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Te concept of the cubic intuitionistic fuzzy set is an efective hybrid model for modeling uncertainties with an intuitionistic fuzzy
set and an interval-valued intuitionistic fuzzy set, simultaneously. Te primary objective of this study is to develop a topological
structure on cubic intuitionistic fuzzy sets with P-order and R-order as well as to defne some fundamental characteristics and
signifcant results with illustrations. Taking advantage of topological data analysis with cubic intuitionistic information, novel
multicriteria group decision-making methods are developed for an uncertain supply chain management. Algorithms 1 and 2 are
proposed for extensions of the weighted product model and the choice value method towards a cubic intuitionistic fuzzy
environment, respectively. A comparative analysis is also given to discuss the validity and advantages of the proposed techniques.

1. Introduction

Topological data analysis (TDA) methods are rapidly
growing approaches to inferring persistent key features from
possibly complex data [1]. We deal with complex issues in
our daily lives due to vague and uncertain information, and
if we do not use the proper modeling techniques for them,
we eventually wind up with vague and unclear reasoning.
For this reason, making rational and logical conclusions in
the face of such imprecise and inexplicit facts is a difcult
task for decision-makers. As a result, dealing with vagueness
and uncertainty is a necessary part of dealing with such
challenges and difculties. Zadeh [2] initiated the notion of
fuzzy set (FS) theory, which is an instantaneous extension of
a crisp set. Various sets of theories and models have been
developed by researchers to manage the complexity of daily
life problems that include vague and uncertain information.
Atanassov [3] presented the idea of an intuitionistic fuzzy set
(IFS), and Atanassov [4] further initiated the notion of
circular intuitionistic fuzzy sets. Yager [5, 6] introduced the
concept of a Pythagorean fuzzy set (PFS), and further Yager
[7] developed the notion of a q-rung orthopair fuzzy set (q-

ROFS). Molodtsov [8] was the frst who proposed the idea of
a soft set (SS), and Zhang [9, 10] originally introduced the
notion of a bipolar fuzzy set (BFS) to address bipolarity and
bipolar information. Smarandache [11, 12] initiated the
concept of a neutrosophic set (NS). Cuong [13] introduced
the idea of a picture fuzzy set (PiFS). Gundogdu and
Kahraman [14], Mahmood et al. [15], and Ashraf et al. [16]
independently introduced the notion of a spherical fuzzy set
(SFS). Tese models have a strong foothold when it comes to
modeling uncertainty in a real-life complex challenges.
Atanassov and Gargov [17] introduced interval-valued
intuitionistic fuzzy sets. Cagman and Enginoglu [18] pro-
posed decision-making applications based on soft-set the-
ory. Karaaslan and Cagman [19] introduce the parameter
trees based on soft set theory and their similarity measures.
Chen [20] proposed m-polar fuzzy sets (mPFS) with m

membership values to address the multipolarity of objects.
Jun et al. [21] developed the cubic set (CS) and its in-

ternal and external environment. But CS has some limita-
tions, as it does not convert membership degree grades into
nonmembership grades. Riaz and Hashmi [22] proposed
cubic m-polar fuzzy sets and cubic m-polar fuzzy averaging
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aggregation operators for MAGDM. So, for this, Kaur and
Garg [23, 24] presented the concept of a cubic intuitionistic
fuzzy set by combining the concepts of IFSs, CFSs, and
IVIFSs. So, CIFS, rather than IFSs or IVIFSs, is a handy
technique to address information more precisely throughout
the DMP. Young et al. [25] proposed cubic interval-valued
intuitionistic fuzzy sets. Senapati et al. [26] introduced a
cubic intuitionistic WASPAS technique. Garg and Kaur [27]
suggested cubic intuitionistic fuzzy Bonferroni mean op-
erators. Garg and Kaur [28] proposed cubic intuitionistic
fuzzy TOPSIS for nonlinear programming.

Classical topology derives its inspiration from classical
analysis and has a wide range of scientifc applications. In
1968, Chang [29] proposed the concept of fuzzy topology.
Coker [30] pioneered intuitionistic fuzzy topology. Olgun
[31] expanded on this concept by introducing Pythagorean
fuzzy topology. Topological structures on fuzzy soft sets [32]
and cubic m-polar fuzzy sets [33] have robust applications in
decision-making. Xu and Yager [34] and Xu [35] originated
the notion of an intuitionistic fuzzy number (IFN) and their
aggregation operators. Zhang and Xu [36] developed an
extension of TOPSIS for Pythagorean fuzzy numbers
(PyFNs). Tey also suggested a domestic airline MCDM
application to examine the service quality of airlines. Feng
et al. [37] proposed the MADM application by using a new
score function for ranking alternatives with generalized
orthopair fuzzy membership grades. Akram [38] initiated
the concept of BFS graphs, and Akram et al. [39] suggested a
hybrid decision-making framework by using aggregation
operators under a complex spherical fuzzy prioritization
approach. Alghamdi et al. [40] proposed some MCDM
methods for bipolar fuzzy environments. Liu andWang [41]
proposed some basic operational laws of q-ROFNs and
q-ROF aggregation operators. Ye [42] proposed MADM
with new similarity measures based on the generalized
distance of neutrosophic Z-number sets. Senapati and Yager
[43] proposed WPM for Fermatean fuzzy numbers. Kah-
raman and Alkan [44] developed the TOPSIS method for
circular intuitionistic fuzzy sets. Sinha and Sarmah [45]
developed supply chain coordination using fuzzy set theory.
Alshurideh et al. [46] proposed supply chain management
with fuzzy-assisted human resource management.

Seikh et al. [47, 48] proposed the solution of matrix
games with rough interval pay-ofs and a defuzzifcation
approach of type-2 fuzzy variables to solving matrix
games. Tey developed applications of matrix games to
the telecom market share problem and the plastic ban
problem. Ruidas et al. [49] developed an EPQ model with
stock and selling price-dependent demand and a variable
production rate in an interval environment. Ruidas et al.
[50] suggested an interval environment with price revi-
sion using a single-period production inventory model.
Ruidas et al. [51] introduced a production-repairing in-
ventory model considering demand and the proportion of
defective items as rough intervals. Seikh and Mandal [52]
proposed q-rung orthopair fuzzy Frank aggregation op-
erators and their application in MADM with unknown
attribute weights. Seikh and Mandal [53] introduced the
MADM method based on 3, 4-quasirung fuzzy sets. Riaz

and Farid [54] proposed the picture fuzzy aggregation
approach and application to third-party logistic provider
selection. Ashraf et al. [55] introduced the Maclaurin
symmetric mean operator with an interval-valued picture
fuzzy model. Baig et al. [56] developed new methods for
enhancing resilience in developing countries for oil
supply chains. Chattopadhyay et al. [57] proposed the idea
of the development of a rough-MABAC-DoE-based
metamodel for iron and steel supplier selection. Karamasa
et al. [58] studied weighting the factors afecting logistics
outsourcing. Bairagi [59] developed a novel MCDM
model for warehouse location selection in supply chain
management. Recently, some applications of fuzzy
modeling have been developed, such as uncertain supply
chains [60], medical tourism supply chains [61], sus-
tainable plastic recycling processes [62], and pattern
recognition [63].

Multicriteria group decision-making (MCGDM) is a
branch of operation research in which the alternatives are
evaluated by the group of decision-makers (DMs) under
multiple criteria to fnd a ranking of alternatives and an
optimal decision. It is an important aspect of MCGDM to
evaluate alternatives based on their characteristics. It is
extremely difcult for an individual to choose an option in a
variety of situations due to inconsistencies in the data caused
by human errors or a lack of knowledge. Dealing with
vagueness and uncertainties in MCGDM problems is very
crucial to dealing with daily life problems. For this purpose, a
variety of strategies have been utilized to evaluate the sta-
bility of human decision-making by weighing a set of op-
tions against a set of criteria. Te weighted product model
and choice value method are well-known methods and are
often utilized to rank the alternatives according to certain
criteria.

Te main objectives of this research work are given as
follows:

(1) To develop a topological structure on cubic intui-
tionistic fuzzy sets (CIFSs) with P-order (P-CIFT) as
well as R-order (R-CIFT) and to validate some
signifcant results and fundamental characteristics
with examples. Te concept of the CIFS is a strong
hybrid model for modeling uncertainties with an IFS
and an interval-valued IFS, simultaneously.

(2) To examine various properties of the cubic intui-
tionistic fuzzy topology (CIFT) under P-order (R-
order), such as open sets of CIFT, closed sets of
CIFT, interior in CIFT, closure in CIFT, subspace of
CIFT, exterior in CIFT, a frontier in CIFT, and a
basis of CIFT.

(3) Taking advantage of topological data analysis with
cubic intuitionistic fuzzy information, we proposed
two multicriteria group decision-making (MCGDM)
methods.

(4) To develop Algorithm 1 for a weighted product
model (WPM) and Algorithm 2 for a choice value
method (CVM). An application of the proposed
techniques is also designed for the uncertain supply
chain management.
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(5) ranking of feasible alternatives is computed, and a
comparative analysis of proposed methods with
existing methods is also given to discuss the validity
and advantage of the proposed techniques.

Te remaining sections of this paper are organized as
follows. In Section 2, we reviewed some fundamental
concepts such as IFS, IVIFS, cubic sets, CIFS, operations on
CIFSs, and some essential results on CIFSs.Te idea of cubic
intuitionistic fuzzy set topology with P-order is introduced
in Section 3. We also investigated some key results on CIFSs
in p-order. In Section 4, we discuss the major results of cubic
intuitionistic fuzzy set topology with R-order. In Section 5,
we discuss a useful application that employs the weighted
product model and choice value method. Te conclusion of
the paper is given in Section 6.

2. Preliminaries

In this section, we study some basic concepts of IFSs, IVIFSs,
CSs, and CIFSs. We also review some fundamental prop-
erties of CIFSs that are necessary to understand the topo-
logical structures of CIFSs.

Defnition 1 (see [3]). An intuitionistic fuzzy set (IFS) in a
set k is described as

I � (ℓ, ζ(ℓ), η(ℓ)): 0≤ ζ(ℓ) + η(ℓ)≤ 1, ℓ ∈ k􏼈 􏼉, (1)

where, ζ: k⟶ [0, 1] represents the membership function,
and the nonmembership function is denoted by
η: k⟶ [0, 1].

Defnition 2 (see [34, 35]). Let I1 � (ζ1, η1) and I2 � (ζ2, η2)
be two IFNs. Ten, we have the following operations on
IFNs.

(i) I1⊆I2 if ζ1 ≤ ζ2 and η1 ≥ η2 for all ℓ ∈ k
(ii) I1 � I2 if I1⊆I2 and I2⊆I1
(iii) Ic1 � (ℓ, η1(ℓ), ζ1(ℓ)); ℓ ∈ k􏼈 􏼉

(iv) I1⋃ I2 � (ℓ,∨ ζ1, ζ2􏼈 􏼉,∧ η1, η2􏼈 􏼉): ℓ ∈ k􏼈 􏼉

(v) I1 ∩ I2 � (ℓ,∧ ζ1, ζ2􏼈 􏼉,∨ η1, η2􏼈 􏼉): ℓ ∈ k􏼈 􏼉

In reality, it is difcult to determine the exact mem-
bership and nonmembership degrees of an element in a set.
In this situation, a range of values may be a better mea-
surement to accommodate the uncertainty. For this, Ata-
nassov and Gargov [17] introduce the idea of an interval-
valued intuitionistic fuzzy set (IVIFS).

Defnition 3 (see [17]). Let k be a nonempty universal set.
An interval-valued intuitionistic fuzzy set (IVIFS) on k is
defned as

I � ℓ, ζL
(ℓ), ζU

(ℓ)􏽨 􏽩, ηL
(ℓ), ηU

(ℓ)􏽨 􏽩􏼐 􏼑; ℓ ∈ k􏽮 􏽯, (2)

where, [ζL
(ℓ), ζU

(ℓ)] and [ηL(ℓ), ηU(ℓ)] are the closed
subintervals of [0, 1] for every ℓ ∈ k. For simplicity, the pair
I � ([ζL

(ℓ), ζU
(ℓ)], [ηL(ℓ), ηU(ℓ)]) is called interval-valued

intuitionistic fuzzy number (IVIFN).

By fusing the concept of IFS and IVIFS, Jun et al. [21]
defned the cubic intuitionistic set as follows:

Defnition 4 (see [21]). A cubic set ∁ on a universal set k is
expressed as

∁ � ℓ, C(ℓ), σ(ℓ): ℓ ∈ k{ }, (3)

in which C(ℓ) is interval-valued fuzzy set and σ(ℓ) is fuzzy
set on k. For use of ease, this pair is referred as ∁ � 〈C, σ〉

Defnition 5 (see [21]). For any cubic fuzzy sets ∁i � 〈Ci, σi〉,
i ∈ Λ, we have

(i) P-union ∪ p∁i � 〈∨i∈ΛCi,∨i∈Λσi〉

(ii) P-intersection ∩
p
∁i � < ∧

i∈Λ
Ci, ∧

i∈Λ
σi >

(iii) R-union ∪ R∁i � 〈∨i∈ΛCi,∨i∈Λσi〉

(iv) R-intersection ∪ p∁i � 〈∨i∈ΛCi,∨i∈Λσi〉

Defnition 6 (see [23, 24]). Let k be a universal set of dis-
course. A cubic intuitionistic fuzzy set (CIFS) on universal
set k is described as

CI � ℓ, ζL
(ℓ), ζU

(ℓ)􏽨 􏽩, ηL
(ℓ), ηU

(ℓ)􏽨 􏽩, (ζ, η)􏼐 􏼑; ℓ ∈ k􏽮 􏽯, (4)

in which ([ζL
(ℓ), ζU

(ℓ)], [ηL(ℓ), ηU(ℓ)]) is an IVIFS and
(ζ, η) is an IFS in k. For ease of use, we denote these pairs as
CI � (C, σ), where C � ([ζL

, ζU
], [ηL, ηU]) and σ � (ζ, η) is

known as cubic intuitionistic fuzzy number (CIFN) with the
condition that [ζL

, ζU
], [ηL, ηU]⊆[0, 1], ζ, η ∈ [0, 1] and

ζ + η≤ 1.
Tat is why the CIFS has the advantage of being capable

to contain a lot more data to represent both the IVIFN and
the IFN at the same time.

2.1. Operations onCIFSs. Now we review some fundamental
operations of CIFSs, which have been explored in [23, 24].

Defnition 7. Te complement of the CIFS CI � (C, σ) is
defned as Cc

I � (Cc, σc) where Cc � ([ηL(ℓ), ηU(ℓ)],
[ζL

(ℓ), ζU
(ℓ)]) be the complement of the IVIFS,

C � ([ζL
(ℓ), ζU

(ℓ)], [ηL(ℓ), ηU(ℓ)]) and σc � (η, ζ) be the
complement of the IFS, σ � (ζ , η). Tus, the complement of
CIFS is expressed as

C
c
I � ℓ, ηL

(ℓ), ηU
(ℓ)􏽨 􏽩, ζL

(ℓ), ζU
(ℓ)􏽨 􏽩, (η, ζ)􏼐 􏼑; ℓ ∈ k􏽮 􏽯. (5)

Defnition 8. Consider two CIFSs on a universal set k is
given as follow:

C
1
I � ℓ, ζL

1 , ζU
1􏽨 􏽩, ηL

1 , ηU
1􏽨 􏽩, ζ1, η1( 􏼁􏼐 􏼑; ℓ ∈ k􏽮 􏽯, (6)

and

C
2
I � ℓ, ζL

2 , ζU
2􏽨 􏽩, ηL

2 , ηU
2􏽨 􏽩, ζ2, η2( 􏼁􏼐 􏼑; ℓ ∈ k􏽮 􏽯, (7)

we defne
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(i) (P-order) C1
I⊆pC

2
I if [ζL

1 , ζU
1 ]⊆[ζL

2 , ζU
2 ], [ηL

1 , ηU
1 ]⊇

[ηL
2 , ηU

2 ], ζ1 ≤ ζ2 and η1 ≥ η2
(ii) (R-order) C1

I⊆RC
2
I if [ζL

1 , ζU
1 ]⊆[ζL

2 , ζU
2 ], [ηL

1 , ηU
1 ]⊇

[ηL
2 , ηU

2 ], ζ1 ≥ ζ2 and η1 ≤ η2

Step 1. Obtain the decision matrix from the decision-makers, which indicates the alternative’sXj, (j � 1 . . . m) evaluation values on
the basis of criterion Ci, (i � 1, . . . n) by Tji � (Cji, σji), where Cji � ([ζL

ji, ζ
U
ji], [ηL

ji, η
U
ji]) an IVIFN and σji � (ζji, ηji) is known as a

cubic intuitionistic fuzzy number. Te decision-makers provide the decision matrix M � (Tji)m×n of the form.

X1
X2
Xm

C1 C2 . . . . . . Cn

(C11, σ11) (C12, σ12) . . . . . . (C1n, σ1n)

(C21, σ21) (C22, σ22) . . . . . . (C2n, σ2n)

⋮ ⋮ ⋱⋱ ⋮
(Cm1, σm1) (Cm2, σm2) . . . . . . (Cmn, σmn)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Step 2. Ten, the decision matrix M � (Tji)m×n is made normalized by a linear approach. Assume the criteria are categorized into
beneft criteria B and cost criteria K. Te normalization of every i ∈ B is defned as
Tji � Tji/maxjTji,

where maxjTji is defned as
maxjTji � ([(max ζL

ji, max ζU
ji)], ([min ηL

ji, min ηU
ji]), (min ζji, max ηji)).

Similarly, the normalization of every i ∈ K is defned as
Tji � minjTji/Tji,

where minjTji is defned as
minjTji � ([(min ζL

ji, min ζU
ji)], ([max ηL

ji, max ηU
ji]), (max ζji, min ηji)).

Te decision matrix M � (Tji)m×n is then transformed into normalized decision matrix M � (Tji)m×n and is given as

X1
X2
Xm

C1 C2 . . . . . . Cn

(C11, σ11) (C12, σ12) . . . . . . (C1n, σ1n)

(C21, σ21) (C22, σ22) . . . . . . (C2n, σ2n)

⋮ ⋮ ⋱⋱ ⋮
(Cm1, σm1) (Cm2, σm2) . . . . . . (Cmn, σmn)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Step 3. According to CIFS-WPM, the relative importance of j alternatives is denoted as Y j and is defned as
Y j � 􏽑 i � 1n(Tji)

wi,

Here, we use the operation of power rule of CIFNs and also the product operation of CIFNs.
Step 4. Find the score function of all vales Y j.
Step 5. Ranking of alternatives according to the score functions of Y j.

ALGORITHM 1: Weighted product model (WPM).

Step 1. Obtain the decision matrix from the decision-makers, with alternative’s Xj evaluate on the basis of criterion Ci by
Tji � (Cji, σji), where Cji � ([ζL

ji, ζ
U
ji], [ηL

ji, η
U
ji]) an IVIFN and σji � (ζji, ηji) is known as cubic intuitionistic fuzzy number. Te

decision-makers provide the decision matrix M � (Tji)m×n of the form.

X1
X2
Xm

C1 C2 . . . . . . Cn

(C11, σ11) (C12, σ12) . . . . . . (C1n, σ1n)

(C21, σ21) (C22, σ22) . . . . . . (C2n, σ2n)

⋮ ⋮ ⋱⋱ ⋮
(Cm1, σm1) (Cm2, σm2) . . . . . . (Cmn, σmn)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Step 2. Te decision-makers also give weightage to the criteria, with the condition that the sum of the weights must be equal to unity.
We compute the multiplication of the decision matrix with criteria weights.

(C11, σ11) (C12, σ12) . . . . . . (C1n, σ1n)

(C21, σ21) (C22, σ22) . . . . . . (C2n, σ2n)

⋮ ⋮ ⋱⋱ ⋮
(Cm1, σm1) (Cm2, σm2) . . . . . . (Cmn, σmn)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

W1
W2
Wn

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦.

Step 3. We fnd the score function of each value.
Step 4. Compute the ranking of the alternatives according to their score function values.

ALGORITHM 2: Choice value method (CVM).
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(iii) (Equality) C1
I � C2

I if [ζL
1 , ζU

1 ] � [ζL
2 , ζU

2 ], [ηL
1 , ηU

1 ] �

[ηL
2 , ηU

2 ], ζ1 � ζ2 and η1 � η2

Defnition 9. For any CIFSs

C
i
I � ζL

i , ζU
i􏽨 􏽩, ηL

i , ηU
i􏽨 􏽩, ζ i, ηi( 􏼁􏽨􏼐 􏼑; ℓ ∈ k􏽯 i ∈ Λ, (8)

the operations listed have been defned as follows:

(i) (P-union) ∪ PC
i
I � ([ ∨

i∈Λ
ζL

i , ∨
i∈Λ

ζU
i ],􏼚 [ ∧

i∈Λ
ηL

i , ∧
i∈Λ

ηU
i ]),

( ∨
i∈Λ

ζ i, ∧
i∈Λ

ηi)}

(ii) (P-intersection) ∩ PC
i
I � ([ ∧

i∈Λ
ζL

i , ∧
i∈Λ

ζU
i ],􏼚 [ ∨

i∈Λ
ηL

i ,

∨
i∈Λ

ηU
i ]), ( ∧

i∈Λ
ζ i, ∨

i∈Λ
ηi)}

(iii) (R-union) ∪ RC
i
I � ([ ∨

i∈Λ
ζL

i , ∨
i∈Λ

ζU
i ],􏼚 [ ∧

i∈Λ
ηL

i , ∧
i∈Λ

ηU
i ]),

( ∧
i∈Λ

ζ i, ∨
i∈Λ

ηi)}

(iv) (R-intersection) ∩ RC
i
I � ([ ∧

i∈Λ
ζL

i , ∧
i∈Λ

ζU
i ],􏼚 [ ∨

i∈Λ
ηL

i ,

∨
i∈Λ

ηU
i ]), ( ∨

i∈Λ
ζ i, ∧

i∈Λ
ηi)}

2.2. Some Results on CIFSs. Now we review some essential
properties and results of CIFSs, which have been explored in
[23, 24].

Defnition 10. A CIFS

CI � ℓ, ζL
(ℓ), ζU

(ℓ)􏽨 􏽩, ηL
(ℓ), ηU

(ℓ)􏽨 􏽩, (ζ, η)􏼐 􏼑; ℓ ∈ k􏽮 􏽯, (9)

for which ([ζL
(ℓ), ζU

(ℓ)], [ηL(ℓ), ηU(ℓ)]) � ([0, 0], [1, 1])

and (ζ, η) � (1, 0) for all ℓ ∈ k is denoted by 0CI

Defnition 11. A CIFS

CI � ℓ, ζL
(ℓ), ζU

(ℓ)􏽨 􏽩, ηL
(ℓ), ηU

(ℓ)􏽨 􏽩, (ζ, η)􏼐 􏼑; ℓ ∈ k􏽮 􏽯,

(10)

for which ([ζL
(ℓ), ζU

(ℓ)], [ηL(ℓ), ηU(ℓ)]) � ([1, 1], [0, 0])

and (ζ, η) � (0, 1) for all ℓ ∈ k is denoted by 1CI

Defnition 12. A CIFS

CI � ℓ, ζL
(ℓ), ζU

(ℓ)􏽨 􏽩, ηL
(ℓ), ηU

(ℓ)􏽨 􏽩, (ζ, η)􏼐 􏼑; ℓ ∈ k􏽮 􏽯,

(11)

for which ([ζL
(ℓ), ζU

(ℓ)], [ηL(ℓ), ηU(ℓ)]) � ([1, 1], [0, 0])

and (ζ, η) � (0, 1) for all ℓ ∈ k is denoted by 0CI

Defnition 13. A CIFS

CI � ℓ, ζL
(ℓ), ζU

(ℓ)􏽨 􏽩, ηL
(ℓ), ηU

(ℓ)􏽨 􏽩, (ζ, η)􏼐 􏼑; ℓ ∈ k􏽮 􏽯,

(12)

for which ([ζL
(ℓ), ζU

(ℓ)], [ηL(ℓ), ηU(ℓ)]) � ([1, 1], [0, 0])

and (ζ, η) � (1, 0) for all ℓ ∈ k is denoted by 1CI

Defnition 14. Let CI � (ℓ, [ζL
(ℓ), ζU

(ℓ)], [ηL(ℓ), ηU(ℓ)],􏽮

(ζ, η))} be a CIFN. Te score function S(CI) and the ac-
curacy function A(CI) on for CIFNs are defned as

For P-order

S CI( 􏼁 �
ζL

+ ζU
− ηL

− ηU

2
+ ζ − η. (13)

For R-order

S CI( 􏼁 �
ζL

+ ζU
− ηL

− ηU

2
+ η − ζ,

A CI( 􏼁 �
ζL

+ ζU
+ ηL

+ ηU

2
+ ζ + η.

(14)

Te ranking of CIFNs in relation to the proposed scoring
function and accuracy function is determined as.

(i) CI <C1
I if S(CI)<S(C1

I ),
(ii) If S(CI) � S(C1

I ), then CI <C1
I if A(CI)<A(C1

I )

(iii) If S(CI) � S(C1
I ) and A(CI) � A(C1

I ), then
CI � C1

I

Defnition 15. Let CI � (ℓ, [ζL
, ζU

], [ηL, ηU], (ζ, η)); ℓ ∈ k􏽮 􏽯

and

C
i
I � ℓ, ζL

i , ζU
i􏽨 􏽩, ηL

i , ηU
i􏽨 􏽩, ζ i, ηi( 􏼁􏼐 􏼑; ℓ ∈ k􏽮 􏽯, (i � 1, 2), (15)

be the CIFNs and let p> 0 be any real number. Te basic
operations on CIFs are given as

(i) C1
I + C2

I � (([1 − 􏽑
2
i�1(1 − ζL

i ), 1 − 􏽑
2
i�1(1 − ζU

i )],

[􏽑
2
i�1 η

L
i , 􏽑

2
i�1 η

U
i ]), (􏽑

2
i�1 ζ i, 1 − 􏽑

2
i�1 ηi))

(ii) C1
I × C2

I � ([􏽑 i � 12ζL
i , 􏽑 i � 12ζU

i ], [1 − 􏽑 i �

12(1 − ηL
i ), 1 − 􏽑 i � 12(1 − 1 − ηU

i )])t, n(1 − 􏽑 i �

12ζ i, 􏽑 i � 12ηi))

(iii) pCI � (([1 − (1 − ζL
)p, 1 − (1 − ζU

)p], [(ηL)p,

(ηU)p]), ((ζ)p, 1 − (1 − (η)p))

(iv) Cp

I � (([(ζL
)p,(ζU

)p],[1 − (1 − ηL)p,1 − (1 − ηU)p]),

(1 − 1 − (ζ)p,(η)p))􏼈

Defnition 16. Let

C
i
I � ℓ, ζL

i , ζU
i􏽨 􏽩, ηL

i , ηU
i􏽨 􏽩, ζ i, ηi( 􏼁􏼐 􏼑; ℓ ∈ k􏽮 􏽯, (i � 1, 2), (16)

be the CIFNs. Ten, the division operator on CIFN is given
as

C
1
I

C
2
I

� min ζL
1 , ζL

2 , min ζU
1 , ζU

2􏽨 􏽩, max ηL
1 , ηL

2 , max ηU
1 , ηU

2􏽨 􏽩􏼐 􏼑,􏼐

max ζ1, ζ2, min ηU
1 , ηU

2􏼐 􏼑􏼑.

(17)

3. Cubic Intuitionistic Topology under P-Order

In this section, we introduce the concept of a P-cubic
intuitionistic fuzzy topology (P-CIFT) or a cubic intui-
tionistic fuzzy topology with P-order.

Defnition 17. Consider k to be a nonempty universal set,
and let ci(k) to be the accumulation of all CIFSs in k. If the
collection TCIP

containing CIFSs satisfes the following
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conditions, it is termed as a cubic intuitionistic fuzzy to-
pology with a P-order (P-CIFT).

(1) 0CI, 1CI, 0CI and 0CI∈ TCIP

(2) If (CIP)i ∈ TCIP
∀i ∈ Λ then ∪ p(CIP)i ∈ TCIP

(3) If C1
IP,C2

IP ∈ TCIP
then C1

IP ∩ pC
2
IP ∈ TCIP

Ten, the pair (k, TCIP
) is called cubic intuitionistic fuzzy

topological space with a P-order (P-CIFT).

Example 1. Let k be a universal set. Ten, ci(k) be the
assemblage of all P-cubic intuitionistic fuzzy sets PCIFSs in
k. Consider P-order fuzzy subsets of ci(k) given as

C
1
IP � [0.20, 0.31], [0.41, 0.52], (0.32, 0.44){ },

C
2
IP � [0.20, 0.31], [0.41, 0.52], (1, 0){ },

C
3
IP � [0.20, 0.31], [0.41, 0.52], (0, 1){ },

C
4
IP � [1, 1], [0, 0], (0.32, 0.44){ },

C
5
IP � [0, 0], [1, 1], (0.32, 0.44){ }.

(18)

Te union and intersection with a P-order for the above
CIFSs are given in Tables 1 and 2,, respectively.

Clearly,

TC1
IP

�
0
CI,

1
CI,

1CI,
1CI􏽮 􏽯, (19)

and

T
2
CIP

�
0
CI,

1
CI,

0CI,
1CI,C

1
IP,C

2
IP,C

3
IP,C

4
IP,C

5
IP􏽮 􏽯, (20)

are cubic intuitionistic topology with a P-order.

Defnition 18. Let k be a nonempty set and TCIP
� Ck

IP􏽮 􏽯

where Ck
IP represent the cubic intuitionistic fuzzy subsets of

universal set k. Ten, TCIP
is termed as a P-cubic intui-

tionistic fuzzy topology on k and it is the largest P-cubic
intuitionistic fuzzy topology on k and is entitled as P-dis-
crete cubic intuitionistic fuzzy topology.

Defnition 19. Let k be a universal set and
TCIP

� 0CI,
1CI,

0CI,
1CI􏽮 􏽯 be the assemblage of cubic

intuitionistic fuzzy sets. Ten, TCIP
is termed as a P-cubic

intuitionistic fuzzy topology on universal set k and is the
smallest P-cubic intuitionistic fuzzy topology on k and is
entitled as P-indiscrete cubic intuitionistic fuzzy topology.

Defnition 20. Te elements of a P-cubic intuitionistic fuzzy
topology TCIP

is termed as P-cubic intuitionistic fuzzy open
sets PCIFOS in (k, TCIP

).

Theorem 1. If (k, TCIP
) is any P-cubic intuitionistic fuzzy

topological space. Ten,

(1) 0CI,
1CI,

0CI and 1C I are PCIFOSs
(2) Te P-union of any number of PCIFOSs is PCIFOS
(3) Te P-intersection of fnite PCIFOSs is PCIFOS

Proof

(1) By the Defnition 4.2 of a P-cubic intuitionistic fuzzy
topology (P-CIFT), 0CI,

1CI,
0CI and 1CI ∈ TCIP

.
Hence, 0CI,

1CI,
0CI and 1CI are PCIFOSs.

(2) Let (CIP)i|i ∈ Λ􏼈 􏼉 be PCIFOSs. Ten, (CIP)i ∈ TCIP
.

From the defnition of P-CIFT

∪
p

CIP( 􏼁i ∈ TCIP
. (21)

Hence, ∪ p(CIP)i ∈ TCIP
is PCIFOSs.

(3) Let C1
IP,C2

IP, . . . ,Cn
IP be PCIOSs. Ten, from def-

nition of P-CIFT

∩
p

CIP( 􏼁i ∈ TCIP
. (22)

Hence, ∩ p(CIP)i is PCIFOSs. □

Defnition 21. Te complement of elements of P-cubic
intuitionistic fuzzy open sets is termed as P-cubic intui-
tionistic fuzzy closed sets PCIFCSs in (k, TCIP

).

Theorem 2. If (k, TCIP
) is any P-cubic intuitionistic fuzzy

topological space. Ten,

(1) 0CI,
1CI,

0CI and 1CI are PCIFCSs
(2) Te P-intersection of any number of PCIFCSs is

PCIFCS
(3) Te P-union of fnite PCIFCSs is PCIFCS

Proof

(1) 0CI,
1CI,

0CI and 1CI are PCIFOSs. From the def-
nition of P-CIFT

0
CI,

1
CI,

0CI,
1CI ∈ TCIP

. (23)

Since the complement of 0CI � 1CI, 1CI � 0CI, 0CI �
1CI and 1CI � 0CI. So, 0CI,

1CI,
0CI and 1CI are

PCIFCSs.
(2) Let (CIP)i|i ∈ Λ􏼈 􏼉 be PCIFCSs. Ten,

CIP( 􏼁i( 􏼁
c ∈ TCIP

. (24)

From the defnition of P-CIFT,

∪
p

CIP( 􏼁i( 􏼁
c ∈ TCIP

. (25)

Hence, ∪ p((CIP)i)
c is PCIFOSs, but

∪
p

CIP( 􏼁i( 􏼁
c

􏼠 􏼡 � ∩
p

CIP( 􏼁i( 􏼁􏼠 􏼡

c

. (26)

So, ∩ p(CIP)i is PCIFCSs.
(3) Let C1

IP,C2
IP, . . . ,Cn

IP be PCmPCSs. Ten,
(C1

IP)c, (C2
IP)c, . . . , (Cn

IP)c are PCIFOSs. So,
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C
1
IP􏼐 􏼑

c
, C

2
IP􏼐 􏼑

c
, . . . , C

n
IP( 􏼁

c ∈ TCIP
. (27)

From the defnition of P-CIFT,

∩
p

CIP( 􏼁i( 􏼁
c ∈ TCIP

. (28)

Tis gives ∩ p((CIP)i)
c ∈ TCIP

is PCIFOSs, but

􏽜
p

CIP( 􏼁i( 􏼁
c⎛⎝ ⎞⎠ � 􏽛

p

CIP( 􏼁i
⎛⎝ ⎞⎠

c

. (29)

Hence, ∪ p(CIP)i is PCIFCSs. □

Defnition 22. Te P-cubic intuitionistic fuzzy sets PCIFSs,
which are PCIFOSs and PCIFCSs, are entitled as P-cubic
intuitionistic fuzzy clopen sets in (k, TCIP

).

Proposition 1

(1) For every TCIP
, 0CI,

1CI,
0CI and 1CI are P-cubic

intuitionistic fuzzy clopen sets
(2) For discrete P-order cubic intuitionistic fuzzy topol-

ogy, all the cubic intuitionistic subsets of k are P-cubic
intuitionistic fuzzy clopen sets

(3) For in-discrete P-order cubic intuitionistic fuzzy to-
pology, 0CI,

1CI,
0CI and 1CI are only P-cubic intui-

tionistic fuzzy clopen sets

Defnition 23. Let (k, T1
CIP

) and (k, T2
CIP

) be two P-CIFTs in
k. Two P-CIFTs are called comparable if

T
1
CIP
⊆PT

2
CIP

, (30)

or

T
2
CIP
⊆PT

1
CIP

. (31)

If T1
CIP
⊆PT2

CIP
then, T1

CIP
is called P-cubic intuitionistic

fuzzy coarser than T2
CIP

and T2
CIP

is called P-cubic intui-
tionistic fuzzy fner than. T1

CIP

Example 2. Let k be a nonempty set and from Example 1

TC1
IP

�
0
CI,

1
CI,

0CI,
1CI􏽮 􏽯, (32)

and

T
2
CIP

�
0
CI,

1
CI,

0CI,
1CI,C

1
IP,C

2
IP,C

3
IP,C

4
IP,C

5
IP􏽮 􏽯, (33)

are P-cubic intuitionistic fuzzy topologies on universal set.
Ten, TC1

IP
⊆PTC2

IP
. Hence, TC1

IP
is called a P-cubic intui-

tionistic fuzzy coarser then, TC2
IP
.

3.1. Subspace of CIFTp

Defnition 24. Let (k, TCIPk
) be a CIFTp. Let Y⊆k and TCIPY

is a CIFTp on Y and whose PCIFOSs are

CIPY � TCIPk
∩
p
Y , (34)

whereCIPk
are PCIFOSs of TCIPk

, TCIPY
are PCIFOSs of TCIPY

and 􏽥Y is any P-cubic subset of PCIFS on Y . Ten, TCIPY
is

called a P-cubic intuitionistic fuzzy subspace of TCIPk
, i.e.,

Table 1: Union under P-order.

∪ p
0CI

1CI
0CI

1CI C1
IP C2

IP C3
IP C4

IP C5
IP

0CI
0CI

1CI
0CI

1CI C2
IP C2

IP C2
IP

1CI
0CI

1CI
1CI

1CI
1CI

1CI C4
IP

1CI
1CI C4

IP C4
IP

0CI
0CI

1CI
0CI

1CI C1
IP C2

IP C3
IP C4

IP C5
IP

1CI
1CI

1CI
1CI

1CI
1CI

1CI
1CI

1CI
1CI

C1
IP C2

IP C4
IP C1

IP
1CI C1

IP C2
IP C1

IP C4
IP C1

IP

C2
IP C2

IP
1CI C2

IP
1CI C2

IP C2
IP C2

IP
1CI C2

IP

C3
IP C2

IP
1CI C3

IP
1CI C1

IP C2
IP C3

IP C4
IP C1

IP

C4
IP

1CI C4
IP C4

IP
1CI C4

IP
1CI C4

IP C4
IP C4

IP

C5
IP

0CI C4
IP C5

IP
1CI C1

IP C2
IP C1

IP C4
IP C5

IP

Table 2: Intersection under P-order.

∩ p
0CI

1CI
0CI

1CI C1
IP C2

IP C3
IP C4

IP C5
IP

0CI
0CI

0CI
0CI

0CI C5
IP

0CI
0CI C5

IP C5
IP

1CI
0CI

1CI
0CI

1CI C3
IP C3

IP C3
IP

1CI
0CI

0CI
0CI

0CI
0CI

0CI
0CI

0CI
0CI

0CI
0CI

1CI
0CI

1CI
0CI

1CI C1
IP C2

IP C3
IP C4

IP C5
IP

C1
IP C5

IP C3
IP

0CI C1
IP C1

IP C1
IP C3

IP C1
IP C5

IP

C2
IP

0CI C3
IP

0CI C2
IP C1

IP C2
IP C3

IP C1
IP C5

IP

C3
IP

0CI C3
IP

0CI C3
IP C3

IP C3
IP C3

IP C3
IP

0CI

C4
IP C5

IP
1CI

0CI C4
IP C1

IP C1
IP C3

IP C4
IP C5

IP

C5
IP C5

IP
0CI

0CI C5
IP C5

IP C5
IP

0CI C5
IP C5

IP
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TCIPY
� CIPY

: CIPY
� CIPk
∩
p
Y ,CIPk
∈ TCIPk

􏼨 􏼩. (35)

Example 3. Let k be a nonempty set. From Example 1,

TCIP
�

0
CI,

1
CI,

0CI,
1CI,C

1
IP,C

2
IP,C

3
IP,C

4
IP,C

5
IP􏽮 􏽯, (36)

is a P-cubic intuitionistic fuzzy topology on k.
Now, consider any P-cubic fuzzy subset on k such that

Y⊆k is

Y � [0.98, 0.23], [0.46, 0.61], (0.27, 0.49){ }. (37)

Since,

Y ∩
0

p
CI � [0, 0], [1, 1], (0.27, 0.49){ }

� CIP

��→
,

Y ∩
1

p
CI � [0.98, 0.23], [0.46, 0.61], (0, 1){ }

� 􏽥CIP,

Y ∩ p
0
C I � [0, 0], [1, 1], (0, 1){ }

� C IP

′
,

Y ∩ p
1
C I � [0.98, 0.23], [0.46, 0.61], (0.27, 0.49){ }

� Y ,

Y ∩
p
C

1
IP � [0.98, 0.23], [0.46, 0.61], (0.27, 0.49){ }

� Y ,

Y ∩
p
C

2
IP � [0.98, 0.23], [0.46, 0.61], (0.27, 0.49){ }

� Y ,

Y ∩
p
C

3
IP � [0.98, 0.23], [0.46, 0.61], (0, 1){ }

� 􏽥C IP,

Y ∩
p
C

4
IP � [0.98, 0.23], [0.46, 0.61], (0.27, 0.49){ }

� Y ,

Y ∩
p
C

5
IP � [0, 0], [1, 1], (0.27, 0.49){ }

� C IP

���→
.

(38)

Ten,

TCIPY
� CIP

��→
, 􏽦CIP, ′ CIP,Y􏼚 􏼛, (39)

is a P-cubic intuitionistic fuzzy relative topology of TCIPk

3.2. Interior, Closure, Frontier and Exterior of PCIFSs

Defnition 25. let (k, TCIP
) be CIFTp and CIP ∈ ci(k), the

interior of CIP is expressed as C0
IP and is described as union

of all P-cubic intuitionistic fuzzy open subsets contained in
CIP. It is the greatest P-cubic intuitionistic fuzzy open set
contained in CIP.

Example 4. Consider a P-cubic intuitionistic fuzzy topo-
logical space as constructed in Example 1. Let C6

IP ∈ ci(k)

given as

C
6
IP � [0.23, 0.39], [0.37, 0.48], (0.46, 0.33){ }. (40)

Ten,

C
6
IP􏼐 􏼑

0
� 0CI ∪

p
C

1
IP ∪

p
C
3
IP ∪

p
C
5
IP � C

1
IP. (41)

Theorem  . Let (k, TCIP
) be CIFT p and CIP ∈ ci(k). Ten,

CIP is open CIFS if C0
IP � CIP.

Proof. IfCIP is open CIFS, then we say that the greatest open
CIFS contained in CIP is CIP itself. Tus,

C
0
IP � CIP. (42)

Conversely, if C0
IP � CIP, then C0

IP is open CIFS. Tis
implies CIP is open CIFS.

Theorem 4. Let (k, TCIP
) be CIFTp and C1

IP,C2
IP ∈ ci(k).

Ten,

(i) ((CIP)0)0 � (CIP)0

(ii) C1
IP⊆pC

2
IP⇒(C1

IP)0⊆p(C2
IP)0

(iii) (C1
IP ∩ pC

2
IP)0 � (C1

IP)0⊆p(C2
IP)0

(iv) (C1
IP ∪ pC

2
IP)0⊇p(C1

IP)0 ∪ p(C2
IP)0

Proof. Proof is trivial.

Defnition 26. let (k, TCIP
) be CIFTp and CIP ∈ ci(k), the

closure of CIP is expressed as CIP and is described as the
intersection of all the P-cubic intuitionistic fuzzy closed
supersets ofCIP. It is the smallest P-cubic intuitionistic fuzzy
closed superset of CIP.

Example 5. Let us consider a P-cubic intuitionistic topo-
logical space as constructed in Example 1. Ten, the closed
CIFSs are given as
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0
CI􏼐 􏼑

c
� [1, 1], [0, 0], (0, 1){ },

1
CI􏼐 􏼑

c
� [0, 0], [1, 1], (1, 0){ },

0CI􏼐 􏼑
c

� [1, 1], [0, 0], (1, 0){ },

1CI􏼐 􏼑
c

� [0, 0], [1, 1], (0, 1){ },

C
1
IP􏼐 􏼑

c
� [0.41, 0.52], [0.20, 0.31], (0.44, 0.32){ },

C
2
IP􏼐 􏼑

c
� [0.41, 0.52], [0.20, 0.31], (0, 1){ },

C
3
IP􏼐 􏼑

c
� [0.41, 0.52], [0.20, 0.31], (1, 0){ },

C
4
IP􏼐 􏼑

c
� [0, 0], [1, 1], (0.44, 0.32){ },

C
5
IP􏼐 􏼑

c
� [1, 1], [0, 0], (0.44, 0.32){ }.

(43)

Let C7
IP ∈ ci(k) given as

C
7
IP � [0.34, 0.50], [0.27, 0.38], (0.33, 0.41){ }. (44)

Ten,

C
7
IP � 0CI􏼐 􏼑

c
∩
p

C
1
IP􏼐 􏼑

c
∩
p

C
3
IP􏼐 􏼑

c
∩
p

C
5
IP􏼐 􏼑

c

� C
1
IP􏼐 􏼑

c
.

(45)

Theorem 5. Let (k, TCIP
) be CIFT p and CIP ∈ ci(k). Ten

CIP is closed CIFS if CIP � CIP.

Proof. IfCIP is closed CIFS, then we can say that the smallest
closed CIFS superset of CIP is CIP itself. Tus,

CIP � CIP. (46)

Conversely, if CIP � CIP, then CIP is closed CIFS. Tis
implies CIP is closed CIFS. □ □

Defnition 27. Let CIP be a P-cubic intuitionistic fuzzy
subset of (k, TCIP

), then its boundary or frontier is defned as

Fr CIP( 􏼁 � CIP ∩
p

CIP( 􏼁
c
. (47)

Defnition 28. Let CIP be a P-cubic intuitionistic fuzzy
subset of (k, TCIP

), then the exterior is defned as

Ext CIP( 􏼁 � CIP􏼐 􏼑
c

� C
c
IP( 􏼁

0
. (48)

Example 6. Consider a P-cubic intuitionistic topological
space as constructed in Example 1 and C6

IP and C7
IP from

Examples 4 and 5. Ten,

C
6
IP􏼐 􏼑

0
� C

1
IP,

C
6
IP � C

3
IP􏼐 􏼑

c
,

Fr C
6
IP􏼐 􏼑 � C

1
IP􏼐 􏼑

c
,

Ext C
6
IP􏼐 􏼑 � C

3
IP,

C
7
IP􏼐 􏼑

0
� C

1
IP,

C
7
IP � C

1
IP􏼐 􏼑

c
,

Fr C
7
IP􏼐 􏼑 � C

1
IP􏼐 􏼑

c
,

Ext C
7
IP􏼐 􏼑 � C

1
IP.

(49)

Theorem 6. Let (k, TCIP
) be CIFTp and CIP ∈ ci(k). Ten,

(1) (C0
IP)c � (Cc

IP)

(2) (CIP)c � (Cc
IP)0

(3) Ext(Cc
IP) � C0

IP

(4) Ext(CIP) � (Cc
IP)0

(5) Ext(CIP)∪ pFr(CIP)∪ pC
0
IP ≠ 1CIP

(6) Fr(CIP) � Fr(Cc
IP)

(7) Fr(CIP)∩ pC
0
IP ≠ 0CIP

Proof

(1) Te proof is obvious.
(2) Te proof is obvious.
(3) Ext(Cc

IP) � (Cc
IP)c.

Ext(Cc
IP) � ((Cc

IP)c)0.
Ext(Cc

IP) � C0
IP.

(4) Ext(CIP) � (CIP)c.
Ext(CIP) � (Cc

IP)0.
(5) Ext(CIP)∪ pFr(CIP)∪ pC

0
IP ≠ 1CIP. By Example 13,

we can see that Ext(C6
IP)∪ pFr(C6

IP)∪ pC
0
IP ≠ 1CI.

(6) Fr(Cc
IP) � (Cc

IP)∩ p((Cc
IP)c)Fr(Cc

IP) �

(Cc
IP)∩ p(CIP) � Fr(CIP).

(7) Fr(CIP)∩ pC
0
IP ≠CIP. From Example 13, we can see

that Fr(C6
IP)∩ pC

0
IP ≠ 0CI. □

3.3. P-Cubic Intuitionistic Fuzzy Basis

Defnition 29. Let (k, TCIP
) beCIFTp. Ten, B⊆TCIP

is called
P-cubic intuitionistic fuzzy basis for TCIP

if for every
CIP ∈ TCIP

, ∃B ∈ B such that

CIP � ∪
p
B. (50)
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Example 7. From Example 1,

TCIP
�

0
CI,

1
CI,

0CI,
1CI,C

1
IP,C

2
IP,C

3
IP,C

4
IP,C

5
IP􏽮 􏽯, (51)

is a P-cubic intuitionistic fuzzy topology of k. Ten,

B �
0
CI,

1CI,C
1
IP,C

2
IP,C

3
IP,C

4
IP,C

5
IP􏽮 􏽯, (52)

Is a P-cubic intuitionistic fuzzy basis for TCIP
.

4. Cubic Intuitionistic Topology under R-Order

In this section, we introduce the concept of an R-cubic
intuitionistic fuzzy topology (R-CIFT) or a cubic intui-
tionistic fuzzy topology with an R-order.

Defnition 30. Consider k to be a nonempty universal set,
and let ci(k) to be the collection of all CIFSs in k. If the
collection TCIR

containing CIFSs satisfes the following
conditions, it is termed a cubic intuitionistic fuzzy topology
with an R-order (R-CIFT).

(1) 0CI, 1CI, 0CI and 0CI∈ TCIR

(2) If (CIR)i ∈ TCIR
∀i ∈ Λ then ∪ R(CIR)i ∈ TCIR

(3) If C1
IR,C2

IR ∈ TCIR
then C1

IR ∩ RC
2
IR ∈ TCIR

Ten, the pair (k, TCIR
) is termed as a cubic intuitionistic

fuzzy topological space with an R-order (R-CIFT).

Example 8. Let k be a nonempty universal set.Ten, ci(k) be
the accumulation of all R-cubic intuitionistic fuzzy sets
RCIFSs in k. Consider the R-order fuzzy subsets of ci(k)

given as

C
1
IR � [0.31, 0.42], [0.47, 0.56], (0.29, 0.39){ },

C
2
IR � [0.31, 0.42], [0.47, 0.56], (0, 1){ },

C
3
IR � [1, 1], [0, 0], (0.29, 0.39){ },

C
4
IR � [0, 0], [1, 1], (0.29, 0.39){ },

C
5
IR � [0.31, 0.42], [0.47, 0.56], (1, 0){ }.

(53)

Te union and intersection with a P-order for the above
CIFSs are given in Tables 3 and 4,, respectively.

Clearly,

TC1
IR

�
0
CI,

1
CI,

0CI,
1CI􏽮 􏽯, (54)

and

T
2
CIR

�
0
C I,

1
C I,

0
C I,

1
C I,C

1
IR,C

2
IR,C

3
IR,C

4
IR,C

5
IR􏼚 􏼛,

(55)

are the cubic intuitionistic topology with an R-order.

Defnition 31. Let k be a nonempty set, and TCIR
� Ck

IR􏽮 􏽯

where Ck
IR represent the cubic intuitionistic fuzzy subsets of

the universal set k. Ten, TCIR
is termed as an R-cubic

intuitionistic fuzzy topology on k and it is the largest R-cubic
intuitionistic fuzzy topology on k and is entitled as an
R-discrete cubic intuitionistic fuzzy topology.

Defnition 32. Let k be a universal set and
TCIR

� 0C I,
1C I,

0C I,
1C I􏽮 􏽯 be the assemblage of cubic

intuitionistic fuzzy sets. Ten, TCIR
is termed as an R-cubic

intuitionistic fuzzy topology on the universal set k and is the
smallest R-cubic intuitionistic fuzzy topology on k and is
entitled as an R-indiscrete cubic intuitionistic fuzzy
topology.

Defnition 33. Te elements of an R-cubic intuitionistic
fuzzy topology TCIR

is termed as the R-cubic intuitionistic
fuzzy open sets RCIFOS in (k, TCIR

).

Theorem 7. If (k, TCIR
) is any R-cubic intuitionistic fuzzy

topological space. Ten,

(1) 0CI,
1CI,

0CI and 1CI are RCIFOSs.
(2) Te R-union of any number of RCIFOSs is RCIFOS.
(3) Te R-intersection of fnite RCIFOSs is RCIFOS.

Proof. Te proof is trivial. □

Defnition 34. Te complement of elements of an R-cubic
intuitionistic fuzzy open sets is termed as the R-cubic
intuitionistic fuzzy closed sets RCIFCSs in (k, TCIR

).

Theorem 8. If (k, TCIR
) is any R-cubic intuitionistic fuzzy

topological space. Ten,

(1) 0CI,
1CI,

0CI and 1CI are RCIFCSs.
(2) Te R-intersection of any number of RCIFCSs is

RCIFCS.
(3) Te R-union of fnite RCIFCSs is RCIFCS.

Proof. Te proof is trivial. □

Defnition 35. Te R-cubic intuitionistic fuzzy sets RCIFSs,
which are RCIFOSs and RCIFCSs, are entitled as the R-cubic
intuitionistic fuzzy clopen sets in (k, TCIR

).

Proposition 2

(1) For every TCIR
, 0CI,

1CI,
0CI and 1CI are R-cubic

intuitionistic fuzzy clopen sets.
(2) For the discrete R-order cubic intuitionistic fuzzy

topology, all the cubic intuitionistic subsets of k are
R-cubic intuitionistic fuzzy clopen sets.

(3) For the in-discrete R-order cubic intuitionistic fuzzy
topology, 0CI,

1CI,
0CI and 1CI are only R-cubic

intuitionistic fuzzy clopen sets.
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Defnition 36. Let (k, T1
CIR

) and (k, T2
CIR

) be two R-CIFTs in
k. Two R-CIFTs are called comparable if

T
1
CIR
⊆RT

2
CIR

, (56)

or

T
2
CIR
⊆RT

1
CIR

. (57)

If T2
CIR
⊆RT2

CIR
then, T1

CIR
is called R-cubic intuitionistic

fuzzy coarser than T2
CIR

and T2
CIR

is called the R-cubic
intuitionistic fuzzy fner than. T1

CIR

Example 9. Let k be a nonempty set and from Example 8,

TC1
IR

�
0
CI,

1
CI,

0CI,
1CI􏽮 􏽯, (58)

and

T
2
CIR

�
0
CI,

1
CI,

0CI,
1CI,C

1
IR,C

2
IR,C

3
IR,C

4
IR,C

5
IR􏽮 􏽯, (59)

are R-cubic intuitionistic fuzzy topologies on the universal
set. Ten, TC1

IR
⊆RT2

CIR
. Hence, TC1

IR
is called the R-cubic

intuitionistic fuzzy coarser then, T2
CIR

.

4.1. Subspace of CIFTr

Defnition 37. Let (k, TCIRk
) be a CIFTr. Let Y⊆k and TCIRY

is a CIFTr on Y and whose RCIFOSs are

CIRY � TCIRk
∩
R
Y , (60)

where CIRk
are RCIFOSs of TCIRk

, TCIRY
are RCIFOSs of

TCIRY
and 􏽥Y is any R-cubic subset of RCIFS on Y . Ten,

TCIRY
is called the R-cubic intuitionistic fuzzy subspace of

TCIRk
i.e.,

TCIRY
� CIRY : CIRY � CIRk ∩

R
Y ,CIRk ∈ TCIRk

􏼚 􏼛. (61)

Example 10. Let k be a nonempty set. From Example 8,

TCIR
�

0
CI,

1
CI,

0CI,
1CI,C

1
IR,C

2
IR,C

3
IR,C

4
IR,C

5
IR􏽮 􏽯, (62)

is an R-cubic intuitionistic fuzzy topology on k.
Now, consider any R-cubic fuzzy subset on k such that

Y⊆k is

Y � [0.27, 0.38], [0.52, 0.67], (0.34, 0.28){ }. (63)

Also,

Table 3: Union under R-order.

∪ R
0CI

1CI
0CI

1CI C1
IR C2

IR C3
IR C4

IR C5
IR

0CI
0CI

1CI
0CI

1CI C1
IR C2

IR C3
IR C4

IR C5
IR

1CI
1CI

1CI
1CI

1CI
1CI

1CI
1CI

1CI
1CI

0CI
0CI

1CI
0CI

1CI C2
IR C2

IR
1CI

0CI
0CI

1CI
1CI

1CI
1CI

1CI C3
IR

1CI C3
IR C3

IR
1CI

C1
IR C1

IR
1CI C2

IR C3
IR C1

IR C2
IR C3

IR C1
IR C1

IR

C2
IR C2

IR
1CI C2

IR
1CI C2

IR C2
IR

1CI C2
IR C2

IR

C3
IR C3

IR
1CI

1CI C3
IR C3

IR
1CI C3

IR C3
IR C3

IR

C4
IR C4

IR
1CI

0CI C3
IR C1

IR C2
IR C3

IR C4
IR C1

IR

C5
IR C5

IR
1CI

0CI
1CI C1

IR C2
IR C3

IR C1
IR C5

IR

Table 4: Intersection under R-order.

∩ R
0CI

1CI
0CI

1CI C1
IR C2

IR C3
IR C4

IR C5
IR

0CI
0CI

0CI
0CI

0CI
0CI

0CI
0CI

0CI
0CI

1CI
0CI

1CI
0CI

1CI C1
IR C2

IR C3
IR C4

IR C5
IR

0CI
0CI

0CI
0CI

0CI C4
IR

0CI C4
IR C4

IR
0CI

1CI
0CI

1CI
0CI

1CI C5
IR C5

IR
1CI

0CI C5
IR

C1
IR

0CI C1
IR C4

IR C5
IR C1

IR C1
IR C4

IR C5
IR C5

IR

C2
IR

0CI C2
IR

0CI C5
IR C1

IR C2
IR C1

IR C4
IR C5

IR

C3
IR

0CI C3
IR C4

IR
1CI C1

IR C1
IR C3

IR C4
IR C5

IR

C4
IR

0CI C4
IR C4

IR
0CI C4

IR C4
IR C4

IR C4
IR

0CI

C5
IR

0CI C5
IR

0CI C5
IR C5

IR C5
IR C5

IR
0CI

0CI

CIF decision
matrix

Calculation of
score function Ranking

Normalization
of CIF decision

matrix

Computing total
relativen

importance

Figure 1: Flow chart of CIF WPM.

Mathematical Problems in Engineering 11



Ta
bl

e
5:

C
ub

ic
in
tu
iti
on

ist
ic

de
ci
sio

n
m
at
ri
x
fr
om

D
M
s.

C
ri
te
ri
a

C
1

C
2

C
3

C
4

X
1

(
[0

.1
7,
0.
24

],
[0

.3
6,
0.
43

],
(
0.
56

,0
.3
2)

)
(

[0
.2
0,
0.
28

],
[0

.2
9,
0.
31

],
(
0.
27

,0
.2
0)

)
(

[0
.1
8,
0.
21

],
[0

.2
1,
0.
32

],
(
0.
39

,0
.2
2)

)
(

[0
.2
0,
0.
37

],
[0

.2
1,
0.
43

],
(
0.
54

,0
.2
3)

)

X
2

(
[0

.1
9,
0.
22

],
[0

.3
9,
0.
42

],
(
0.
59

,0
.4
0)

)
(

[0
.2
7,
0.
34

],
[0

.3
3,
0.
40

],
(
0.
43

,0
.2
1)

)
(

[0
.2
4,
0.
30

],
[0

.3
0,
0.
39

],
(
0.
50

,0
.2
0)

)
(

[0
.3
2,
0.
40

],
[0

.1
9,
0.
51

],
(
0.
52

,0
.3
0)

)

X
3

(
[0

.2
0,
0.
29

],
[0

.4
0,
0.
51

],
(
0.
81

,0
.1
3)

)
(

[0
.3
1,
0.
52

],
[0

.4
2,
0.
50

],
(
0.
72

,0
.1
7)

)
(

[0
.3
1,
0.
39

],
[0

.1
8,
0.
40

],
(
0.
67

,0
.1
4)

)
(

[0
.1
4,
0.
63

],
[0

.2
4,
0.
50

],
(
0.
70

,0
.1
8)

)

X
4

(
[0

.3
1,
0.
37

],
[0

.3
6,
0.
49

],
(
0.
50

,0
.3
6)

)
(

[0
.1
8,
0.
33

],
[0

.2
8,
0.
52

],
(
0.
40

,0
.3
2)

)
(

[0
.2
3,
0.
40

],
[0

.2
4,
0.
51

],
(
0.
50

,0
.3
3)

)
(

[0
.0
8,
0.
74

],
[0

.3
2,
0.
40

],
(
0.
46

,0
.4
2)

)

X
5

(
[0

.4
0,
0.
48

],
[0

.5
1,
0.
60

],
(
0.
52

,0
.3
0)

)
(

[0
.2
9,
0.
41

],
[0

.3
0,
0.
39

],
(
0.
48

,0
.4
0)

)
(

[0
.4
0,
0.
47

],
[0

.3
8,
0.
60

],
(
0.
56

,0
.2
9)

)
(

[0
.1
3,
0.
64

],
[0

.4
0,
0.
47

],
(
0.
53

,0
.3
7)

)

X
6

(
[0

.2
9,
0.
38

],
[0

.2
7,
0.
42

],
(
0.
60

,0
.2
7)

)
(

[0
.4
0,
0.
51

],
[0

.4
1,
0.
50

],
(
0.
47

,0
.3
8)

)
(

[0
.3
2,
0.
38

],
[0

.2
4,
0.
72

],
(
0.
43

,0
.3
2)

)
(

[0
.4
2,
0.
50

],
[0

.3
7,
0.
53

],
(
0.
53

,0
.2
7)

)

12 Mathematical Problems in Engineering



Y ∩
0

R
CI � [0, 0], [1, 1], (1, 0){ }

� CIR

��→
,

Y ∩
1

R
CI � [0.27, 0.38], [0.52, 0.67], (1, 0){ }

� 􏽦CIR,

Y ∩ R
0
C I � [0, 0], [1, 1], (0.34, 0.28){ }

� C IR

′
,

Y ∩ R
1
C I � [0.27, 0.38], [0.52, 0.67], (1, 0){ }

� 􏽧C IR,

Y ∩
R
C

1
IR � [0.27, 0.38], [0.52, 0.67], (0.34, 0.28){ }

� Y ,

Y ∩
R
C

2
IR � [0.27, 0.38], [0.52, 0.67], (0.34, 0.28){ }

� Y ,

Y ∩
R
C

3
IR � [0.27, 0.38], [0.52, 0.67], (0.34, 0.28){ }

� Y ,

Y ∩
R
C

4
IR � [0, 0], [1, 1], (0.34, 0.28){ }

� C IR

′
,

Y ∩
R
C

5
IR � [0.27, 0.38], [0.52, 0.67], (1, 0){ }

� 􏽧C IR.

(64)

Ten,

TCIRY
� CIR

��→
, 􏽦CIR, ′ CIR, Y􏼚 􏼛, (65)

is an R-cubic intuitionistic fuzzy relative topology of TCIRk

4.2. Interior, Closure, Frontier, and Exterior of RCIFSs

Defnition 38. let (k, TCIR
) be CIFTr and CIR ∈ ci(k), the

interior ofCIR is expressed asC0
IR and is described as a union

of all the R-cubic intuitionistic fuzzy open subsets contained
in CIR. It is the greatest R-cubic intuitionistic fuzzy open set
contained in CIR.

Example 11. Consider an R-cubic intuitionistic fuzzy to-
pological space as constructed in Example 8. Let C6

IR ∈ ci(k)

given as

C
6
IR � [0.38, 0.46], [0.45, 0.51], (0.26, 0.40){ }. (66)

Ten,

C
6
IR􏼐 􏼑

0
�
0
CI ∪

R
C

1
IR ∪

R
C

4
IP ∪

R
C

5
IR

� C
1
IR.

(67)

Theorem 9. Let (k, TCIR
) be CIFT r and CIR ∈ ci(k). Ten,

CIR is open CIFS if C0
IR � CIR.

Proof. Te proof is trivial. □

Theorem 10. Let (k, TCIP
) be CIFTp and C1

IP,C2
IP ∈ ci(k).

Ten,

(i) ((CIR)0)0 � (CIR)0

(ii) C1
IR⊆RC

2
IR⇒(C1

IR)0⊆R(C2
IR)0

(iii) (C1
IR ∩ RC

2
IR)0 � (C1

IR)0⊆R(C2
IR)0

(iv) (C1
IR ∪ RC

2
IR)0⊇R(C1

IR)0 ∪ R(C2
IR)0

Proof. Proof is trivial. □

Defnition 39. let (k, TCIR
) be CIFTr and CIR ∈ ci(k), the

closure of CIR is expressed as CIR and is described as the
intersection of all the R-cubic intuitionistic fuzzy closed
supersets ofCIR. It is the smallest R-cubic intuitionistic fuzzy
closed superset of CIR.

Example 12. Let us consider an R-cubic intuitionistic to-
pological space as constructed in Example 8.Ten, the closed
CIFSs are given as

Table 6: maxjTji and minjTji values.

maxjTji minjTji

X1 ([0.20, 0.37], [0.21, 0.31], (0.50, 0.20)) ([0.17, 0.21], [0.36, 0.43], (0.27, 0.32))

X2 ([0.32, 0.40], [0.19, 0.39], (0.59, 0.20)) ([0.19, 0.22], [0.39, 0.51], (0.43, 0.40))

X3 ([0.31, 0.63], [0.18, 0.40], (0.81, 0.13)) ([0.14, 0.29], [0.42, 0.50], (0.67, 0.18))

X4 ([0.31, 0.74], [0.24, 0.40], (0.50, 0.32)) ([0.08, 0.33], [0.36, 0.52], (0.40, 0.42))

X5 ([0.40, 0.64], [0.30, 0.39], (0.56, 0.29)) ([0.13, 0.41], [0.51, 0.60], (0.48, 0.40))

X6 ([0.42, 0.51], [0.24, 0.42], (0.60, 0.27)) ([0.29, 0.38], [0.41, 0.72], (0.43, 0.38))
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0
CI􏼐 􏼑

c
� [1, 1], [0, 0], (0, 1){ },

1
CI􏼐 􏼑

c
� [0, 0], [1, 1], (1, 0){ },

0CI􏼐 􏼑
c

� [1, 1], [0, 0], (1, 0){ },

1CI􏼐 􏼑
c

� [0, 0], [1, 1], (0, 1){ },

C
1
IP􏼐 􏼑

c
� [0.47, 0.56], [0.31, 0.42], (0.39, 0.29){ },

C
2
IP􏼐 􏼑

c
� [0.47, 0.56], [0.31, 0.42], (1, 0){ },

C
3
IP􏼐 􏼑

c
� [0, 0], [1, 1], (0.39, 0.29){ },

C
4
IP􏼐 􏼑

c
� [1, 1], [0, 0], (0.39, 0.29){ },

C
5
IP􏼐 􏼑

c
� [0.47, 0.56], [0.31, 0.42], (0, 1){ }.

(68)

Let C7
IR ∈ ci(k) given as

C
7
IR � [0.30, 0.37], [0.48, 0.61], (0.38, 0.24){ }. (69)

Ten,

C
7
IR � 0CI􏼐 􏼑

c
∩
R

C
5
IR􏼐 􏼑

c

� C
5
IR􏼐 􏼑

c
.

(70)

Theorem 11. Let (k, TCIR
) be CIFT r andCIR ∈ ci(k). Ten,

CIR is closed CIFS if CIR � CIR..

Proof. Te proof is trivial. □

Defnition 40. Let CIR be an R-cubic intuitionistic fuzzy
subset of (k, TCIR

), then its boundary or frontier is defned as

Fr CIR( 􏼁 � CIR ∩
R

CIR( 􏼁
c
. (71)

Defnition 41. Let CIR be an R-cubic intuitionistic fuzzy
subset of (k, TCIR

), then the exterior is defned as

Ext CIR( 􏼁 � CIR􏼐 􏼑
c

� C
c
IR( 􏼁

0
.

(72)

Example 4.13. Consider an R-cubic intuitionistic topolog-
ical space as constructed in Example 8 andC6

IR andC7
IR from

Examples 11 and 12. Ten,

C
6
IR􏼐 􏼑

0
� C

1
IR,

C
6
IP � C

5
IR􏼐 􏼑

c
,

Fr C
6
IR􏼐 􏼑 � C

5
IR􏼐 􏼑

c
,

Ext C
6
IR􏼐 􏼑 � C

5
IR,

C
7
IR􏼐 􏼑

0
� C

4
IR,

C
7
IR � C

5
IR􏼐 􏼑

c
,

Fr C
7
IR􏼐 􏼑 � C

5
IR􏼐 􏼑

c
,

Ext C
7
IR􏼐 􏼑 � C

5
IR.

(73)

Theorem 12. Let (k, TCIR
) be CIFTr and CIR ∈ ci(k). Ten,

(1) (C0
IR)c � (Cc

IR)

(2) (CIR)c � (Cc
IR)0

(3) Ext(Cc
IR) � C0

IR

(4) Ext(CIR) � (Cc
IR)0

(5) Ext(CIR)∪ RFr(CIR)∪ RC
0
IR ≠ 1CIR

(6) Fr(CIR) � Fr(Cc
IR)

(7) Fr(CIR)∩ RC
0
IR ≠ 0CIR

Proof. Te proof is trivial. □

4.3. R-Cubic Intuitionistic Fuzzy Basis

Defnition 42. Let (k, TCIR
) be CIFTr. Ten B⊆TCIR

is called
an R-cubic intuitionistic fuzzy basis for TCIR

if for every
CIR ∈ TCIR

, ∃B ∈ B such that

CIR � ∪
R
B. (74)

Example 14. From Example 8,

TCIR
�

0
CI,

1
CI,

0CI,
1CI,C

1
IR,C

2
IR,C

3
IR,C

4
IR,C

5
IR􏽮 􏽯, (75)

is an R-cubic intuitionistic fuzzy topology of k. Ten,

B �
1
CI,

1CI,C
1
IR,C

2
IR,C

3
IR,C

4
IR,C

5
IR􏽮 􏽯, (76)

is an R-cubic intuitionistic fuzzy basis for TCIR
.

Table 8: Relative importance and score function.

Alternatives CIFN-WPM values Score values
X1 ([0.16, 0.20], [0.34, 0.41], (0.9980, 0.00001)) 0.8029
X2 ([0.18, 0.21], [0.38, 0.49], (0.9993, 0.00002)) 0.7592
X3 ([0.21, 0.45], [0.29, 0.46], (0.9999, 0.0000007)) 0.9548
X4 ([0.07, 0.31], [0.34, 0.50], (0.9990, 0.00007)) 0.6294
X5 ([0.25, 0.49], [0.39, 0.50], (0.9996, 0.00002)) 0.9245
X6 ([0.28, 0.34], [0.39, 0.71], (0.9994, 0.00004)) 0.7593
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5. Multicriteria Group Decision-Making

Te weighted product model (WPM) is a renowned and
widely used MCGDM approach for evaluating a set of
choices using a set of criteria. Each choice is contrasted to the
others by calculating a number of ratios, one per choice
criterion. Every ratio is multiplied by the proportional
weight of the criterion in consideration. For the selection of
one or more options from the set of alternatives based on a
number of criteria is a fundamental task in MCGDM
problems. Let us consider m alternatives, n criteria with
weighted vectors, with the condition that the sum of the
weights will be one, for an MCGDM problem in a cubic
intuitionistic fuzzy set domain.

Figure 1 shows the fow chart of WPM.

5.1. Application to Uncertain Supply Chain Management.
Communication and information technologies are afecting
every area of the industrial sector at a rapid pace. In reality, it
would be difcult to pinpoint an organization that does not
use or is not touched by information and communications
technologies in some way. In many cases, if technology is not
employed appropriately, the frm’s survival is jeopardized.
Companies nowadays use technology to boost productivity,
streamline operations, and form electronic conglomerates.
Advanced technologies and electronic systems are radically
altering how businesses operate and stay competitive. Many
businesses are making strategic technology investments to
obtain and maintain a competitive advantage in their in-
dustry. Management teams must use technology throughout
the organization to enhance information fow, reduce cost,
streamline operations, provide product variety, formulate
connections with suppliers, and reduce response times to
customers’ needs to gain a competitive advantage through
the use of information and communications technology.

Administrators and top executives should be associated
with the development of enterprise-wide information sys-
tems (EIS), which should take into account such matters as
computer hardware and software and infrastructure facili-
ties, online systems, digital applications, electronic com-
merce, and alterations to current processes and practices.
Managers can integrate data and telecommunications
technologies throughout the corporation and connect all
business areas by developing an enterprise broad infor-
mation systems plan. Enterprise-wide integration of tech-
nology enables frms to allow consumers to get timely access
to the information they need to make informed decisions.
Recent research has looked at information systems as useful

tools for integrating systems like enterprise resource plan-
ning, knowledge management, e-commerce, electronic
markets, and supply chain management (SCM) to enhance
organizational proft and efciency.

Companies must analyze both internal and external
processes for the production and exchange of products and
services to be more efcient and competitive. Te managers
will be able to evaluate the value of actions for each process
to determine how to boost the value among these operations
that form a supply chain from supplier to business to dealer
to customer through the evaluation of these processes. Te
level of integration among suppliers, business associates, and
buyers, independent of their geographical location, deter-
mines the value chain’s or supply chain’s efectiveness.

Te construction of an integrated organizational system
capable of information sharing, resources, and services in
the supply chain is central to the digital supply chain
management paradigm. To gain and maintain competitive
advantages, companies use digital information and com-
munications networks to standardize manufacturing pro-
cesses, reduce cycle time, increase the efectiveness of
procurement procedures and logistical support, reduce
production costs, and increase customer satisfaction, among
other things. Supply chain management based on the
Internet allows a company to streamline its supply chain,
increase speed, reduce costs, and be more adaptable. It can
also increase consumer and supplier communications as well
as smooth the ongoing fow of goods along the supply chain.

Supplier selection is highly essential in supply chain
management. Te objective is to locate a supplier who can
ofer the best products and services for the lowest price.
Proper supplier selection delivers a high proft and quality
level. In this strategic collaboration, the supplier is viewed as
a signifcant element of the business. Because of the in-
creasing focus on sustainability, identifying these providers
has become more challenging. Environmental studies, often
known as sustainability studies, have become increasingly
popular around the world. Identifying these suppliers has
become increasingly difcult as a result of the rapidly in-
creasing emphasis on sustainability. Many methodologies
for sustainable supply chain selection have been developed.

To determine the most suitable supplier selection,
MCGDM techniques can be used successfully. In this sec-
tion, the suggested model is used to determine the selection
of appropriate suppliers for fast-moving consumer products,
with the goal of selecting the best supplier among various
possibilities. Several criteria have been established based on
expert opinions to evaluate supplier choices. In this study,
X1, X2, X3, X4, X5 and X6 are examined as possible fast-
moving customers goods suppliers using the four criteria
established.

5.2. CIF Weighted Product Model. Te proposed method is
used to choose the best supplier among six alternatives.
Tese alternatives are weighed against four criteria
C1� price, C2� quality, C3� performance, and
C4� delivery, derived from thorough expert opinions. A
group of decision-makers has been assembled to assess the

Table 10: Score values.

Alternatives Score values
X1 0.1125
X2 0.1705
X3 0.5490
X4 0.0725
X5 0.1435
X6 0.204
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suppliers using the recommended methodology. Six deci-
sion-makers D1, D2, D3, D4, D5, and D6 were chosen,
consisting of supplier experts and expert academics on
multicriteria decision-making in a fuzzy environment:,,,

Step 1. Consider the decision matrix M � (T ji)m×n

given by the decision-makers in the form of CIFNs on
the basis of the cubic intuitionistic fuzzy linguistic scale
to evaluate suppliers in accordance with established
objectives and criteria is given in Table 5.
Step 2. With the help of the linear approach, we nor-
malize the matrix M � (T ji)m×n. We divide the criteria
into two subsets, beneft criteria B and cost criteria K.
Here, X3 and X6 belong to beneft criteria B, and the
remaining others belong to cost criteria K. For this,
frst, we fnd maxjT ji and minjT ji, which are given in
Table 5. We normalized the decision matrix by utilizing
the 1st and 2nd equations in Algorithm 1 and this is
given in Table 6.
Normalized decision matrixes from DMs are expressed
in Table 7.
Steps 3 and 4. We fnd the relative importance of all
alternatives by utilizing the 3rd equation in Algorithm
1, and then, we calculate their score function as given in
Table 8.
Step 5. Rank the alternatives according to the score
function, and the fnal ranking is

X3≻X5≻X1≻X6≻X2≻X4. (77)

As we can see that X3 is the most appropriate supplier
among the six alternatives with the best of qualities of
all criteria.

5.3. CIF Choice ValueMethod. Te choice value method is a
renowned and widely used MCGDM basis for evaluating a
set of choices using a set of criteria. Each choice is contrasted
to the others by calculating a number of ratios, one per
choice criterion. Every ratio is multiplied by the propor-
tional weight of the criterion in consideration. A funda-
mental task in MCGDM problems is the selection of one or
more options from the set of alternatives based on a number
of criteria. Let us consider m alternatives, n criteria with
weighted vectors, with the condition that the sum of weights
will be one, for anMCGDMproblem in a cubic intuitionistic
fuzzy set domain.,

5.4. MCDGM Application

Step 1. Consider the decision matrix M � (T ji)m×n

given by the decision-makers in the form of CIFNs
given in Table 9.
Step 2. Decision-makers gives the weights to the four
criteria asW1 � 0.18,W2 � 0.24,W3 � 0.26, andW4 �

0.32 with 􏽐Wi � 1

[0.17, 0.24], [0.36, 0.43],

(0.56, 0.32)
􏼠 􏼡

[0.20, 0.28], [0.29, 0.31],

(0.27, 0.20)
􏼠 􏼡

[0.18, 0.21], [0.21, 0.32],

(0.39, 0.22)
􏼠 􏼡([0.20, 0.37], [0.21, 0.43], (0.54, 0.23))

[0.19, 0.22], [0.39, 0.42],

(0.59, 0.40)
􏼠 􏼡

[0.27, 0.34], [0.33, 0.40]

, (0.43, 0.21)
􏼠 􏼡

([0.24, 0.30], [0.30, 0.39], (0.50, 0.20))([0.32, 0.40], [0.19, 0.51], (0.52, 0.30))

([0.20, 0.29], [0.40, 0.51], (0.81, 0.13))
[0.31, 0.52], [0.42, 0.50],

(0.72, 0.17)
􏼠 􏼡

([0.31, 0.39], [0.18, 0.40], (0.67, 0.14))([0.14, 0.63], [0.24, 0.50], (0.70, 0.18))

[0.31, 0.37], [0.36, 0.49],

(0.50, 0.36)
􏼠 􏼡([0.18, 0.33], [0.28, 0.52], (0.40, 0.32))

([0.23, 0.40], [0.24, 0.51], (0.50, 0.33))

([0.08, 0.74], [0.32, 0.40], (0.46, 0.42))

([0.40, 0.48], [0.51, 0.60], (0.52, 0.30))

([0.29, 0.41], [0.30, 0.39], (0.48, 0.40))([0.40, 0.47], [0.38, 0.60], (0.56, 0.29))

([0.13, 0.64], [0.40, 0.47], (0.53, 0.37))

([0.29, 0.38], [0.27, 0.42], (0.60, 0.27))([0.40, 0.51], [0.41, 0.50], (0.47, 0.38))

([0.32, 0.38], [0.24, 0.72], (0.43, 0.32))([0.42, 0.50], [0.37, 0.53], (0.53, 0.27))

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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0.18

0.24

0.26

0.32
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([0.032, 0.048], [0.832, 0.859], (0.900, 0.067)) +([0.052, 0.075], [0.742, 0.754], (0.730, 0.052))

+([0.050, 0.059], [0.666, 0.743], (0.782, 0.062))

+([0.068, 0.137], [0.606, 0.763], (0.821, 0.080))

([0.037, 0.043], [0.844, 0.855], (0.909, 0.087)) +([0.072, 0.094], [0.766, 0.802], (0.816, 0.055))

+([0.068, 0.088], [0.731, 0.782], (0.835, 0.056)) +([0.116, 0.150], [0.587, 0.806], (0.811, 0.107))

([0.039, 0.059], [[0.847, 0.885]], (0.962, 0.024)) +([0.085, 0.161], [0.812, 0.846], (0.924, 0.043))

+([0.091, 0.120], [0.640, 0.788], (0.901, 0.038)) +([0.047, 0.272], [0.633, 0.801], (0.892, 0.061))

([0.064, 0.079], [0.832, 0.879], (0.882, 0.077)) +([0.046, 0.091], [0.736, 0.854], (0.802, 0.088))

+([0.065, 0.124], [0.690, 0.839], (0.835, 0.098)) +([0.026, 0.350], [0.694, 0.745], (0.779, 0.159))

([0.087, 0.111], [0.885, 0.912], (0.888, 0.062)) +([0.078, 0.118], [0.749, 0.797], (0.888, 0.115))

+([0.124, 0.152], [0.777, 0.875], (0.860, 0.085)) +([0.043, 0.278], [0.745, 0.785], (0.816, 0.137))

([0.059, 0.082], [0.790, 0.855], (0.912, 0.055)) +([0.115, 0.157], [0.807, 0.846], (0.834, 0.108))

+([0.095, 0.116], [0.690, 0.918], (0.802, 0.095)) +([0.159, 0.198], [0.727, 0.816], (0.840, 0.095))
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([0.187, 0.284], [0.249, 0.367], (0.421, 0.236))

([0.263, 0.327], [0.277, 0.432], (0.502, 0.272))

([0.238, 0.494], [0.278, 0.472], (0.714, 0.156))

([0.186, 0.523], [0.293, 0.469], (0.460, 0.361))

([0.294, 0.519], [0.383, 0.499], (0.522, 0.344))

([0.366, 0.451], [0.278, 0.537], (0.512, 0.309))

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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.

(78)

Step 3. We compute the score values for each alter-
native. Te score values are expressed in Table 10.
Step 4. Rank the alternatives according to their score
values.

X3≻X6≻X2≻X5≻X1≻X4. (79)

As a result, X3 is best supplier among six alternatives
with qualities of all criteria.

5.5. Comparative Analysis. Tis paper describes techniques
for dealing with the cubic intuitionistic situation. We
compare our two cubic intuitionistic strategies that are

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

X1
0.8029
0.1125

X2
0.7592
0.1705

X3
0.9548
0.549

X4
0.6294
0.0725

X5
0.9245
0.1435

X6
0.7593
0.204

CIF-WPM
CIF-CVM

Figure 2: Ranking of feasible alternatives.
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already in use. If we use CIF-WPM to assemble the alter-
natives, they are ranked as

X3≻X5≻X1≻X6≻X2≻X4. (80)

On the other side, when we use the technique of choice
value method, the ranking of alternatives is

X3≻X6≻X2≻X5≻X1≻X4. (81)

Based on these fndings, it seemed that the ranking of the
X3 alternative was the same as that produced by the sug-
gested cubic intuitionistic procedures. Te rest of the al-
ternatives have been altered, as can be seen. As a result, we
concluded that in the case of only IVIFSs, the best choice
matches with the indicated one; however, the other alter-
natives are altered, resulting in numerous decisions. As a
result, this CIS condition improves the application range of
the membership and nonmembership intervals by consid-
ering IFS membership values in line with it.

Figure 2 shows the bar chart of ranking of feasible al-
ternatives by using the WPM and CVM methods.

Te comparison analysis of the proposed CIF-WPM and
CIF-CVM with other existing techniques is expressed in
Table 11.

6. Conclusion

A cubic intuitionistic fuzzy set is an efective method for
dealing with various uncertainties in multicriteria group
decision-making (MCGDM) settings. A cubic set is a two-
component system that would be used to describe data with
a fuzzy interval and a fuzzy number. Te notion of cubic
intuitionistic fuzzy sets (CIFS) is a strong hybrid model of
IFSs and IVIFSs. A CIFS has two components, one indi-
cating the IVIFS and the other indicating the IFS. A CIFS is
a new fuzzy model for data analysis, computational in-
telligence, neural computing, soft computing, and others.
Te idea of cubic hesitant fuzzy topology defned on CIFS
can be utilized to seek solutions to various problems of
information analysis, information fusion, big data, and
decision analysis.

Main fndings in this manuscript are as follows:

(1) We introduced the concepts of “P-cubic intuition-
istic fuzzy topology” as well as “R-cubic intuitionistic
fuzzy topology.” Topological structures provide ro-
bust approaches for data analysis and decision
analysis under an uncertain environment.

(2) Certain properties of CIF topology under P(R)-order
are explored, and their related results are elaborated
with illustrations.

(3) Te notions of CIF-open set, CIF-closed set, CIF-
closure, CIF-interior, CIF-exterior, as well as CIF-
frontier, CIF-dense set, and CIF-basis are investi-
gated with a corresponding example.

(4) Algorithms 1 and 2 are proposed for extension of the
weighted product model and the choice value
method, respectively.

(5) Te symmetry of optimal decisions is analyzed by
computations with Algorithms 1 and 2. Te nu-
merical values of alternatives are very close by using
Algorithm 1. However, the numerical values of al-
ternatives have a clear diference when using Al-
gorithm 2.

(6) An application of proposed methods named CIF-
WPM and CIF-CVM towards uncertain supply
chain management is presented.

(7) To discuss the advantages, fexibility, and validity of
proposed methods, a comparison analysis is also
expressed.

For forthcoming analysis, due to the fexibility of CIF
topology towards data analysis and information analysis,
one can extend this work to develop newMCDM techniques
with CIF-VIKOR, CIF-AHP, and CIF-aggregation
operators.
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Table 11: Comparative analysis and ranking of alternatives.

Methods Ranking of alternatives Top alternative
CIF-TOPSIS (Garg and Kaur [23]) X3≻X6≻X2≻X5≻X1≻X4 X3
CIF-WASPAS (Senapati et al. [26]) X3≻X6≻X1≻X2≻X5≻X4 X3
Frank AO (Seikh and Mandal [52]) X3≻X6≻X2≻X5≻X1≻X4 X3
CIF-WPM (Algorithm 1) X3≻X6≻X2≻X5≻X1≻X4 X3
CIF-CVM (Algorithm 2) X3≻X5≻X1≻X6≻X2≻X4 X3
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