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Rolling bearings are the key components for the safe operation of mechanical equipment. It plays an irreplaceable role in the
normal operation of mechanical equipment. Higher load makes higher failure rate of rolling bearing. Accurate identification of the
fault location is an important step in the diagnosis of the rolling bearing fault. In recent years, the entropy features of rolling
bearing vibration signals are usually extracted to identify fault. In this paper, a double feature extraction method based on slope
entropy (SIE) and fuzzy entropy (FE) is proposed to recognize the fault state of rolling bearing through rolling bearing signals. In
the single feature extraction experiment, the recognition rate of these two kinds of entropy is not high. Through the improvement
of the single feature extraction experiment, SIE and FE are selected as two feature combinations. After combining approximate
entropy (AE), SIE, FE, permutation entropy (PE), and sample entropy (SE). The identification rate of these combinations was
calculated using k nearest neighbor (KNN). The result shows that the recognition rate of this combination is 98% and 3.3% higher

than other combinations.

1. Introduction

Rolling bearing is an important mechanical element that can
effectively reduce friction during mechanical operation and
is an indispensable part of many rotating machines. Once
the failure of the rolling bearing, the operation of the whole
mechanical equipment will become difficult, but as the
supporting part of the rotating parts, the rolling bearing will
inevitably suffer from wear and tear. Therefore, it is nec-
essary to diagnose the failure status of the rolling bearing in
time [1, 2]. Although the extraction of frequency signals,
sound signals, and other signals of rolling bearings can well
reflect the fault, the extraction of these signals has higher
requirements for the equipment and professionalism of
personnel [3, 4]. Due to the structural characteristics of
rolling bearings, natural vibration [5] is unavoidable when
they are working, and this vibration signal is easy to extract
and analyze, so there is more research on the features of the
vibration signal. However, in the actual work of rolling
bearing, the vibration signal collected often has obvious
interference and presents nonstationary, nonlinear

characteristics. In order to better identify the signal, entropy,
as an important technology that can accurately analyze the
nonlinear dynamic changes of time series signals, has been
gradually used in the field of fault diagnosis [6].

Fault types of rolling bearings are generally divided into
three types: outer ring, inner ring, and rolling body. The
vibration signals of rolling bearings are usually composed of
their own vibration, vibration, and noise of other parts of the
machine [7]. At present, several methods of time-frequency
analysis have been proposed for the diagnosis of rolling
bearing fault signals. Wavelet transform (WT) is one of the
most classic ones, but the decomposition of WT for the high-
frequency part of signals is not precise enough. And, the
existence of the wavelet function means that it is not an
adaptive method itself [8]. Some mode decomposition al-
gorithms, such as empirical mode decomposition (EMD) [9]
and variational mode decomposition (VMD) [10], are also
gradually applied to fault diagnosis [11, 12]. The signal is
decomposed into multiple modes and processed to reduce
the effect of the noise therein. However, during this process,
it is found that the decomposition results of EMD have a
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certain mode overlap and final effect, which directly affects
the decomposition results [13]. While VMD can restrain
mode aliasing to some extent, its parameter setting and
mode selection affect the decomposition performance.

To solve the above-given problems and obtain better
feature information, entropy theory is used to characterize
the features of signals [14]. AE [15], FE [16], PE [17], and SE
[18] are successively used to extract the characteristics of
rolling bearing signals. AE is an important parameter to
quantify the regularity and unpredictability of time series
fluctuations. The greater the probability of generating new
patterns in time series, the more complex the information
given and the greater the AE value. AE has a certain noise
resistance, if the amplitude of the noise is lower than the
similar tolerance parameter r, the noise will be suppressed
[18-20]. PE differs from other entropy in that it introduces
permutation in calculating the complexity of reconstructed
subsequences [14, 17]. PE also believes that the more
complex the time series, the higher the entropy value is. SE
has made some improvements based on AE and is more
consistent in parameter selection [18, 21]. FE is improved
based on SE, which can describe the degree of ambiguity of a
fuzzy set [16]. When using the fuzzy membership function
instead of the self-similar function, the greater the proba-
bility of time series generating a new mode, the greater the
FE value [22]. In 2019, Cuesta-Frau proposed SIE, which was
based on continuous differences between input samples and
improved on PE in time series magnitude [23, 24], first
applied in medicine. SIE is applied in the field of fault di-
agnosis in this paper.

In agricultural applications [25], hydroacoustic signal
recognition [26], and even star recognition [27], the double
feature extraction method has been well applied, which can
strengthen the classification process, combine the different
features extracted, and improve the accuracy of classification
results. Based on the above reasons, this paper proposes a
double feature extraction method combining SIE and FE and
applies it to fault diagnosis.

The remaining structure of this paper is as follows:
Section 2 describes the basic principles of the two kinds of
entropy used in the method in this paper; In Section 3, the
proposed methods based on SIE and FE are introduced in
detail. Section 4 illustrates the validity of the proposed
method through specific extraction and classification ex-
periments. Section 5 summarizes the innovations and
conclusions of the whole experiment.

2. Basic Theory

2.1. Slope Entropy. The complexity of the time series is
expressed by analyzing the difference between two con-
secutive samples of the time series, that is, the slope. The
specific steps to calculate SE are as follows:

(1) Given a time series {x;, x,, -, Xy}, According to the
embedded dimension m, it is decomposed into j
subsequences in the following form:

> Xivm-1 }’ ( 1)

m_

X =i Xy
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where i =1,2,---,j, j=N-m+1.
(2) Two soft threshold parameters y and & are intro-
duced to calculate the symbolic patterns of these

subsequences, where 0 < §<7y.

(3) For elements in a subsequence, the difference d is
taken make d = x;,; — x;. These elements can be
distinguished into five modes by comparing d with
the soft threshold parameters, which are defined as
2, 1, 0, -1, -2, with the relationships shown as

follows:
pattern =2, d>v,
pattern =1, d<d<y,
{ pattern =0, |d|<6, (2)
pattern = -1, -y<d< -4,
| pattern = -2, d< —1y.

(4) Based on these five modes, we can get 5™ ! sequence
combinations. Record the number of occurrences f,
of each combination, The relative frequency p,, of the
combination is calculated as follows:

Pn =0 (3)

where n=1,2,---,5" L,

(5) Based on the calculation results of the relative fre-
quency, the formula of SIE can be obtained using the
Shannon entropy formula:

5m71

SIE(m,y,8) =— ) p,ln p, (4)
n=1

2.2. Fuzzy Entropy. FE is a quantitative statistical index of
signal complexity. It introduces the theory of fuzzy sets, uses
the fuzzy membership function as the definition of the
similarity degree of entropy, and is more adaptable to
nonlinear and nonstationary fault signals. Its specific cal-
culation process is as follows:

(1) For time series {u(i),i=1,2,...,N}, embedding
dimension m is defined to reconstruct the phase
space, the reconstructed vector is

x(@) ={u@),u@i+1), ---,u(i+m-1)}

o (5)
—uy(i),i=1,2,---,N-m+1,
where u, (i) is a scalar value:
1 m—1
uy (1) = ;u(z+]). (6)

(2) Define d? as the distance between two vectors x (i),
x(j) in tfle reconstructed matrix:
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dt = k:rfl,z",‘.?.‘,m(|”(i+k_ 1) = uy (i) = [u (G + k= 1) = uy (j)]),
(7)

where i>1, jSN-m+1andi#j.

(3) The fuzzy membership function is introduced
according to the distance to calculate the similarity:

1, x=0,

exp[—ln (2)(;)2 ] , x>0,

where 7 is the similarity tolerance parameter, which
is usually 0.2 times the standard deviation of the
original one-dimensional sequence. On the basis of
the function, The similarity is calculated as follows:

am\?
A;’; = exp<—ln(2) x(%) > (9)

(4) For these similarities, we can get the following
formula:

A(x) = (8)

1 N-m+1
m m
Cl'(n=y—0 Z A (10)
j=Lj#i
(5) From this, we can get the relationship under m
dimension:

1 N-m+1

" (r) = Y Crn. (11)
i=1

N-m

(6) Set the embedding dimension to m + 1, repeat the
above five steps to obtain the following equation:
1 N-m
=—— Y C" (). (12)

N-m &
i=1

q)m+1 (7’)

(7) Finally, the expression of FE is as follows:
FE(m,r,N) =1ln ®"(r) —ln @™ (r). (13)

3. Implementation of the Proposed Method

In order to reflect the characteristics of signals more
comprehensively and obtain more effective experimental
results, this paper uses two kinds of entropy: SIE and FE to
represent the characteristics of bearing signals. The features
are processed by using the double feature extraction method.
The distribution of double feature was observed and the
identification results were calculated to reflect the good effect
of the method. The experimental process of the method is
shown in Figure 1. The steps of the experiment are described
as follows:

(1) Rolling bearing signal are divided into 100 samples,
and each sample contains 1024 data points

FiGUure 1: The experimental procedures for the double feature
extraction method.

(2) Extract SIE and FE features from

respectively
(3) Obtain the distribution of double features
(4) Identify and classify signals using KNN

(5) Compute the recognition rate of signal and evaluate
whether the recognition is accurate or not

samples,

4. Feature Extraction Experiments

4.1. Rolling Bearing Signals. The purpose of this paper is to
accurately identify the fault condition of rolling bearing
signals, so six different types of fault bearing signals are
selected. These bearing signals contain three fault types: ball
fault, inner race fault, and outer race fault. In addition, these
bearings come in two different sizes, 0.007 feet and 0.021
feet. Based on the above information, these six types of
signals are labeled as IR007, B0O07, OR007, IR021, B021, and
ORO021, respectively. Six types of rolling bearing signals are
shown in Figure 2.
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FIGURE 2: Six types of rolling bearing signals. (a) IR007. (b) B007. (c) OR007. (d) IR021. (e) B021. (f) ORO2I.

4.2. Feature Extraction and Classification. In this section, the
SIE&FE double feature extraction method proposed in this
paper is verified by extracting and analyzing the features of
the six given rolling bearing fault signals, and then using the
classification algorithm to recognize and classify the feature
extraction results.

4.2.1. Single Feature Experiments. In this section, we use the
five types of entropy mentioned earlier to extract the features
of the six types of signals. The original signal is taken as a
sample every 1024 sample points, and 100 samples are
extracted for each type of signal, m =3. Under the above-
given conditions, the entropy values of the five kinds of
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FIGURE 3: The five kinds of entropy feature the distribution

of the six types of bearing signals. (a) AE. (b) SIE. (c) FE. (d) PE. (e) SE.
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TaBLE 1: Recognition rates under different features of the six types of bearing signals.
TR007 (%) B007 (%) ORO007 (%) TR021 (%) B021 (%) ORO021 (%) Average (%)
AE 100 62 82 86 52 100 80.3
SIE 38 86 26 48 34 40 45.3
FE 70 44 96 98 72 90 78.3
PE 26 38 54 100 24 36 46.3
SE 100 54 60 40 62 80 66

entropy are calculated, and the characteristic distribution
maps are drawn. The five kinds of entropy feature distri-
bution maps of the six types of bearing signals are displayed
in Figure 3.

As can be seen from Figure 3, under the same kind of
entropy, there are more repetitive parts of the entropy values
of the six types of signals; the AE, FE, and SE features of B007
and B021 are mixed obviously; in the feature distribution of
PE and FE, the difference between the entropy value of IR021
and other signals is large, and the feature distribution range
of IR007 and ORO021 in AE is less mixed with other signals;
ORO007 is obviously mixed with other signals in the feature
distribution of each type of entropy.

4.2.2. Classification and Recognition of Single Features.
The above-given feature extraction results are classified to
observe the accuracy of recognition, and KNN is selected to
classify the features. It can judge the type of sample
according to the samples around a sample. The first 50
samples of each kind of signal are selected as training set and
the rest as test set. The latest sample number is set to 1.
Table 1 illustrates the recognition results under different
features of the six types of bearing signals.

It can be seen from the table that the recognition results
of these five kinds of entropy are not ideal for these six kinds
of signals. The highest AE of recognition rate is only 80.3%;
the recognition rates of SIE and PE are lower than 50%;
moreover, the recognition rate of these entropy varies greatly
for different types of signals; the recognition rate of AE for
IR007 and ORO021, PE for IR021, and SE for IR007 has
reached 100%; however, PE achieved only 26% and 24%
recognition rates for identifying IR007 and B021, respec-
tively; considering that different entropy reflects different
features of signals, in order to improve the accuracy of
experiments and make the classification results more pre-
cise, we introduce double feature extraction.

4.2.3. Double Feature Experiments. Select two of the five
entropy to combine and get ten combinations, the param-
eters for calculating the five entropy values are the same as
the previous one. The feature distributions of these com-
binations are plotted for observation; the transverse and
longitudinal coordinates of the figure of feature distribution
are the two entropies used for combination. The signals used
to extract the features are still the same as the original six.
Feature distributions of the ten combinations are shown in
Figure 4.

As can be seen from Figure 4, 100 samples of these six
bearing signals show varying degrees of confusion in the
double feature distribution; the mixed samples in
combination AE&FE, AE&PE, AE&SE, FE&PE, and
FE&SE are mainly B0O07 and B021, while the distribution
of these two types of samples in other subgraphs is
similar, too; the samples of OR007 and IR021 in com-
bination AE&SIE, AE&SE and SIE&SE were significantly
mixed; mixing of the three samples can be easily ob-
served in combination SIE&PE, SIE&SE, and PE&SE;
mixed portions of these six samples of samples are the
least in the combined SIE&FE.

4.2.4. Classification and Recognition of Double Features.
Using KNN for double feature classification and recognition,
the selection of training and test sets is the same as that of a
single feature. The effectiveness of the proposed method is
verified by observing and analyzing the results of classifi-
cation and recognition. Recognition results of the ten
combinations are illustrated in Figure 5, recognition results
for ten types of feature combinations can be obtained in
Table 2.

It is easy to see from Figure 5 that there are obvious
identification errors in all combinations except SIE&FE; the
combination of AE&FE, AE&PE, AE&SE, FE&PE, FE&SE,
and PE&SE has a weak recognition ability for B007 and
B021; all combinations except SIE&PE and FE&PE can fully
recognize IR007; AE&SIE and SIE&SE are difficult to identify
OR007 and TIR021; there are many errors in the combination
of SIE&PE when identifying IR007 and OR021; OR021 has
good recognition effect in nine combinations except
SIE&PE; the combination of SIE&FE has a good recognition
effect on these six signals.

As can be seen from Table 2, the feature combination of
SIE&FE has the highest average recognition rate, which is up
to 98%; the lowest average recognition rate is the combi-
nation of SIE&PE, only 75.3%; the average recognition rate
of other combinations is lower than 95%, which has some
differences with SIE&FE combinations; besides, when rec-
ognizing different types of signals, the recognition rate of the
same combination varies greatly; for example, SIE&SE has a
recognition rate of 100% when identifying IR007 and B007,
but only 44% when identifying OR007; the recognition rate
of AE&FE combination for B007 is also only 44%, but for
IR007, IR021 and ORO21, the recognition rate is 100%. In
general, the SIE&FE method proposed in this paper has the
best effect.
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(h) FE&PE. (i) FE&SE. (j) PE&SE.

TaBLE 2: Recognition rates for ten types of feature combinations.

IR007 (%) B007 (%) OR007 (%) IR021 (%) B021 (%) ORO021 (%) Average (%)

AE&SIE 100 100 80 80 98 100 93
AE&FE 100 44 98 100 72 100 85.7
AE&PE 100 80 100 100 88 100 94.7
AE&SE 100 66 96 92 68 100 87
SIE&FE 100 100 100 96 98 94 98
SIE&PE 46 98 90 100 72 46 75.3
SIE&SE 100 100 44 58 90 78 78.3
FE&PE 92 76 100 100 88 96 92
FE&SE 100 62 98 98 72 94 87.3
PE&SE 100 74 98 98 74 76 86.7
5. Conclusions Abbreviations

In this paper, SIE and FE are applied to fault diagnosis
through a feature extraction experiment; a single feature
extraction method is applied, and then the two entropy are
further combined to achieve double feature extraction. The
validity of the method is proved by classifying six types of
rolling bearing signals according to the feature, and the
recognition rate achieves 98%. The main conclusions are
demonstrated as follows:

(1) A double feature extraction method based on the
combination of SIE and FE is proposed and intro-
duced into the field of fault diagnosis

(2) Combining the two kinds of entropy with a poor
recognition effect greatly improves the recognition
effect, and the recognition rate is 19.7% higher than
that of a single feature

(3) Compared with other double feature combinations,
the method proposed in this paper has a better effect,
and the recognition rate is at least 3.3% higher than
that of other combinations

SIE: Slope entropy

FE: Fuzzy entropy

AE: Approximate entropy
PE: Permutation entropy
SE: Sample entropy

KNN: K nearest neighbor

WT:  Wavelet transform

EMD: Empirical mode decomposition

VMD: Varijational mode decomposition
IR007: Inner race fault signal 0.007 feet in size
B007:  Ball fault signal 0.007 feet in size

ORO007: Outer race fault signal 0.007 feet in size

IR021: Inner race fault signal 0.021 feet in size
B021:  Ball fault signal 0.021 feet in size
ORO021: Outer race fault signal 0.021 feet in size.
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