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A maintainable refueling vehicle is the future development direction of the space system. In the process of fuel �lling, capture
docking, and con�guration transformation, the most signi�cant factor that a�ects the attitude control of the system is the
continuous or sudden change of the angular torque of the system. In this paper, we study the control system of the variable mass
body in an on-orbit service in the process of con�guration transformation. �e large errors of torque of inertia may make the
narrow sense TEA (torque equilibrium attitude) of the system deviate greatly from the earth-oriented attitude. In order to avoid
the error caused by the partial linearization of the systemmodel, the feedback linearizationmethod of the nonlinear system is used
to design the controller to realize the tracking of the narrow sense TEA in the process of con�guration transformation. Di�erent
from the traditional attitude control method, in order to avoid the high cost of the control system caused by the change of system
mass characteristics and the change of system angular torque, CMG (control moment gyroscope) angular torque is introduced
into the controller. We design a joint controller of attitude control and angular torque management, which can e�ectively stabilize
the system and reduce the angular torque saturation of the attitude control system during the on-orbit service.

1. Introduction

Low cost, high reliability, fast response, and maintainability
are the development direction of the future space system.
�e function of on-orbit refueling may become the design
requirement of future spacecraft. �e on-orbit refueling
mission is a part of the space service support system, which
takes the on-orbit spacecraft with insu�cient fuel, exhausted
fuel, or propulsion system failure as the application object.
By means of cabin addition, fuel �lling, or module re-
placement, the function of the spacecraft propulsion system
can be supplemented or restored, and the mission capability
of spacecraft on-orbit can be improved or extended. �e on-
orbit refueling mission consists of two parts: the replen-
ishment vehicle and the replenished vehicle.

�e on-orbit refueling process usually includes (1) the
capture and docking process of the replenishment vehicle
and the replenished vehicle to realize the combination
connection of the two vehicles and (2) the fuel �lling and

transfer process after the fuel tank connection. In the process
of fuel �lling, capture docking, and con�guration change,
the biggest in�uence on the attitude control of the system is
the constant change or mutation of the angular torque of the
system, especially when CMG is used as the actuator. �e
CMG needs to be unloaded by air jet. Because CMG absorbs
the momentum of the system change quickly to saturation.
And the control structure coupling is easily caused by the
unloading of the jet during this period, which makes the
control condition worse.

�e variable mass control problems of spacecraft during
the refueling process can be divided into three categories: the
variable mass control problems of the spacecraft docking
process, the variable mass control problems of the refueling
process, and the variable mass control problems of the
spacecraft separation process. �e change of system mass in
the process of fuel transfer can be regarded as continuous,
while the system mass changes suddenly in the process of
capture docking and separation. Taking the system
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configuration change whose mass change rate is between the
above two as an example, the control of the variable mass
body is studied.

Wu et al. [1] used the hybridmethod to study the attitude
stability of small satellites, in order to solve the problem of
excessive output of the controller. Chu et al. [2] developed an
approximate dynamic model with uncertain parameters
considering the uncertainty of model parameters and pro-
posed a robust adaptive control strategy to compensate for
or reject these uncertainties, respectively. Huang and Uang
[3] aimed at the problems of various disturbances and
parameter changes encountered in the process of the
spacecraft space mission, the sliding film control was applied
to PID control, and the two were combined to complete the
spacecraft attitude robust control. Qin [4] proposed a
controller design method for singularly perturbed systems.
Zhou and Zeng [5] proposed a new nonlinear robust H ∞
control method for spacecraft attitude maneuver problems
with external disturbances and perturbed disturbances.
Yuan et al. [6] proposed a decoupling control algorithm
based on a robust adaptive method to solve the problem of
spacecraft attitude control with disturbance and torque of
inertia uncertainty. Tong and Li [7] proposed a static output
feedback controller using multiobjective synthesis tech-
nology and studied the robust stability and disturbance
suppression of spacecraft with parameter variation and
control input saturation constraints. However, this method
does not consider the uncertainties of the attachment fre-
quency and rigid-flexible coupling matrix. Yang et al. [8]
studied the orbit robust control of low earth orbit spacecraft
under the condition of parameter variation during orbit
transfer during rendezvous. Liang et al. [9] planned the
angular trajectory of the satellite’s attitude maneuver around
the Euler axis and designed a variable structure control law
based on the error quaternion and error angular velocity
between the actual and planned positions of the satellite.
Based on the time-varying autoregressive sliding average
model and the good local function fitting ability of the
wavelet basis function, Lei et al. [10] used the Mexican cap
wavelet function as the spatial base of the time-varying
coefficients of the TARMA model and constructed a time-
varying autoregressive sliding average model of the func-
tional series based on the wavelet function. And decoupling
estimation of time-varying coefficients is achieved.

In this paper, from the angle of system angular torque, the
angular torque of the system is introduced into the control
system, and the angular torque and attitude of the system are
jointly controlled to achieve a good balance between the
attitude and angular torque of the system and ensure that the
system is stable in a certain equilibrium attitude, and the
angular torque of the system will not be saturated due to the
change of the mass characteristics of the system. )e joint
control of attitude and angular torque is referred to as attitude
control/angular torque management (ACMM).

2. Problem Formulation

2.1. Simplified System Model. )e replenishment vehicle
operates the replenished vehicle with a manipulator. Taking

the configuration transformation process of the resupplied
aircraft from “I” configuration to “L” configuration as an
example, the model is established.

Assuming that the solar panels are locked and the slow
variables are ignored, the system dynamics model of the
configuration transformation process is as follows:

Is(t) _ωs + _Is(t)ωs + RbI _ωbI + ω×
s Is(t)ωs

+ ω×
s RbIωbI + 

n

i�1

€Fsiηai � Ts.
(1)

€ηai + 2ζaiΩai _ηai + Ω2
aiηai

+ FT
ti

€X + FT
si _ωs + FT

ai _ωai + FT
Ii _ωbI � 0.

(2)

Among them, formula (1) is the attitude dynamics
equation of the central rigid body, and formula (2) is the
vibration equation of the solar panel. Is(t) is the expression
of the instantaneous torque of inertia of the combination in
the body coordinate system (Fs).)e specific expression is as
follows:

Is(t) � Ib
b + Ir

I − m r
s
bI( 

×
( 

2
, (3)

where Ib
b is the torque of inertia of the replenishment vehicle

relative to its body coordinate system. Ir
I is the represen-

tation of the torque of inertia of the replenished aircraft in its
reference coordinate system. Let the torque of inertia of the
replenished vehicle can be expressed as II

I in the body co-
ordinate system, and the transformation matrix between the
body coordinate system and the reference coordinate system
is L(Ir)(Ib), and then,

Ir
I� L(Ir)(Ib)I

I
IL

T
(Ir)(Ib). (4)

ωs is the component representation of the angular rate of
rotation of the system relative to the inertial frame in the
body assembly coordinate system. rb

bI is the component
representation of the vector from the centroid of the re-
plenishment vehicle to the centroid of the replenished ve-
hicle in the body coordinate system of the assembly.m is the
reduced mass of the two-body system. If the mass of the
replenishment vehicle and the replenished vehicle is mb and
mI, respectively, the reduced mass can be expressed as
follows:

m �
mbmI

mb + mI

. (5)

ωbI is the rotational angular velocity of the replenished
vehicle relative to the replenished vehicle, that is, the relative
attitude angular velocity, which is described in the body
coordinate system of the assembly. RbI is the motion cou-
pling coefficient of the replenishment vehicle and the
replenished vehicle, which is expressed in the body assembly
coordinate system. FIi is the coupling coefficient between the
solar panel and the rotational motion of the replenished
vehicle, which is expressed in the system of the replenished
vehicle.

FaiFsi are the coupling coefficient matrix of solar panel
rotation and satellite rotation. η represents the displacement
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caused by the force. Fti is the principal vector array of system
forces.

When there is no confusion, the subscript s is omitted to
identify the system parameter, and the coordinate system of
the variable is clearly marked. LetωAB be the angular velocity
vector of a coordinate system relative to the B coordinate
system.When B coordinate system is the inertial system, B is
omitted. For example, XB

A is the component representation
ofXA in the B coordinate system.)e torque of inertia Is, the
angular velocity of inertia ωs, and control torque Τs in the
centroid coordinate system of the system are abbreviated as
Ib, ωb, and Τb, respectively.

In the process of configuration transformation, the
dynamic equation and environmental torque model of CMG
are consistent with that of long-term normal on-orbit flight.
)e final system model for controller design is as follows
[11]:

Attitude dynamics:

Ib
(t) _ωb

� Tb
c + Tb

gvro + Tb
dl + Tb

j + Tb
g + Tb

d, (6)

where ωb is the angular velocity of inertia; Ib is the torque of
inertia; Tb

c is the output torque of CMG; Tb
gvro is the gyro

coupling torque; Tb
dl is the perturbation torque of the

supplied vehicle; Tb
g is the gravity gradient torque; Tb

d is the
atmospheric disturbance torque.

Let Fo(o0x0y0z0) be the orbital coordinate system, and
Fb(obxbybzb) be the body coordinate system. )e attitude
kinematics model can be expressed as follows:

ωb
x

ωb
y

ωb
z

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

_φcθ − _ψcφsθ

_θ + _ψsφ

_φsθ + _ψcφcθ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
−

ω0(sψcθ + sφsθcψ)

ω0cψcφ

− ω0(sφcθcψ − sψsθ)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (7)

where ψ, φ, θ are the yaw, roll, and pitch angles of the
aircraft, respectively. “s” and “c” represent “sin” and “cos”
functions, respectively. ωb

x, ωb
y, and ωb

z represent the triaxial
component of the absolute angular velocity ωb of the
combination in the coordinate system Fb, and ω0 is the
orbital angular velocity. It is assumed that ω0 is constant
when the assembly runs in a circular orbit.

)e CMG kinetic model is as follows:

− _h
b

c − ωb
 

×
hb

c � Tb
c , (8)

where hb
c is the sum of the absolute angular torque of each

CMG to its own center of mass, which is described in the
body coordinate system of the combination; Tb

c is the at-
titude control torque of CMG.

When the attitude of the system satisfies the following
equation, all kinds of torques can be balanced.

− ωb
 
∗

 
×
Ib

(t) ωb
 
∗
+Tb

dl + Tb
g + Tb

d � 0. (9)

If the controller is designed to make the attitude of the
combination track the TEA under this condition, the con-
figuration transformation operation can be completed
without unloading the angular torque of CMG. However,

due to the complexity of configuration transformation, TEA
is difficult to solve. And because of the rapid change of TEA
in this process, large space structures are generally not
suitable for rapid maneuver. So, the attitude control strategy
of tracking dynamic TEA in the configuration transfor-
mation process is not feasible.

)e time of configuration transformation is shorter than
that of the normal flight in orbit, and the angular torque
accumulation caused by aerodynamic torque is much
smaller than that caused by gravitational gradient torque and
perturbation torque. Although the perturbation torque is
one of the main reasons for CMG angular torque accu-
mulation, the perturbation angular torque in different stages
of the transfer process can cancel each other to a great extent
after the path and velocity of the manipulator are reasonably
planned. )erefore, in the preliminary design of the con-
troller, the influence of aerodynamic torque and perturba-
tion torque can be ignored temporarily. In this case, only the
gravitational gradient torque and the orbital gyroscopic
torque are considered, and the attitude satisfying the fol-
lowing form during configuration transformation is defined
as “narrow sense TEA.”

− ωb
 
∗

 
×
Ib

(t) ωb
 
∗

+ Tb
g � 0. (10)

In the process of configuration transformation, the
purpose of ACMM controller design is to make the system
track the narrow sense TEA.)e physical meaning of TEA in
the orbit system is obvious when only considering the
gravitational gradient torque and the orbital gyroscopic
torque.)erefore, the controller design of this part is carried
out in the orbit system, which is not only convenient for the
derivation of feedback linearization control law but also can
further study the characteristics of TEA in the orbit system
[12].

2.2. Mechanical Model

2.2.1. Attitude Dynamics Equation. )e derivative of co-
ordinate transformation matrix from body coordinate sys-
tem to orbit system is as follows:

_Lob � Ωo
boLob, (11)

where Ωo
bo� (ωo

b − η)×.
In the process of configuration transformation, the

torque of inertia of the system changes constantly, but
without confusion, the time mark is omitted. )e rela-
tionship between the torque of inertia of the system in the
body coordinate system and the orbit system is as follows:

Io
� LobI

bLbo, (12)

_I
o

b � Ωo
boI

o
b − Io

bΩ
o
bo. (13)

)e component of the absolute angular velocity of the
combination in the orbit system is expressed as follows:

ωo
� Lobω

b
. (14)
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By deriving the time from equation (14) and using
equation (10), the system dynamic equation described in the
orbit system is obtained.

_ωo � Io( )− 1 ωo( )×Ioωo + 3ω2
0 R̂

o × IoR̂o( ) + Toc( ) + Tod. (15)

2.2.2. Attitude Kinematics Equation. Note that
Θob � φob θob ψob[ ]T is the Euler angle from the body
coordinate system to the orbit system. In the case of no
confusion, omit the lower corner mark indicating the di-
rection of rotation. Using 3-1-2 transformation order, the
kinematics equation of the system in the orbit system is as
follows:

_Θob � Roωω
o + η, (16)

where Roω � − (1/cosφ)
cosφ cos θ 0 cosφ sin θ
sinφ sin θ cosφ − sinφ sin θ
− sin θ 0 cos θ

 .

2.2.3. CMG Kinetic Equation. �e dynamic equation of
CMG angular torque in the orbit system is as follows:

_h
o

c � − ωo( )×hoc − Toc . (17)

2.2.4. ACMM System Design Model. Equations (15)–(17) are
written as state equations, and the system model for con-
troller design is obtained as

_Θob
_ωo

_h
o

c


 �

Roωω
o + η

Ιo( )− 1 ωo( )×Ιoωo + 3ω2
0 R̂

o × ΙoR̂o( )( )

− ωo( )×hoc




+

03
Ιo( )− 1

− E3


T

o
c +

03
Ιo( )− 1

03


T

o
d.

(18)

3. Control System Design based on Adaptive
Feedback Linearization

In the process of con�guration transformation, the large
change of torque of inertia may make the narrow sense TEA
of the system deviate greatly from the earth-oriented atti-
tude. In order to avoid the error caused by the partial lin-
earization of the system model, the feedback linearization
method of the nonlinear system is used to design the
controller to realize the tracking of the narrow sense TEA. In
the process of con�guration transformation, the large
change of torque of inertia may make the narrow sense TEA
of the system deviate greatly from the earth-oriented atti-
tude. In order to avoid the error caused by the partial lin-
earization of the system model, the feedback linearization
method of the nonlinear system is used to design the

controller to realize the tracking of the narrow sense TEA in
the process of con�guration transformation.

�e core idea of feedback linearization is to make the
nonlinear system realize accurate linearization of state or
input/output under certain conditions through appropriate
nonlinear state transformation and feedback transforma-
tion, so as to transform the nonlinear system design problem
into a linear system design problem. It is di�erent from the
traditional method of local linearization using Taylor ex-
pansion [13], which does not ignore any nonlinear term in
the linearization process, so this method is not only accurate
but also holistic; that is, linearization is applicable to the
whole region of the transformation. �e limitation of this
method is that it needs accurate information of the system.
When the parameters are uncertain, it is unable to carry out
accurate feedback linearization.

In order to compensate for the dependence of the feed-
back linearization method on system parameters, an adaptive
ACMM controller with online parameter identi�cation is
designed. �e controller consists of two parts: online pa-
rameter identi�cation loop and feedback linearization control
loop. �e structure diagram is shown in Figure 1 [14].

3.1. Feedback Linearization Analysis. Under the assumption
of a small angle, the coordinate transformation matrix from
Fb to Fo can be approximately expressed as

Lob � I − Θ×
ob, (19)

where E3 is the 3 × 3 unit matrix and Θ×ob is the antisym-

metric matrix of Θob, Θ×ob �
0 − ψ θ
ψ 0 − φ
− θ φ 0

 .

�e results are as follows:

Io� E3 − Θ×
ob( )Ib E3 +Θ×

ob( ) � Ib − Θ×
obI

b + IbΘ×
ob,

Io( )− 1 ≈ Ib( )
− 1
− Θ×

ob Ib( )
− 1
+ Ib( )

− 1
Θ×

ob.

(20)

Taking the system state variable as x � Θob ωo hoc[ ]T,
the state equation is written as a general nonlinear system

Feedback linearization loop

Identification loop

State transition

Output
transformation

Pole assignment Z

v=-kT
Z

z=z(x)

u=u(x,v) x = f(x,u)

RLS

Figure 1: Structure diagram of adaptive feedback linearization
controller.
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_x≜ f(x) + G(x)u, (21)

where x ∈ R9, u ∈ R3,

f(x) � Ro
ωω

o
+ η Io

( 
− 1 ωo

( 
×Ioωo

+ 3ω2
0

R
o

× Io R
o

   − ωo
( 

×ho
c 

T
,

(22)

G(x) � 03 Io( )− 1 − E3 
T
, u � To

c .

(23)

)ewhole state of the system can bemeasured, and when
‖Io‖≠ 0, f(x), G(x) is continuous and smooth.

Substituting the approximate expression equation (15) of
(Io)− 1 into the expression (23) of G(x), denote
G(x) � g1(x) g2(x) g3(x) . Definition:

G0(x) � span g1(x) g2(x) g3(x) ,

G1(x) � span g1(x) g2(x) g3(x) adfg1(x) adfg2(x) adfg3(x) ,

. . .

Gi(x) � span adk
fgj(x): 0≤ k≤ i, 1≤ j≤ 3 , i � 1, . . . , 8,

(24)

where span represents vector expansion; that is, G0(x)

represents subspace formed by a linear combination of
g1(x) g2(x) g3(x) , adk

fg(x) � [f, adk− 1
f g](x). Where

[] is Lie brackets, [f, g](x) � (zg/zx)f(x) − (zf/zx)g(x),
ho

c0 � 0 h
o
cy 0 , x0 � 0 η ho

c0( 
T can be used to test.

When 1≤ i≤ 8, the distribution Gi(x) is a constant di-
mension in the neighborhood of x0.

When 1≤ i≤ 7, the distribution Gi(x) is involutivity.
)e distribution Gi(x) has dimension 9.
According to the exact feedback linearization theorem, the

system can be linearized by exact feedback. )erefore, three
output variables with total relative order 9 can be used to define
the state transformation, and the system can be transformed
into a standard canonical form. Since the total relative order of
the system is equal to the state dimension of the system, all
states can be observed through the input-output relationship.

3.2. State Transition. )e state transformation is defined by
the Lie derivative of the output variable. For the ACMM
system, in order to avoid angular torque accumulation ef-
fectively under the premise of attitude stability, CMG an-
gular torque and attitude stability information should be
taken as output variables at the same time.

Ho
b � ho

c + Ioωo
. (25)

)e second-order Lie derivative, the second-order Lie
derivative, and the third-order Lie derivative, respectively,
for the triaxial components of equation Ho

b are obtained as

L
2
fH

o
b1(x) � − ω2

0H
o
b1 + 3ω2

0I
o
yz, (26)

L
2
fH

o
b2(x) � 3ω2

0I
o
yz, (27)

L
2
fH

o
b3(x) � − ω3

0H
o
b1 − 3ω2

0I
o
yz. (28)

It can be seen from equation (12) that _I
o contains angular

velocity information, and the control torque information

will appear after further derivation. )erefore, according to
equations (26)–(28), the third derivative of Ho

b1, Ho
b2 and the

fourth derivative of Ho
b3 will appear control torque infor-

mation, which can be used as output variables.
In order to meet the relative order requirements of the

system, the magnitude after derivation is unified, the ac-
curacy of numerical calculation is improved, and the output
variables are selected as follows:

y1 � H
o
b3(x),

y2 � ω0H
o
b2(x),

y3 � 3ω3
0I

o
xy(x).

(29)

)e nonlinear transformation of output variable defi-
nition is as follows:

z � Φ(x), (30)

where zT � zT
1 zT

2 zT
3 , xT � ΘT

ob (ωo)T (ho
c)T 

T
.

)e specific form of nonlinear transformation is as
follows:

z11 � H
o
b3(x),

z12 � LfH
o
b3(x) � − ω2

0H
o
b1,

z13 � L
2
fH

o
b3(x) � − 3ω3

0I
o
yz − ω2

0H
o
b3,

z14 � L
3
fH

o
b3(x)

� − 3ω3
0 I

o
y − I

o
z ω2

x + I
o
xy ω2

y + ω0  − I
o
xzω

2
z  + ω3

0H
o
b1,

(31)

z21 � ω0H
o
b2(x),

z22 � Lf ω0H
o
b2(x)(  � − 3ω2

0I
o
xz,

z23 � L
2
f ω0H

o
b2(x)( 

� 3ω3
0 − I

o
xyω

2
x + I

o
z − I

o
x(  ω2

y + ω0  + I
o
yzω

o
z ,

(32)
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z31 � 3ω3
0I

o
xy(x),

z32 � Lf 3ω3
0II

o
xy(x) 

� 3ω3
0 − I

o
xzω

o
x + I

o
yz ωo

y + ω0  − I
o
x − I

o
y ωo

z .

(33)

)e new equation of state is as follows:

_z11 � z12, _z12 � z13, _z13 � z14,

_z21 � z22, _z22 � z23, _z31 � z32,
(34)

_z14

_z23

_z32

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

L
4
fy1

L
3
fy2

L
2
fy3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

Lg1
L
3
fy1 Lg2

L
3
fy1 Lg3

L
3
fy1

Lg1
L
2
fy2 Lg2

L
2
fy2 Lg3

L
2
fy2

Lg1
Lfy3 Lg2

Lfy3 Lg3
Lfy3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

u
o
1

u
o
2

u
o
3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(35)

Let z∗ � z14 z23 z32 
T, (35) be written as follows:

_z
∗ ≜ f∗(x) + E(x)uo

. (36)

)e definitions of f∗(x) and decoupling matrix E(x) are
obvious.

E(x) � − 3ω3
0S

o
1 Io
( 

− 1
,

f∗(x) � c + 3ω2
0 So

1 ωo
× η(  + So

2 ωo
− η(  − ωo

− η(  × So
1 ωo

− η(  +

So
1 Io
( 

− 1
− ωo
( 

×Ioωo
+ 3ω2

0
R

o
× Io R

o
  ,

(37)

where So
1 �

I
o
y − I

o
z I

o
xy − I

o
xz

− I
o
xy I

o
z − I

o
x I

o
yz

I
o
xz − I

o
yz I

o
x − I

o
y

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦， So

2 �

I
o
y − I

o
z 0 0

0 I
o
z − I

o
x 0

0 0 I
o
x − I

o
y

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦, c �

− ω2
0z1
0
0

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦.

3.3. Input Transformation. When E(x) is reversible, the
following input transformation is adopted for the system
(25):

uo
� E− 1

(x)

v1 − L
4
fH

o
b3(x)

v2 − L
3
f ω0H

o
b2(x)( 

v2 − L
2
f ω3

0H
o
b2(x) 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (38)

System (25) will be equivalent to

_z
∗

� v, (39)

where v� v1 v2 v3 
T.

)e system (39) has a linear input-output relationship.
When its output is expected to track the desired trajectory zd

without error, the corresponding linear control law can be
designed.

v� K zd − z(  + _z
∗
d, (40)

where K is the control gain matrix in the form of (40) and _z∗d
is the expected trajectory change rate.

K�

k11 k12 k13 k14 0 0 0 0 0

0 0 0 0 k21 k22 k23 0 0

0 0 0 0 0 0 0 k31 k32

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (41)

)e characteristic equation of an equivalent linear sys-
tem is as follows:

λ � s
4

+ k14s
3

+ k13s
2

+ k12s + k11  s
3

+ k23s
2

+ k22s + k21 

s
2

+ k32s + k31 .
(42)

According to equations (36) and (41), the nonlinear
control law for the linearized system (39) is obtained.

uo
� E− 1

(x) − f∗(x) + v( , (43)

uo
� Io ωo

× η(  − ωo
( 

×Ioωo
+ 3ω2

0
R

o
× IoRo

 

− Io So
1( 

− 1 ωo
− η( So

1 ωo
− η(  − So

2 ωo
− η(  

−
1

3ω3
0
Io So

1( 
− 1

_zd
′ − ε + K zd − z(  ,

(44)

uo
� Lbou

o
. (45)

Equations (44) and (45) are the nonlinear control laws of
the ACMM system in the track system. In this control law, it
is assumed that the inertia characteristics of the system can
be fully identified, and only the desired trajectory zd and the
feedback gain matrix K need to be designed.

3.4. System Expected Trajectory. )e stable working state of
the ACMM system is a narrow sense TEA when only
considering the gravitational gradient torque. At this point,
Io
xy � Io

xz � Io
yz � 0, Io

x � I
p
x, Io

y � Io
y, Io

z � I
p
z , and ho

cx � 0,

ho
cy � 0. )e total angular torque of the system at TEA is

Ho
b �

0

h
o
c

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ +

I
p
i 0 0

0 I
p
j 0

0 0 I
p

k

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

0

− ω0

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �

0

h
o
c − I

p
jω0

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

(46)

where i≠ j, j≠ k, i≠ k, I
p

i , I
p

j , I
p

k are the value of inertia along
the three principal axes of inertia.

After the total angular torque of the system at TEA is
obtained, the desired trajectory zd of the system can be
determined. Although TEA does not require ho

cy and can take
any value within the capacity range of CMG, in order to
simplify the design of the controller, the instruction value of
ho
cy is zero. )e narrow sense of TEA requires the inertial

principal axis to point along the orbit coordinate axis, but in
the case of minimum attitude maneuver, the inertial prin-
cipal axis in the y direction is generally pointed to the normal
direction of the orbit; that is, Ho

b � 0 − I
p
yω0 0 .

From the above analysis, we can get the expected tra-
jectory zd as follows:

zd � 0 0 0 0 − I
p
yω0 0 0 0 0 

T
. (47)
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3.5. Equivalent Linear System Design. �e closed-loop
characteristic of the equivalent linear system is designed by
the pole assignment method. In order to make the system
have a certain stability margin and convergence speed, the
closed-loop poles are placed in the sector area with an angle
of ±45° between the left side of the S plane S � − 0.5ω0 and
the real axis. Select 9 closed-loop poles as − 0.5ω0,
(− 0.707 ± 0.1j)ω0, (− 1 ± 0.5j)ω0, (− 1.414 ± 0.5j)ω0,
(− 2 ± j)ω0, and the speci�c distribution is shown in
Figure 2.

For the fourth-order SISO system corresponding to z1,
the closed-loop poles are assigned at (− 0.707 ± 0.1j)ω0 and
(− 1.414 ± 0.5j)ω0. �e corresponding fourth-order char-
acteristic equation is as follows:

λ1(s) � s
4 + 4.24ω0s

3 + 6.75ω2
0s

2 + 1.77ω3
0s + 2.75ω4

0. (48)

�erefore, k11 � 2.75ω4
0, k12 � 1.77ω3

0, k13 � 6.75ω2
0,

k14 � 4.24ω0.
For the third-order single input single output system of

z2 choosing − 0.5ω0 and (− 2 ± j)ω0 as its closed-loop poles,
the corresponding feedback gain can be obtained in the same
way k21 � 2.5ω3

0, k22 � 7.0ω2
0, k23 � 4.5ω0.

For the second-order single input single output system of
z3, the closed-loop pole is (− 1 ± 0.5j)ω0, and the feedback
gain is calculated as k31 � 1.25ω2

0, k32 � 2.0ω0.

4. Online Parameter Identification

It can be seen from the feedback control law (39) that the
ACMM controller needs not only the angular rate and
angular torque information of the combined body but also
its torque of inertia information, which is provided by the
online parameter identi�cation unit, and its identi�cation
accuracy directly a�ects the control performance of the
adaptive system. In this section, the control torque infor-
mation and angular velocity information of the combination

are used to identify the closed-loop control of the combi-
nation without additional excitation. �e algorithm uses the
least square method with a bounded gain forgetting factor,
which can track the real parameters without continuous
excitation.

�e standard form of the linear least squares [15]
problem is Φx � y+ε or written as Φx � y, where y is the
measured vector, ε is the measured noise vector, x is the
parameter to be identi�ed, Φ is composed of known vari-
ables and parameters, and x̂ is the solution of the least-
squares algorithm, which minimizes the sum of squares of
error Φx̂-y.

Firstly, the least square estimation model of the pa-
rameters to be identi�ed is constructed according to the
dynamic equation of the system, and the vector composed of
six independent elements of the torque of inertia is taken as
the unknown vector i� Iox Ioy Ioz Ioxy Ioxz Ioyz[ ]T.

Ιoωo � D1 _ωo( )i,

ωo( )×Ιoωo � D2 ωo( )i,
(49)

where

D1( _ω) �

_ωox 0 0 0 _ωoz _ωoy
0 _ωoy 0 _ωoz 0 _ωox
0 0 _ωoz _ωoy _ωox 0



,

D2( _ω) �

0 − ωoyω
o
z ωoyω

o
z ωoy( )

2 − ωoz( )2 ωoxω
o
y − ωoxω

o
z

ωoxω
o
z 0 − ωoxω

o
z − ωoxω

o
y ωoz( )2 − ωox( )2 ωoyω

o
z

− ωoxω
o
y ωoxω

o
y 0 ωoxω

o
z − ωoyω

o
z ωox( )2 − ωoy( )

2




.

(50)

�e system dynamics equation in the orbit system can be
reduced to the following equation:

D1 _ωo( )i+D2 ωo( )i − 3ω2
0D2(R̂)i� Toc + Tod. (51)

Since the angular acceleration information is not mea-
surable and the angular velocity information is measurable,
the left and right sides of equation (51) are integrated to
obtain the following results:

-0.5ω0

Im

Re

45°

45°

×
×
×

×

××

×

×

×

Figure 2: Pole assignment diagram of the equivalent linear system.
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D1 ωo| t1

t0

⎛⎝ ⎞⎠ + 
t1

t0

D2 ωo
(  − 3ω2

0D2(
R) dt⎛⎝ ⎞⎠i� 

t1

t0

To
c + To

d( dt.

(52)

If equation (52) is written in the form of standard linear
least squares, then

Φ � D1 ωo| t1

t0

⎛⎝ ⎞⎠ + 
t1

t0

D2 ωo
(  − 3ω2

0D2(
R) dt,

y � 
t1

t0

To
c + To

d( dt.

(53)

In order to realize online real-time identification, the
recursive form of least squares is used. Recursive least square
estimation extracts the information of the estimated
quantity from each measurement, which is used to modify
the estimation obtained in the previous step [16]. )e more
times of measurement, the more times of correction, and the
higher the accuracy of estimation.

When the system is brought into TEA, the external force
torques cancel each other, and the control torque required is
small, which cannot meet the continuous excitation con-
ditions required by the traditional least square method.
Moreover, due to the “data saturation” phenomenon, when
the observation data increase, the deviation between the
estimated value obtained by the recursive least square pa-
rameter identification method and the real parameters will
become larger and larger. )erefore, in parameter estima-
tion, we should pay enough attention to the current data and
gradually forget the old data which does not contain the
current dynamic characteristics, so we use the recursive least
squares estimator with bounded gain forgetting factor. )e
estimator still has bounded gain when the excitation is not
continuous [17].

Set X to be measured, Yj is the j measurement, and the
measurement equation is

Yj � ΦjX+Vj, j � 1, 2, . . . , k, (54)

whereΦj and Vj are the j measurement matrix and random
measurement noise. )e recursive least square estimation
algorithm with the forgetting factor is as follows:

Kk � λE + Φk+1PkΦ
T
k+1 

− 1
,

Pk+1 �
1
λ

Pk − PkΦ
T
k+1KkΦk+1Pk ,

Xk+1 � Xk + Pk+1Φ
T
k+1 Zk+1 − Φk+1

Xk .

(55)

)e choice of forgetting factor is of great significance to
the stability of the system.When the continuous excitation is
satisfied (such as in the dynamic process of tracking TEA),
the forgetting factor of zero will lead to zero gain (i.e., it
degenerates to the standard least squares method, resulting
in the instability of tracking time-varying parameters) [18].
When the continuous excitation condition is not satisfied,
the forgetting factor of the normal number will lead to a

sharp increase in gain. )e forgetting factor is chosen as the
following bounded form:

λ(t) � λ0 1 −
‖P‖

k0
 . (56)

λ0 and k0 is a normal number. )e upper bounds of the
maximum forgetting rate and the norm of the gain matrix
are given, respectively; P is the gain matrix and represents
the level of motivation. Formula (56) means when the norm
of P is small (strong continuous incentive), the forgetting
factor is λ0, forgetting is fast, and the system has a strong
ability to track the changing parameters. When the norm of
P increases, the forgetting speed decreases. And the for-
getting speed is zero when the norm of P reaches a specified
upper bound. In this case, λ0 is 0.95, and k0 is 109.

5. Controllability and Singularity

)e nonlinear state transformation (34)–(36) are not global
transformation. )ey are effective at the nonsingular points
of the matrix in the new state equation. Nonsingular points
are effective. In this case, the inverse matrix is

E− 1
(t) � −

1
3ω3

0
Io So

1( 
− 1

. (57)

Formula (57) shows that the reversibility of E(x) depends
on the reversibility of So

1. According to the definition of So
1,

its reversibility is determined by the following formula:

Δ� det So
1( � I

o
x − I

o
y  I

o
y − I

o
z  I

o
z − I

o
x( 

+ I
o
x − I

o
y  I

o
xz( 

2
+ I

o
z − I

o
x(  I

o
xz( 

2
+ I

o
y − I

o
z  I

o
yz 

2
.

(58)

Due to the existence of the torque of inertia of the inertial
coordinate system of the system mass center and the track
system, the following relations are

Io
� LopI

pLpo. (59)

Δ can be changed to

Δ� I
p
x − I

p
y  I

p
y − I

p
z  I

p
z − I

p
x( Λ φ∗, θ∗,Ψ∗( . (60)

)is is a function of the rotation Euler angle (narrow
sense TEA) from the center of mass inertial principal axis
coordinate system to the orbit system when the 3-1-2 ro-
tation sequence is adopted, and the simplified expression of
Λ(φ∗, θ∗,Ψ∗) is as follows:

Λ φ∗, θ∗,Ψ∗(  � cos 2φ∗( cos 2θ∗( cos 2ψ∗( 

+
1
4
sin 2φ∗( sin 2θ∗( sin 2ψ∗(  1 − 3 cos 2φ∗( ( .

(61)

When the following two conditions are met, Δ≠ 0

I
p
x ≠ I

p
y ≠ I

p
y ≠ I

p
z , I

p
z ≠ I

p
x,

Λ≠ 0.
(62)
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Among them, the �rst condition is a physical condition,
which restricts the inertia characteristics of the system and
can feedback linearization. �e second condition limits the
attitude range of the control law (43).

5.1. Torque of Inertia Constraint. Inertia constraints
Ipx ≠ Ipy ≠ Ipy ≠ Ipz , I

p
z ≠ I

p
x are the inherent characteristic of the

ACMM problem which only considers the gravity gradient
torque, and even for the linear controller, the same con-
straint is needed. For example, assuming that the nonlinear
dynamic equations of the system are linearized at zero at-
titude, the dynamic equations of pitch and roll/yaw in the
ACMM system are decoupled. For pitch channel, take the
state variable as x2 � θ∗ _θ

∗
hpc( )

T
, the equation of state is

_x2 � A2x + b2u
p
2 , (63)

where

A2 �
1
Ipy

0 Ipy 0

3ω2
0 I

p
z − I

p
x( ) 0 0

0 0 0




,

b2 �
1
Ipy

0

− 1

Ipy




.

(64)

�e controllable matrix is:

S �
1

Ipy( )
2

0 − Ipy 0

− Ipy 0 3ω2
0 I

p
z − I

p
x( )

Ipy( )
2

0 0




. (65)

When Ipz ≠ I
p
x , rank(S) � 2< 3. �e pitch axis is un-

controllable, and the roll/yaw axis has a similar conclusion.

5.2. Attitude Constraint. �e nonlinear control law (39)
requiresΛ≠ 0. In order to avoid singularity, it is necessary to
study the distribution of attitude angle when Λ � 0. When
using the 3-1-2 rotation sequence, according to the ex-
pression of Λ, and Ipx ≠ Ipy ≠ Ipy ≠ Ipz , I

p
z ≠ I

p
x , the singular

surface near Θ∗ � 0 0 0( ) is obtained, as shown in
Figure 3.

�e two surfaces in Figures 4 and 5 will separate the TEA
at θ∗ � (0, 0, 0) from other TEA. If the initial attitude of the
system is located in the area surrounded by the surface in the
�gure, it cannot pass through the surface in the process of
tracking TEA, so as to avoid the singularity of the nonlinear
control law.

BecauseΛ a function of three attitude angles, it is hard to
observe Λ with the change of attitude angle. Considering
that the change of yaw angle is more obvious in the process
of con�guration transformation, and the gravitational

80
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Figure 3: Singular surface of the control law.

100

100

0

0

Λ

ψ* (°)
ϕ* (°)

–100
–100

–1

–0.5

0

0.5

1

–0.6

–0.8

–1

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

Figure 4: Value of Λ when φ∗ � 0°.
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Figure 5: Value of Λ when φ∗ � 0° (close up view).
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gradient torque is generally more obvious in the pitch axis,
the roll angle is �xed here to investigate the in�uence of pitch
angle and yaw angle on Λ.

Figures 6 and 7 show the value of Λ when φ∗ � 0, θ∗,
ψ∗ ∈ [− 180°, 180°]. As can be seen from the �gure, φ∗ � 0,
corresponding to the balanced attitude

Θ∗ �
mπ
2

nπ
2

0( ), (66)

where the value of Λ is (− 1)m + n, and it is local maximum 1
or local minimum − 1. When φ∗ � 0, θ∗ � ± 45°,
ψ∗ � ± 45°, Λ� 0, so if the initial time θ∗ < 45°, ψ∗ < 45°,
φ� 0, the uniqueness TEA θ� (0, 0, 0) that can be achieved
by a combination not passing through the singular surface of
Λ� 0 in a graph. �e value of Λ is 1.

Figures 6 to 13 show that when φ∗ changes from − 90° to
90°, Λ changes with the θ∗, ψ∗. �is set of curves shows that
the value of Λ is symmetrically distributed with respect to
θ∗ � ψ∗ and θ∗ � − ψ∗. When φ∗ increased from − 90° to
− 45°, along θ∗ � ψ∗, it is constant. But along the θ∗ � − ψ∗,
the amplitude of the �uctuation of Λ becomes smaller, as
shown in the �gure.When φ∗ increased to − 45°, a single peak

and trough appeared; when φ∗ increased from − 45° to 0°, the
amplitude of wave crest and wave trough becomes larger;
when φ∗ � 0, the peak and trough values reach the maxi-
mum value of 1 and the minimum value of − 1, respectively;
when φ∗ increased from 0 to 45°, the amplitudes of wave
crest and wave trough decrease, respectively; when φ∗ in-
creased from 45° to 90°, Λ is symmetric about θ∗ � ψ∗ and
θ∗ � − ψ∗ again. However, Λ rotates at 90 degrees. When
θ∗ � − ψ∗, Λ is a constant.

It can be seen from the previous analysis that when only
considering the gravitational gradient torque, the narrow
sense TEA has the following form:

Θ∗ �
mπ
2

nπ
2
pπ
2

( ). (67)

Before applying the nonlinear control law, the distance
between TEA and the singular point must be determined.
�e nonlinear control law is e�ective only when Λ at TEA is
far from zero.

Take the �rst and second partial derivatives of Λ:

zΛ
zΘ∗

�
zΛ
zφ∗

zΛ
zθ∗

zΛ
zψ∗[ ]

T

, (68)

where

zΛ
zφ∗

� − 2 sin 2φ∗( )cos 2θ∗( )cos 2ψ∗( )

+
1
4
sin 2θ∗( )sin 2ψ∗( ) cos φ∗( ) 1 − 3 cos 2φ∗( )( )[

+ 6 sin φ∗( )sin 2φ∗( )],

zΛ
zθ∗

� − 2 cos 2φ∗( )sin 2θ∗( )cos 2ψ∗( )

+
1
2
cos 2θ∗( )sin 2ψ∗( )sin φ∗( ) 1 − 3 cos 2φ∗( )( ),

zΛ
zψ∗

� − 2 cos 2φ∗( )cos 2θ∗( )sin 2ψ∗( )

+
1
2
sin 2θ∗( )cos 2ψ∗( )sin φ∗( ) 1 − 3 cos 2φ∗( )( ),

zΛ
zΘ∗2

�

zΛ
zφ∗2

zΛ
zφ∗zθ∗

zΛ
zφ∗zψ∗

zΛ
zφ∗zθ∗

zΛ
zθ∗2

zΛ
zθ∗zψ∗

zΛ
zφ∗zψ∗

zΛ
zθ∗zψ∗

zΛ
zψ∗2





T

,

(69)
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Figure 6: �e value of Λ when φ∗ � − 90°.
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where
zΛ
zφ∗2

� − 4Λ +
15
4
sin φ∗( )sin 2θ∗( )sin 2ψ∗( ) 1 + 3 cos 2φ∗( )( ),

zΛ
zθ∗2

� − 4Λ,

zΛ
zψ∗2

� − 4Λ,

zΛ
zφ∗zθ∗

� 4 sin 2φ∗( )sin 2θ∗( )cos 2ψ∗( )

+
1
2
cos φ∗( )cos 2θ∗( )sin 2ψ∗( ) 7 − 9 cos 2φ∗( )( ),

zΛ
zφ∗zψ∗

� 4 sin 2φ∗( )sin 2θ∗( )cos 2ψ∗( )

+
1
2
cos φ∗( )cos 2θ∗( )sin 2ψ∗( ) 7 − 9 cos 2φ∗( )( ),

zΛ
zθ∗zψ∗

� 4 cos 2φ∗( )sin 2θ∗( )sin 2ψ∗( )

+ sin φ∗( )cos 2θ∗( )cos 2ψ∗( ) 1 − 3 cos 2φ∗( )( ).

(70)

For TEA in the form of the formula (65), there are

zΛ
zΘ∗

|TEA � 0 0 0( )T, (71)

zΛ
zΘ∗2

�

4(− 1)n+p
1 0 0
0 1 0
0 0 1


m is even

4(− 1)n+p
(− 1)m 0 0

0 (− 1)m (− 1)m− 1/2

0 (− 1)m− 1/2 (− 1)m







, m is odd.

(72)
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Figure 8: �e value of Λ when φ∗ � − 60°.
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Figure 11: Value of Λ when φ∗ � 60°.
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It can be seen that if m is even, the eigenvalues of the
second-order Hessian matrix are all 4(− 1)n + p. When n+ p is
even, TEA is the minimum of Λ. When n+ p is odd, TEA is
the largest value of Λ. If m is odd, then the eigenvalue of the
Hessian matrix is 8(− 1)n + p, 4(− 1)n + p, and 0. When n+ p is
an even number, θ∗ � ψ∗ ± (n − p)π/2(φ∗ < 0) and
θ∗ � − ψ∗ ± (n − p)π/2(φ∗ > 0) (k is an integer) Λ are both

minima − 1; when n+ p is an odd number, θ∗ � ψ∗ ± (n −
p)π/2(φ∗ < 0) and θ∗ � − ψ∗ ± (n − p)π/2(φ∗ > 0) Λ are
both maximum 1.

It can be seen from the above analysis that a TEA is a
maximum or aminimum. So, the nonlinear feedback control
law given by formula (44) can avoid singular points in
principle. But, when the initial attitude is not suitable, the
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Figure 13: Value of Λ when φ∗ � 90°.

Table 1: Con�guration transformation cabin and con�guration parameters.

Replenishment vehicle Replenished vehicle One line L con�guration
Mass (kg) 22000 22000 44000 44000

Torque of inertia (105 kgm2)

Ix 1.30 1.30 2.60 15.23
Iy 6.17 6.17 39.56 14.27
Iz 6.86 6.86 40.94 26.90
Ixy 0 0 0 6.934
Ixz 0 0 0 0
Iyz 0 0 0 0
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systemmay still pass through the singular surface during the
stabilization process. For example, if the initial angular rate
of attitude is relatively large, the system is likely to reach the
singular surface before stabilization. �erefore, whether the
nonlinear control law can e�ectively drive the system to TEA
is closely related to the initial attitude. If the reference input
signal zd is selected reasonably, the singularity may be
avoided in some programs, and the system will approach
TEA along the ideal trajectory.

6. Numerical Examples of Configuration
Transformation Process

It is assumed that the mass characteristics of the two sections
are shown in the table (Table 1).

Suppose that the con�guration transformation process
takes 5000 seconds, and in the �rst 1000 seconds, the
replenished vehicle is pushed out 5 meters along the lon-
gitudinal axis of the replenishment vehicle with amechanical

arm at a constant speed; when 1000 seconds to 4000 seconds,
rotate the replenished vehicle 90° around the negative di-
rection of the yaw axis of the replenishment vehicle. Con-
sidering the transfer time and the speed limit of the end of
the manipulator, adopt the rotation process of acceleration
uniform deceleration. When 1000 seconds to 2000 seconds,
rotate the replenished vehicle with constant acceleration,
when 2000 seconds to 3000 seconds, rotate with uniform
speed, and when 3000 seconds to 4000 seconds, rotate with
uniform deceleration. �e ideal situation is that when the
replenished vehicle rotates 90° relative to the replenishment
vehicle, the angular velocity of the relative replenishment
vehicle can just be reduced to zero. From 4000 seconds to
5000 seconds, the replenished vehicle is pulled to the lateral
interface of the node cabin at a constant speed along the y-
axis direction of the replenishment vehicle by the me-
chanical arm to complete the redocking. From the process of
con�guration transformation, the relative attitude of the
replenishment vehicle and the replenished vehicle is mainly
re�ected in the yaw axis.

In the simulation model, the replenishment vehicle is a
rigid body dynamic model with �exible appendages. �e
solar panel of the replenished vehicle is retracted during the
transfer process, regardless of the in�uence of its �exible
mode, the �exibility of the manipulator, and its dynamic
relationship. It is assumed that it can move according to the
planned ideal trajectory, and the in�uence of atmospheric
disturbance is considered during the transfer process. In the
process of con�guration transformation, the replenished
vehicle to be transferred is in an uncontrolled state, and the
whole system is controlled by a set of CMGs of pentagonal
pyramid con�guration.�e nominal angular torque capacity
of each CMG is 1000 nms, and the minimum angular torque
on the angular torque envelope of each CMG is 4200 nms. It
is still assumed that the combined body runs in a circular
orbit 400 km away from the earth’s surface, and the orbital
angular velocity is lower ω0 is a constant value of 0.0011 rad/s,
and the sampling period is 200ms. �e initial attitude
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angle and angular velocity are assumed to be 1 θ � [0.0007
0.0008 0.001]°, θ� [0.001–0.001 0.001]°/s. �e angular torque
of the initial CMG is calculated from the initial frame angle
of each CMG in the pentagonal pyramid con�guration.

Without considering the in�uence of the manipulator,
the relative attitude of the replenishment vehicle and the
replenished vehicle in the transfer process is shown in
Figure 14. If the replenishment vehicle is in the uncontrolled
free-�oating state during the con�guration transformation,
the attitude motion of the replenishment vehicle during the
transfer process is shown in Figure 15. If the angular torque
management of CMG is not carried out in the process of
con�guration transformation, and the replenishment vehicle
maintains directional stability to the ground, the angular

torque that CMG needs to absorb in the process of con-
�guration transformation is shown in Figure 16. As can be
seen from Figure 17, if the replenishment vehicle is not
controlled during the transfer process, the attitude angle
drift is too large. As shown in Figures 16 and 18, if the
replenishment vehicle is strictly oriented to the ground
during the transfer process, the disturbance angular torque
absorbed by CMGwill be large and reach saturation quickly,
which will a�ect the accuracy of the transfer process.

After torque management is adopted, the identi�cation
results of the parameter identi�cation unit are shown in
Figures 17 and 19 when supplying the narrow TEA of the
aircraft attitude tracking system during the transfer process.
�e closed-loop identi�cation e�ect of the least square
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method with bounded gain forgetting factor is ideal, and it
can track the changing torque of inertia of the system in the
whole con�guration transformation process.

�e angular torque and attitude angle stored in CMG are
shown in Figures 20–25. After the angular torque planning,
the angular torque of CMG is strictly controlled within its
capacity range during the whole transfer process (Figures 20

and 22), and the singular measure of CMG is far away from
zero (Figure 23). �e attitude maneuver of the replenish-
ment vehicle is mainly re�ected on the yaw axis (Figures 21
and 24), which can be veri�ed by the relative motion of the
replenishment vehicle and the replenished vehicle during the
transfer process. In the controller design, the change history
of nine states of the equivalent linear system is shown in
Figure 25. Except the �fth state needs to track the time-
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varying reference input and the eighth rolling/pitching in-
ertia product changes constantly during the transfer process,
the other amplitudes �uctuate less, and the dynamic e�ect is
ideal.

7. Conclusion

�is paper studies the control problem of the variable mass
body in the process of on-orbit service. Di�erent from the
traditional method, the feedback linearization method of the
nonlinear system is used to design the controller. By real-
izing the tracking of narrow TEA in the process of con-
�guration transformation, the error caused by the angular
deviation between narrow TEA and earth orientation atti-
tude caused by the large change of moment of inertia is
avoided, and the ACMM controller is obtained. In order to
improve the input information accuracy of the ACMM
controller, the least square method with a bounded gain
forgetting factor is introduced to track the real variable
parameters. �is method does not need continuous exci-
tation. A joint attitude control/angular momentum man-
agement controller is designed to e�ectively stabilize the
system and reduce the angular momentum saturation of the
attitude control system during on-orbit service. In the nu-
merical simulation of the con�guration transformation
process, we compared the changes in CMG angular mo-
mentum management in the con�guration transformation
process. If the supply aircraft is kept strictly oriented to the
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ground during the transfer process, the disturbance angular
momentum absorbed by CMG will quickly reach saturation
and need to be unloaded, which will affect the accuracy of the
transfer process. If CMGmanagement is carried out and the
least square method with bounded gain forgetting factor is
used for closed-loop parameter identification, CMG satu-
ration is effectively controlled. )is shows that the ACMM
controller can track the changing moment of inertia of the
system, which provides a solution to the problem of variable
quality control in on-orbit service.
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