucocele samples [14]. In addition,
computed tomography (CT) imaging is conducted to analyze
lung health and staging the infection. Compared to chest
X-rays, the CT scan is considered more advantageous as it
captures a 3D view of the lungs, which helps the radiologist
identify the lesions’ exact location [15]. Hence, the CTscan has
been widely utilized as a diagnostic and prognostic tool during
the COVID-19 pandemic [2]. However, due to the high
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caseload during the pandemic, there is a critical need for
automating the analysis and staging of COVID-19 lung CT
images. For a better understanding of the CTimages of affected
lungs, thin sections of CTscans were analyzed and categorized
based on the affected regions in the lungs by monitoring the
predominant patterns observed in the CT scans. *e patterns
observed in the CT scans are classified as follows:

(i) Ground glass opacification (GGO): this pattern
gives an opaque (cloudy/hazy) appearance to the
lungs, but one can see the underlying vessels in the
lungs

(ii) Crazy-paving pattern: this pattern is similar to
GGO, with additional visualization observed as the
thickening of interlobular and intralobular septa

(iii) Focal consolidation: focal consolidation is the
uniform opacification (cloudy appearance) of pa-
renchyma regions (regions that involve in the gas
exchange where alveolus is present) and observation
of obscured vessels that underly the tissues

(iv) Linear opacities: this is a disordered arrangement of
coarse or curvilinear or fine reticulation (formation
of mesh/net-like patterns) in the subpleural region

*e highest rate of distribution pattern of pulmonary
lesions on CT observed in COVID-19 patients such as
pheripheral (subpleural region), central (lung hilum, pre-
dominantly central two-thirds of the lung), and diffuse
(subpleural and central regions). *ese lesions were cate-
gorized as single lobe, unilateral multilobe, and bilateral
multilobe affected regions. Other minor patterns observed
are cavitation, air bronchogram, pleural effusion, pericardial
effusion, pneumothorax bronchi ectasia, and mediastinal
lymphadenopathy [16].

Among these patterns, the main CT pattern observed in
COVID-19 pneumonia patient cases is GGO, with the major
parts affected in the lower lobes and peripheral and sub
pleural regions in the lungs. It is also noted that minor
patterns were not observed in the lung scan of COVID-19
patients [17]. All these abovementioned patterns were ob-
served and evaluated by assigning a severity score based on
the degree of affected regions in the five lung lobes. *e
scores of each lung lobe were added and given in the range of
0 to 20, which is referred to as the lobe score.

Also, the CTseverity score correlates with the duration of
symptoms observed in COVID-19 patients. *e early stage
(0 to 2 days) has a low CTseverity score, followed by a score
higher than the early stage indicating the intermediate stage
(3 to 7 days), followed by a score greater than the inter-
mediate stage indicating the late stage (8 to 14 days [17]).
Antifibrotic drugs such as Pirfenidone and nintedanib were
administered for SARS-CoV-2 patients, which showed 50%
effective treatment by enhancing lung function. *ese two
drugs are not immune suppressive and are commercially
available in oral forms. However, its inhaled formulation for
COVID-19 patients is under evaluation [18]. In addition to
antifibrotic drugs, an antiviral drug named remdesivir and
an anti-inflammatory drug named dexamethasone were
considered effective treatments for COVID-19 pneumonia.

It is also reported with evidence that remdesivir is ef-
fective in early COVID-19 cases whereas dexamethasone is
effective in later or diseased conditions of COVID-19. Apart
from these drugs, additional therapeutics such as baricitinib
(Janus kinase inhibitor) was also recommended for ad-
ministration to attenuate the symptoms associated with
COVID-19 pneumonia. It is also noteworthy to mention
that the combination of the abovementioned drugs showed
greater efficacy and a short period of recovery from COVID-
19 pneumonia. Another potential drug, tocilizumab (first
marketed IL-6 blocking antibody) was considered for re-
ducing the mortality rates in COVID-19 pneumonia. *is
was specifically administered to severe or critical patients
who had extensive bilateral lung lesions that have shown
remarkable effectiveness in reducing mortality rates and are
also considered safe in clinical practice [19].

In recent years, various deep learning techniques have
been introduced and applied in various fields, such as
computer vision, speech analysis, natural language pro-
cessing, and medicine [20, 21]. A significant advantage of
deep learning methods is that complex features can be
learned directly from the raw data. Deep learning techniques
play an important role in medical image processing, com-
puter-aided diagnosis, image interpretation, image fusion,
image registration, image segmentation, and image-guided
therapy. In addition, it can help physicians as a tool for
diagnosis and risk assessment.

*e main contribution of the proposed work is to
compare various deep learning techniques for the classifi-
cation and staging of COVID-19 lung CT images. Also,
performance metrics were calculated for evaluation pur-
poses. Here, an attempt has been made to stage the levels of
ground glass opacities in COVID-19 lung images using deep
learning techniques. *e CT images were preprocessed, and
four transfer learning-based pretrained convolution neural
network models, namely, ResNet101, ResNet50, ResNet18,
and SqueezeNet, were used for the classification and staging
of these CT images with different ground glass opacities.
Further, performance parameters such as accuracy, sensi-
tivity, specificity, positive predicted value (PPV), negative
predicted value (NPV), and area under curve (AUC) were
calculated and compared.

2. Literature Review

Ismael and Şengür [1] have worked on detecting COVID-19
lesions from chest X-ray images using various deep learning
techniques. *e authors stated that by using these deep
learning techniques, the accuracy score obtained is high
compared to shallow networks. *e authors concluded that
feature extraction using deep learning approaches is efficient
compared to traditional techniques. Barstugan et al. [2] have
presented the classification of normal and COVID-19 X-ray
images using machine learning techniques. *e authors
concluded that an accuracy of 99.68% was obtained for two-
class classifications. Hall et al. [3] have reported the clas-
sification of COVID-19 and non-COVID-19 chest X-ray
images using a pretrained convolution neural network. *e
authors demonstrate a classification accuracy of 91.24% for
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the two-class classification with the limited dataset. Further,
the authors concluded that the performance could be im-
proved by increasing the number of training images. Oh
et al. [6] reported feature extraction for COVID-19 chest
X-ray images for a limited dataset. *e authors developed a
patch-based convolution neural network and obtained an
accuracy of 88.7%. *e authors concluded that the results
which were obtained were strongly interrelated with the
clinical findings.

Ahuja et al. [7] developed a transfer learning-based
automated model for two-class classifications of COVID-19
lung CT images. *e work carried out was to classify the
normal and abnormal CT images using deep learning
convolution neural networks. Further, the authors made a
comparison of various techniques and calculated the per-
formance metrics and proposed that a pretrained ResNet-18
network with modified parameters provides higher accuracy
results for a two-class classification. Shorten et al. [12]
conducted a study on various applications of deep learning
techniques for the detection of COVID-19 infection. *e
authors reviewed how different types of data can be given as
input to deep neural networks and learning problems are
being constructed.

Jain et al. [13] made a comparison of different deep
learning models for identifying COVID-19-infected chest
X-rays. *e authors concluded that the Xception model
resulted in higher accuracy when compared to other models
and provided a better result compared to other models.
Sujath et al. [14] developed models like Vector autore-
gression, Multilayer Perceptron, and linear regression to
predict the spread of COVID-19 diseases in India. *e
authors concluded that the multilayer perceptron model has
a better prediction rate compared to other models. Baskaran
et al. [15] developed a deep learning-based system that is
used to classify normal and pneumonia X-ray images. *e
authors stated that the model developed was able to classify
the images, and the overall accuracy obtained using this
model is also higher compared to other techniques.

Elzeki et al. [20] developed a Chest X-ray COVID
Network (CXRVN) for the classification of chest X-rays. *e
authors have compared the developed network with the
existing pretrained networks, namely, GoogleNet, ResNet,
and AlexNet, and concluded that the performance param-
eters, such as accuracy of 94.5% obtained using the devel-
opedmodel, show better performance compared to the other
networks. Zhang et al. [21] developed a model for anomaly
detection on chest X-ray images using deep learning tech-
niques, and the authors stated that the model is efficient in
performing a reliable screening of chest X-ray images.
Ghaderzadeh and Asadi [22] conducted a review on the
application of various deep learning techniques being uti-
lized for radiographic modalities. *e authors concluded
that parameters such as false positive rates and negative
errors are reduced with the application of deep learning
techniques.

It is observed that most of the researchers have con-
sidered COVID-19 and non-COVID-19 chest X-rays and
CT images for classification using deep learning and tra-
ditional artificial intelligence techniques. In this work, an

attempt has been made to classify normal Lung CTslices and
various stages of COVID-19-infected CT slices using deep
learning techniques. Also, a comparison of four deep
learning techniques based on their performance metrics has
been implemented.

3. Methodology

3.1. Image Acquisition. In this work, a total of 1200 lung CT
images were considered from the standard COVID-19 da-
tabase (https://mosmed.ai/datasets/covid191110/). *e
dataset consists of four classes, namely, normal CT images
and three abnormal classes of CT images with glass opa-
cification involvement of lung parenchyma less than 25%,
between 25–50%, and between 50–75%. Since the availability
of medical images is limited, data augmentation has been
carried out. Hence, 300 images in each class are considered.
Also, the dataset is divided into 70% for training and 30% for
image testing purposes. Table 1 presents the dataset details
utilized in the proposed work. *e number of input images
for each class considered is uniformly distributed, and hence
there was no class imbalance.

Figure 1(a) shows the typical normal CT images.
Figures 1(b) and 1(c) show abnormal COVID-19 images
with ground glass opacities less than 25%, between 25–50%,
and between 50–75%, respectively.

3.2. Preprocessing of the Considered Images. In this work, a
pretrained transfer learning-based convolution neural net-
work model is used for the classification staging of ground
glass opacification into different stages of the infection. *e
input CT images were preprocessed to make them com-
patible with the considered CNN model. *e considered
images were resized to 224× 224× 3 for the residual net-
works and 227× 227× 3 for the SqueezeNet model. Further,
data augmentation techniques like shear operation, random
translation, and random rotation were performed to prevent
overfitting. Figure 2 shows the sample preprocessed and
augmented images considered for classification.

3.3. Convolutional Neural Network (CNN). In recent years,
CNN techniques have been utilized for the classification of
images due to their higher efficiency. *e temporal and
spatial features which are present in an image can be easily
extracted using convolution layers along with the filters in
the network. Convolutional neural network reduces the
computational time as it uses a technique called sharing of
weights [23, 24]. A simple feed-forward artificial neural
network with shared weights and neurons in the same filter
connected to the image in order to protect the spatial fea-
tures constitutes a convolutional neural network.

It consists of three major layers, namely, (i) a layer called
the convolution layer which is used to learn the features from
the image, (ii) the second layer is known as the max pooling
layer where the input image is sampled which reduces the
dimensionality of the features and in turn and reduces the
computational efforts, and (iii) the final layer is known as the
fully connected layer which helps the network for classification
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purpose [24, 25]. Figure 3 shows the overall block architectural
diagram of a convolutional neural network.

3.4. Deep Transfer Learning Convolutional Neural Network.
Since the availability of datasets is limited in the case of
medical images, the transfer learning technique plays a
major role in classification as well as in feature extraction.
*e main advantage of using this technique is that the
learning process is fast when compared to other conven-
tional techniques.

Further, by reducing the number of parameters, the time
complexity can be adjusted, which becomes an added ad-
vantage of using a transfer learning-based convolutional
neural network. Four different transfer learning techniques,

namely, ResNet101, ResNet50, ResNet18, and SqueezeNet
were considered. *ese pretrained CNN models were trained
to classify the image net database, which consists of 1000
categories [7]. Hence, these pretrained networks have to be
retained for the classification of the staging of SARS-CoV-2
lesions using Lung CT slices. SqueezeNet is considered to be
the smallest deep neural network which consists of 68 layers.
*e input image size required by the network is 227× 227× 3
[26]. *e residual networks require an input image size of
224× 224× 3. *e ResNet18 model considered in this work
has 71 deep layers. Also, ResNet50 and ResNet101 have 177
and 347 deep layers. Further, the initial learning rate, as well as
the optimizer, is also varied accordingly to perform classifi-
cation for the considered dataset.

3.4.1. Classification of COVID-19 Lung CT Images Residual
Networks and SqueezeNet. Residual network also known as
ResNet was initially developed for solving the problems like
vanishing gradient and degradation problems. Residual net-
work comes in three different forms depending on the number
of layers, namely, ResNet101, ResNet50, and ResNet18. Also,
Residual networks have been pretrained for medical images. In

Table 1: Details of input dataset used in the proposed work.

Category Training images with augmentation Testing images
Normal CT images 210 90
GGO of lung parenchyma <25% 210 90
GGO of lung parenchyma 25–50% 210 90
GGO of lung parenchyma 50–75% 210 90

(a) (b) (c) (d)

Figure 1: Sample CT images with four different classes considered in this work. (a) Normal CT images. (b) Ground glass opacification, lung
parenchyma less than 25%. (c) Ground glass opacification, lung parenchyma less than 25%–50%. (d) Ground glass opacification, lung
parenchyma less than 50–75%.

Figure 2: Preprocessed and augmented input images.
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this work, a comparison based on the performance of three
different residual networks and SqueezeNet has been per-
formed for the classification and staging of ground glass
opacities in COVID-19 lung CT images. *e ResNet50 model
performs better compared with other networks. Hence, the
architecture of ResNet50 is explained. Figure 4 shows the
architectural diagram of ResNet50.

*e input images are preprocessed and resized to
224× 224× 3 as required by the ResNet50 model. *e
preprocessed input CT images are then given to the con-
volution layer. It creates a feature map that provides low-
level features such as edges, gradient operations, color, and
so on. *e high-level features, such as abnormality and
lesions, are obtained from deep convolution layers. *e
dominant features are obtained in the pooling layer. *e
fully connected layer acts as a feed-forward network and
receives output from the pooling layer.*e softmax layer has
its output range [0, 1] which predicts the input to which class
it belongs. *e number of outputs will be equal to the
number of classes considered. In this work, four classes,
namely, non-COVID-19 and COVID-19 CT images with
different ground glass opacities in the range of <25%, 25-
50%, and 50-75% are considered for classification.

Figure 5 shows the overall work reported in this paper. A
detailed analysis has been made for the selection of
hyperparameters for each network considered in this work.
Parameters such as the number of epochs, initial learning
rate, bias learning factor, and weight learning factors were
chosen and varied accordingly to train the networks.

*e parameters for which the highest order of accuracy
was obtained in each network were chosen as the best pa-
rameter set. Further, the performance parameters like ac-
curacy, specificity, sensitivity, positive predictive value,
negative predictive value, and F1-score were calculated for
the four networks individually, and a comparison has been
made among these four networks.

4. Results and Discussion

*e work reported in this manuscript is divided into three
divisions, (i) preprocessing of the input images, (ii) selection of
hyperparameters for classification purposes, and (iii) perfor-
mance evaluation of the classifiers. Initially, preprocessing of
input images like resizing, rotation, and translation is performed
based on the input size required by the model. Hence, the

considered dataset is resized accordingly. In this work, training
and testing of four-class classifications of input CT images were
performed using a pretrained model. *e training models
considered for four-class classification problems are ResNet101,
ResNet50, ResNet18, and SqueezeNet. 70% of the data is taken
for training the models, and 30% of the data is considered for
testing purposes.

*e next step was to select the best hyperparameters for
training the models. Two optimizers, namely, ADAM and
SGDM, are considered for classification. Hyperparameters
like the number of epochs, initial learning rate, weight bias
factor, learning bias factor, and minibatch size were taken
into account. Various combinations of hyperparameter
values were considered, and the accuracy of each model was
calculated. Table 2 presents the best-selected hyper-
parameters for training each model.

Figure 6(a) shows the variation of accuracy as a function
of both the initial learning rate and the number of epochs, as
a surface plot, for the case of SqueezeNet. It is observed that
the increase in the number of epochs, with a decrease in the
initial learning rate, results in higher accuracy.

A training accuracy of 91.2% was obtained for an initial
learning rate of 0.0001 and with the number of epochs equal
to 15.

Similarly, Figures 6(b) and 6(c) show the variation of
training accuracy as a function of both the initial learning
rate and the number of epochs for the case of the other
models, namely, ResNet18, ResNet101, and ResNet50. In all
the considered cases, it can be observed that the training
accuracy increases with an increase in the number of epochs
and a decrease in the initial learning rate. Results demon-
strate that the ResNet50 model yields the highest training
accuracy of 98.8% and testing accuracy of 96.9% when
compared to all the other models considered.

Figure 7 shows the variation of training accuracy and the
loss function with respect to the increase in the iterations for
the ResNet50 model. It is observed that the training accuracy
increases with an increase in the iterations and reaches a
relatively steady state after 400 iterations. It is also observed
that the value of the loss function decreases with an increase
in the iterations and reaches a relative minimum after 400
iterations.

Figure 8(a) presents the confusionmatrix for the training
data after training the ResNet50 model. It is seen that this
model is able to classify the majority of the input images into

INPUT CONVOLUTION POOLING FULLY CONNECTED OUTPUT

FEATURE EXTRACTION CLASSIFICATION

Figure 3: An architectural diagram of convolutional neural network.
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Figure 5: Overall block diagram of the work.

Table 2: Hyperparameters considered for training the models.

Model Initial learning rate No. of epochs Weight learning factor Bias learning factor Optimizer Accuracy (%)
SqueezeNet 1.00E− 04 15 10 10 ADAM 91.2
ResNet18 1.00E− 04 15 10 10 ADAM 96.4
ResNet50 1.00E− 04 15 10 10 ADAM 98.8
ResNet101 1.00E− 04 15 10 10 ADAM 97.5
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its correct classes with a training accuracy of 98.8%, sen-
sitivity of 98.8%, specificity of 99.6%, PPV of 99.6%, NPV of
99.2%, and F1-score of 98.7%. Similarly, Figure 8(b) rep-
resents the confusion matrix for the images in the testing
dataset classified using the ResNet50 model. It is observed
that a testing accuracy of 96.9% is obtained, which ensures
that the model is able to classify normal and abnormal
images.

Any machine learning model’s efficiency can be deter-
mined by measuring the factors such as true negative rate,
true positive rate, false negative rate, and false positive rate.

A confusion matrix is a representation that provides an
overview of the true positive rate, true negative rate, false
positive rate, and false negative rate for the classes con-
sidered [24]. True positive rate (TP) is the condition where
the actual class and the predicted class results are true. True
negative rate (TN) shows the condition where the actual and
the predicted class are false. False positive rate (FP) is the
condition where the actual class shows false, and the pre-
dicted class shows true. A false negative (FN) rate is the case
where the actual class shows true, and the predicted class
shows false.
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Figure 6: Variation of the accuracy of (a) SqueezeNet, (b) ResNet18, (c) ResNet50, and (d) ResNet101 shown as a function of initial learning
rate and a number of epochs.
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In this proposed work, the categories such as ct0, ct1,
ct2, and ct3 correspond to normal Lung CT images, CT
with GGO <25%, CT with GGO 25-50%, and CT with
GGO 50-75%. A total of 840 images were utilized for
training the model. Each category consists of 210 images.
*e normal images labeled as ct0 were classified as normal
images, and their true positive rate is 100%, the false
negative was 0%, the false positive is 0%, and the true
negative rate is 100%. Similarly, the images labeled as ct1,
which is CT with GGO 25–50%, its true positive rate is

97.1%, false negative is 1.4%, false positive is 2.9%, and
true negative rate is 98.6%. Hence the TP, TR, FN, and FP
values are obtained from the confusion matrix for each
category.

Based on these parameters, performance metrics such as
accuracy, specificity, sensitivity, positive predictive value,
negative predictive value, and F1-score are commonly cal-
culated, which determines how well the model is performing
[27, 28]. *e following equations are utilized to calculate the
performance of the model.
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Figure 8: Confusion matrix of the ResNet50 model for (a) training data and (b) testing data.
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Figure 9: ROC curve for the ResNet50 model for (a) training data and (b) testing data.
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Accuracy �
TP + TN

TP + FP + TN + FN
,

Sensitivity �
TP

TP + FN
,

Specificity �
TN

TN + FP
,

PPV �
TP

TP + FP
,

NPV �
TN

TN + FN
,

F1 �
2TP

(2TP + FP + FN)
.

(1)

*e receiver operator characteristics (ROC) curve is a
graphical representation of the true positive rate (sensitivity)
on the y-axis and False Positive Rate (1-Specificity) on the
x-axis for different cut-off values [29]. When the area under
the curve value becomes maximum, i.e., AUC� 1, it means
that the test which is performed by the model to differentiate
between the normal and the abnormal input images is ef-
ficient [30, 31].

Figures 9(a) and 9(b) depict the receiver operating
characteristics (ROC) curve. Area Under Curve (AUC) is an
efficient measure of specificity and sensitivity for evaluation
of the classification model. *e AUC value for the ResNet50
model for training data is 0.998, and for the testing, the
dataset is 0.966, which implies that this model is well-trained
and can differentiate the normal images and different classes
of abnormal input images in the training set as well as the
training set.

*e performance metric such as accuracy, sensitivity,
specificity, F1-score, negative predictive value, and positive
predictive value was calculated for each model. Tables 3 and
4 present the performance metrics of the models considered
for classification using the training dataset and testing
dataset, respectively.

Figures 10(a) and 10(b) show the performance metric
plots for all the considered pretrained model for classifi-
cation. It is observed from the plot that the ResNet50 model

gives the highest performance metrics when compared to
other networks for the training data.

Also, Figures 11(a) and 11(b) present the performance
measure plots for a testing dataset of a pretrained model
considered for classification. It is inferred from the plot that
for the training dataset considered, the ResNet50 model
gives high-performance parameters compared to other
networks.

Table5 presents a summary of various existing COVID-
19 detection and classification techniques using deep
learning algorithms. It is observed from the table that
machine learning techniques along with medical images
such as radiographs act as a better diagnostic tool for the
early detection of human disorders. From the brief analysis
of the COVID-19 research diagnosis, it can be inferred that
there is insufficient chest radiographic data available for
COVID-19 detection, and deep learning techniques are
useful for COVID-19 detection. *e standard approach to
COVID-19 detection, which uses PCR kits and reverses
transmission polymerase chain reaction (RT-PCR), has
some limitations, including a long cycle time and very low
sensitivity, i.e., 89%. Most researchers have considered chest
X-ray imaging and chest CT scan modality as diagnostic
tools for early detection of COVID-19 in patients.

In contrast to chest X-ray images, CT scans are more
effective for detecting COVID-19 lesions because they can
give a full 3D perspective of the organ, enabling a more
accurate diagnosis of the abnormality’s nature. Since data
availability is limited, the diagnosis of abnormalities from a
limited dataset of chest radiographs of COVID-19 patients is
therefore proven to be possible using transfer learning in
conjunction with data augmentation. Also, it is observed
from the literature that most researchers have considered
two categories, namely, COVID-19 and normal CT scans
and Chest X-rays, for classification using deep learning
techniques. Table 4 shows a brief analysis made by the re-
searchers on using different deep learning techniques for
chest X-rays and CT images. Results demonstrate that
ResNet50 shows a better classification accuracy when
compared to other models considered for classification. In
addition, it is observed that deep learning techniques pro-
vide an efficient staging of SARS-CoV-2 lesions for the
considered dataset.

Table 3: Performance measures of the pretrained transfer learning model considered for the classification of the training dataset.

Model Sensitivity (%) Specificity (%) Accuracy (%) Positive predictive value (%) Negative predictive value (%) F1-score (%)
SqueezeNet 91.9 97 92.7 97.3 95.5 90.8
ResNet18 96.4 98.8 96.5 98.8 98.2 96.4
ResNet101 97.5 99.1 97.5 99.1 98.7 97.5
ResNet50 98.8 99.6 98.8 99.6 99.2 98.7

Table 4: Performance measures of the pretrained transfer learning model considered for the classification of a testing dataset.

Model Sensitivity (%) Specificity (%) Accuracy (%) Positive predictive value (%) Negative predictive value (%) F1-score (%)
SqueezeNet 88.8 96.2 91.1 96.6 94.4 88.3
ResNet18 91.9 97.3 92.2 97.3 95.9 91.9
ResNet101 91.6 96.9 92.2 96.5 95.3 91.6
ResNet50 96.6 98.9 99.6 98.9 98.4 96.2

Mathematical Problems in Engineering 9



100

98

96

94

92

90
Sensitivity Specificity PPV

Pe
rfo

rm
an

ce
 M

ea
su

re
s (

%
)

ResNet50
ResNet18

ResNet101
SqueezeNet

(a)

NPV F1 ScoreAccuracy

100

98

69

94

92

90

Pe
rfo

rm
an

ce
 M

ea
su

re
s (

%
)

ResNet50
ResNet18

ResNet101
SqueezeNet

(b)

Figure 10: Performance parameters of all models for the training dataset.
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Figure 11: Performance metrics of all models for testing dataset.

Table 5: A summary of various existing COVID-19 detection and classification techniques.

Reference Techniques Evaluation based on the performance

Jaiswal et al. [32] A deep transfer learning-based DenseNet201 was
proposed to classify normal and COVID-19 CT images

An accuracy, sensitivity, and specificity of 96.25%
96.62% and 96.215% were obtained

Farooq and Hafeez
[33]

A modified ResNet was developed for the classification
of COVID-19 and other lung infections, namely,

bacterial and viral using deep learning

An accuracy of 96.23% and a specificity of 100% were
obtained

100

Ahuja et al. [7]
A comparison of various deep learningmodels was done

to classify COVID-19 and non-COVID-19 X-ray
images

ResNet18 performs better compared to other transfer
learning models. A classification of 99.4% is obtained

for binary classification

Apostolopoulos and
Mpesiana [34]

A comparison was made on various transfer learning
techniques using lung X-ray images for normal vs.

COVID-19 and normal vs. bacterial vs. viral

A sensitivity, specificity, and accuracy of 98.66%,
96.46%, and 96.78% were obtained
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5. Conclusion

SARS-type respiratory infections are one of the most pre-
vailing health conditions affecting upper and lower respi-
ratory organs in recent years [38]. Among these respiratory
disorders, most of the world’s population is affected by
COVID-19. A critical step in to fight against this COVID-19
is to provide effective screening and isolate the infected
people to reduce the spread of COVID-19. *ough the RT-
PCR test is considered a better method of screening, it has its
disadvantages, as one has to wait long hours to obtain the
result. *erefore, medical imaging such as X-ray and CT
scans plays a major role in the early detection of COVID-19
infections. CT scans are preferred among these imaging
modalities as they show a 3-dimensional view of the organs.
However, due to the increase in the caseload, it is difficult for
radiologists to perform mass screening and staging of in-
fections. Hence, computer-assisted staging of SARS-CoV-2
infections is required. In recent years, deep learning tech-
niques have played a major role in medical imaging tech-
nology. Various deep learning techniques have been utilized
classification of medical images.

*is work compares different deep learning techniques
to classify the normal and different stages of abnormal
SARS-Cov 19 lung CT images. *e overall work is divided
into three phases. In the first phase, the images are resized
based on the size required by the pretrained model, and data
augmentation techniques such as rotation, shear, and
translation are applied to increase the size of the dataset.
Four-class classification techniques are performed in the
second phase using pretrained transfer learning models such
as ResNet101, ResNet50, ResNet18, and SqueezeNet. Here,
hyperparameters are varied and optimum values are chosen
for which the maximum training accuracy is obtained. *e
third phase is to calculate the performance metrics for each
pretrained model. Among these four pretrained models,
ResNet50 shows better results than other pretrained models.
*is model yields a testing accuracy of 96.9%, a sensitivity of
96.6%, a specificity of 98.9%, and an AUC of 0.998. It is
observed that the ResNet50 model performs well for the
classification of normal and the abnormalities of various
ground glass opacities of COVID-19 images. In the future,
this model can be considered for automated clinical

examination of COVID-19 detection and staging using lung
CT images.

Data Availability

*e standard open-source COVID-19 database (https://
mosmed.ai/datasets/covid191110/) was utilized for this
study.
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