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Periodic behavior analysis of nano/microelectromechanical systems (N/MEMS) is an essential �eld owing to their many
promising applications in microinstruments.­e interesting and unique properties of these systems, particularly, small size, batch
fabrication, low power consumption, and high reliability, have fascinated researchers and industries to implement these structures
for the production of di�erent microdevices. ­e dynamic oscillatory behavior of N/MEMS is very intricate due to the various
types of nonlinearities present in these structures. ­e foremost objective of this study is to explore the periodicity of oscillatory
problems from N/MEMS. ­e variational iteration method (VIM), which has been considered as an e�ective approach for
nonlinear oscillators, is coupled with the Laplace transform to obtain the approximate analytic solution of these nonlinear
vibratory systems with fewer computations.­is coupling of VIM and Laplace transform not only helps in the identi�cation of the
Lagrange multiplier without getting into the details of the cryptic theory of variations, but also �nds the frequency-amplitude
relationship and the analytic approximate solution of N/MEMS. A generalized vibratory equation for N/MEMS is followed by
three examples as special cases of this generalized equation are given to elucidate the e�ectivity of the coupling. ­e solution
obtained from the Laplace-based VIM not only exhibits good agreement with observations numerically but also higher accuracy
yields when compared to other established techniques in the open literature.

1. Introduction

A few decades have passed since the revelation and ad-
vancement of nano/microelectromechanical systems
(N/MEMS). ­is innovation now has touched a level of
maturity that, nowadays, several N/MEMS devices are
being utilized in our daily life, ranging from pressure
sensors and accelerometers in cars, radiofrequency
switches, micromirrors in electronics devices such as
Plasma TVs, microphones in the telecommunication

industry, and inertia sensors in video games [1–6]. Con-
versely, with this developing demand on the N/MEMS
innovation come incredible challenges. Dynamic analysis is
one of them and has experienced rapid development [7].
­e oscillators from N/MEMS have rich dynamics, and
there are many phenomena involved in the dynamic
analysis of a N/MEMS such as pull-in instability, phase
diagram, and hysteresis. However, the focus of this man-
uscript is on the periodic solution property of N/MEMS.
­e exact solutions of N/MEMS, which are hard to �nd,
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play a vital role in examining the properties and behavior of
these systems. *us, researchers are interested in finding at
least analytic solutions because they have more detail which
helps with better insight into these systems.

In the past decades, several techniques have been
proposed to get the approximate analytic solution of N/
MEMS problems such as the homotopy perturbation
method (HPM), higher-order HPM [8], Taylor series [9],
energy balance technique [10], spreading residual har-
monic balance method [11], higher-order Hamiltonian
method [12], Adomian decomposition method (ADM)
[13], Li-He modified HPM [14], modified ADM [15],
variational approach [16], Galerkin decomposition
method [17], and so on. It is also noted that, besides these
methods, there are various analytical techniques for
getting the approximate solution to the nonlinear equa-
tions, for example, the He-Laplace method [18], global
residual harmonic balance method [19], integral trans-
form-based methods [20–22], max-min approach [23],
frequency-amplitude formulation method [24], Hamil-
tonian approach [25], and others [26–29]. Moreover, there
have been several review articles that have appeared on the
analytical methods for oscillatory problems during the
past decade [30–32].

*e variational iteration method (VIM) [33] is one of the
most powerful techniques among the aforementioned
methods, capable to solve linear and nonlinear, ordinary and
partial differential equations [34–41] analytically and leading
to truthful results. It was first proposed in 1998 [33] and has
been extensively discussed, including its extensions and
modifications [22, 41]. *e main theme of the method in-
volves the construction of a suitable iterative formula with a
Lagrange multiplier that is optimally determined with the
help of the variational theory. As there is no need to linearize
or treat the nonlinear terms, therefore, authors [22] recently
recommend that Laplace transform a simpler method to
evaluate the multiplier, rendering the approach available to
researchers facing different nonlinear problems. Addition-
ally, it is noticed that nonlinear oscillators benefit greatly
from this modification.

In this study, we construct a generalized nonlinear vi-
brational problem for N/MEMS, which under various
conditions, reduces to different physical systems such as
electrostatic force-based N/MEMS, the dynamic behavior of
the microbeams induced by van der Waals attractions, the
periodicity of the multiwalled carbon nanotubes under the
effect of an electric field, etc. A Laplace-based VIM (LVIM) is
employed to obtain a general solution of these microsystems
and hence to obtain the deflection (y) and the oscillator’s
frequency (Ω) for different scenarios as the particular cases
of the generalized problem. We match the findings of LVIM
to those yielded numerically using the fourth-order Run-
ge–Kutta method (RK4) and other established methods to
endorse its usefulness for N/MEMS.

2. Formalism

Nonlinear oscillators often hold the following equation as
follows:

€y(t) + f(y) � 0, (1)

y(0) � B,

_y(0) � 0.
(2)

Equation (1) can be written as follows:

€y +Ω2y + g(y) � 0, (3)

where g(y) � f(y) −Ω2y.
Recently, authors [22] proposed a simple way of iden-

tifying the Lagrange multiplier for the equation (1) which is
based on the Laplace transform. Let us revisit the general
methodology.

Initially, the correction functional for equation (3) is
established as follows:

yk+1(t) � yk(t) + 􏽚
t

0
λ(t − ψ) €yk(ψ) + Ω2yk(ψ) + 􏽥gk(ψ)􏽨 􏽩dψ,

k � 0, 1, 2, . . . . . . ,

(4)

where λ is the multiplier, yk depicts the kth solution, and 􏽥gk

is a restricted variation i.e., δ􏽥gk � 0. *e integration in
equation (4) is ultimately a convolution; therefore, we can
employ the Laplace transform easily. Utilizing the properties
of the Laplace transform, and then through restricted var-
iation, the Lagrange multiplier is identified as follows:

λ(t) � −
1
Ω
sin Ωt. (5)

Finally, the correction functional will get the following
form:

L yk+1(t)􏼂 􏼃 � L yk(t)􏼂 􏼃 −
1
Ω

L[sin Ωt]L €yk(t) +Ω2yk(t) + 􏽥gk(y)􏽨 􏽩.

(6)

A detail derivation about the aforementioned method of
solution can be seen in Ref. [21].

3. Applications

*is section is devoted to a general vibratory system for N/
MEMS to explain the theory described in formalism, fol-
lowed by three well-known N/MEMS as the special cases of
this general problem.

Consider the motion of microstructures represented
with a nonlinear ordinary differential equation characterized
by the general form of a group of oscillators from N/MEMS
[10–12, 14, 39, 42–44] used in nanoscience and
nanotechnology.

α0 + α1y + α2y
2

+ α3y
3

+ α4y
4

􏼐 􏼑€y + α5 + α6y

+ α7y
2

+ α8y
3

+ α9y
4

+ α10y
5

+ α11y
6

+ α12y
7

� 0,
(7)

where α0, α1, . . . , α12 are constants found in result of
transforming a multivariable differential equation to an
ordinary differential equation using Galerkin approach.
Dividing equation (7) by α0 yields
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1 + d1y + d2y
2

+ d3y
3

+ d4y
4

􏼐 􏼑€y + d5 + d6y

+ d7y
2

+ d8y
3

+ d9y
4

+ d10y
5

+ d11y
6

+ d12y
7

� 0,
(8)

where dj � αj/α0 for j � 1, 2, · · · , 12. Let us rewrite equation
(8) as follows:

€y +Ω2y + g(y) � 0, (9)

where

g(y) � d1y + d2y
2

+ d3y
3

+ d4y
4

􏼐 􏼑€y + d5 + d6 −Ω2􏼐 􏼑y

+ d7y
2

+ d8y
3

+ d9y
4

+ d10y
5

+ d11y
6

+ d12y
7
.

(10)

*e iterative formula, equation (6), can be expressed as
follows:

L yk+1(t)􏼂 􏼃 � L yk􏼂 􏼃 −
1
Ω

L[sin Ωt]L

1 + d1yk + d2y
2
k + d3y

3
k + d4y

4
k􏼐 􏼑€y + d5 + d6yk

+d7y
2
k + d8y

3
k + d9y

4
k + d10y

5
k + d11y

6
k + d12y

7
k

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦. (11)

Assuming the initial solution

y0(t) � B cos Ωt. (12)

After simple calculations, we have

L y1(t)􏼂 􏼃 � L[B cos Ωt] −
1
Ω

L[sin Ωt]L

Γ0 + Γ1 cos Ωt + Γ2 cos 2 Ωt + Γ3 cos 3 Ωt+

Γ4 cos 4 Ωt + Γ5 cos 5 Ωt + Γ6 cos 6 Ωt + Γ7 cos 7 Ωt

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦. (13)

*e following relation helps in solving the above-
mentioned equation:

L
− 1

(L[sin Ωt]L[cos κΩt]) �

1
2

t sin Ωt, κ � 1

cos Ωt − cos κΩt

Ω κ2 − 1􏼐 􏼑
, κ≠ 1

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

,

y1 � B cos Ωt +
Γ0
Ω2

(cos Ωt − 1) −
Γ1
2Ω

t sin Ωt −
Γ2
3Ω2

(cos Ωt − cos 2 Ωt)

−
Γ3
8Ω2

(cos Ωt − cos 3 Ωt) −
Γ4

15Ω2
(cos Ωt − cos 4 Ωt) −

Γ5
24Ω2

(cos Ωt − cos 5 Ωt)

−
Γ6

35Ω2
(cos Ωt − cos 6 Ωt) −

Γ7
48Ω2

(cos Ωt − cos 7 Ωt),

(14)

where the expression of coefficients Γ0, Γ1, . . . , Γ7 can be
depicted as follows:
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Γ0 � −BΩ2
d1B

2
+
3d3B

3

8
􏼠 􏼡 + d5 +

d7B
2

2
+
3d9B

4

8
+
5d11B

6

16
,

Γ1 � −BΩ2 1 +
3d2B

2

4
+
5d4B

4

8
􏼠 􏼡 + Bd6 +

3d8B
3

4
+
5d10B

5

8
+
35d12B

7

64
,

Γ2 � −BΩ2
d1B

2
+

d3B
3

2
􏼠 􏼡 +

d7B
2

2
+

d9B
4

2
+
15d11B

6

32
,

Γ3 � −BΩ2
d2B

2

4
+
5d4B

4

16
􏼠 􏼡 +

d8B
3

4
+
5d10B

5

16
+
21d12B

7

64
,

Γ4 � −BΩ2
d3B

3

8
􏼠 􏼡 +

d9B
4

8
+
3d11B

6

16
,

Γ5 � −BΩ2
d4B

4

16
􏼠 􏼡 +

d10B
5

16
+
7d12B

7

64
,

Γ6 �
d11B

6

32
,

Γ7 �
d12B

7

64
.

(15)

To ensure the periodicity requires that the coefficient of
t sin ωt equal to zero, thus

Γ1
2Ω

� 0, (16)

or

− BΩ2 1 +
3d2B

2

4
+
5d4B

4

8
􏼠 􏼡 + Bd6

+
3d8B

3

4
+
5d10B

5

8
+
35d12B

7

64
� 0,

(17)

yields

Ω �

�����������������������������
64d6 + 48d8B

2
+ 40d10B

4
+ 35d12B

6

64 + 48d2B
2

+ 40d4B
4

􏽳

, (18)

and thus the first-order approximation for the analytic
solution of the equation (7) is as follows:

yVIM � a0 + a1 + B( 􏼁cos Ωt + a2 cos 2 Ωt + a3 cos 3 Ωt

+ a4 cos 4 Ωt + a5 cos 5 Ωt + a6 cos 6 Ωt + a7 cos 7 Ωt,

(19)

where

a0 � −
Γ0
Ω2

,

a1 �
1
Ω2
Γ0 −
Γ2
3

−
Γ3
8

−
Γ4
15

−
Γ5
24

−
Γ6
35

−
Γ7
48

􏼒 􏼓,

a2 �
Γ2
3Ω2

,

a3 �
Γ3
8Ω2

,

a4 �
Γ4

15Ω2
,

a5 �
Γ5

24Ω2
,

a6 �
Γ6

35Ω2
,

a7 �
Γ7

48Ω2
.

(20)

We shall now examine the several physically relevant N/
MEMS cases considering various sets of parameter values in
equation (7).
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3.1. CASE I: Motion of Electrically Excited Microbeam.
Consider the motion of an electrically actuated model of a
microbeam [10, 12].

b0 + b1y
2

+ b2y
4

􏼐 􏼑€y + b3y + b4y
3

+ b5y
5

+ b6y
7

� 0, (21)

where the expression of coefficients b0, b1, . . . , b7 are as
follows:

b0 � 􏽚
1

0
ξ2dη,

b1 � −2􏽚
1

0
ξ4dη,

b2 � 􏽚
1

0
ξ6dη,

b3 � 􏽚
1

0
ξξ′′′′ − Nξξ′′ − V

2ξ2􏼐 􏼑dη,

b4 � 􏽚
1

0
−2ξ3ξ′′′′ + 2Nξ3ξ′′ − βξξ′′ 􏽚

1

0
ξ′2dη􏼠 􏼡dη,

b5 � 􏽚
1

0
ξ5ξ′′′′ − Nξ5ξ′′ + 2βξ3ξ′′ 􏽚

1

0
ξ′2dη􏼠 􏼡dη,

b6 � − 􏽚
1

0
βξ5ξ′′ 􏽚

1

0
ξ′2dη􏼠 􏼡dη,

(22)

where ξ(η) � 16η2(1 − η)2 is the trail function. Equation
(21) may be achieved from the generalized equation (7) by
choosing the parameters α1 � α3 � α5 � α7 � α9 � α11 � 0,

α0 � b0, α2 � b1, α4 � b2, α6 � b3, c8 � b4, c10 � b5 and
c12 � b6.

Let us rewrite equation (21) as

1 + m1y
2

+ m2y
4

􏼐 􏼑€y + m3y + m4y
3

+ m5y
5

+ m6y
7

� 0,

(23)

where the coefficients mj � bj/b0(j � 1, 2, . . . , 6). *e fre-
quency-amplitude relationship can be attained using
equation (18) by substituting aforementioned parameters as
follows:

ΩVIM �

������������������������������
64m3 + 48m4B

2
+ 40m5B

4
+ 35m6B

6

64 + 48m1B
2

+ 40m2B
4

􏽳

, (24)

which differs from the frequency calculated by the energy
balance method (EBM) [10], which is as follows:

ΩEBM �

���������������������������

4b3 + 3b4B
2

+ 7b5B
4/3 + 15b6B

6/8
4b0 + 2b1B

2
+ b2B

4

􏽶
􏽴

. (25)

*e approximate solution of equation (21) by using
equation (19) is as follows:

yVIM � B − Λ1 + Λ2 + Λ3( 􏼁􏼂 􏼃cos Ωt + Λ1 cos 3 Ωt

+ Λ2 cos 5 Ωt + Λ3 cos 7 Ωt,
(26)

where

Λ1 �
1

8Ω2
−AΩ2

m1B
2

4
+
5m2B

4

16
􏼠 􏼡 +

m4B
3

4
+
5m5B

5

16
+
21m6B

7

64
􏼢 􏼣,

Λ2 �
1

24Ω2
−AΩ2

m2B
4

16
􏼠 􏼡 +

m5B
5

16
+
7m6B

7

64
􏼢 􏼣,

Λ3 �
1

48Ω2
m6B

7

64
􏼢 􏼣.

(27)

And, the approximate analytic result by the EBM is

yEBM � B cos

���������������������������

4b3 + 3b4B
2

+ 7b5B
4/3 + 15b6B

6/8
4b0 + 2b1B

2
+ b2B

4

􏽶
􏽴

t
⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎠.

(28)

We depict the deflection of microbeam y obtained from
LVIM (solid red lines) (equation (26)) with time t for four
sets of parameter values (B, N, V, β) in the left side column of
Figure 1 with the same yield by EBM (solid black lines)
(equation (28)) and also obtained numerically by utilizing
RK4 (solid blue line). *is evaluation validates that the
findings from the LVIM and those attained by RK4 match
remarkably well.

We also graph errors in the deflection of microbeams
with respect to their values evaluated using RK4. Red circles
and black stars with dashed lines represent the errors of the
LVIM (yRK4 − yLVIM) and EBM (yRK4 − yEBM), respec-
tively, map errors against time for the similar values of
parameters in the right side column of Figure 1. All panels in
the right side column confirm that the accuracy of the so-
lution obtained by LVIM is much improved in comparison
to the solution obtained by means of EBM because the
margin of error is less in the case of LVIM. Moreover, it is
notable that the error in EBM is increasing with an increase
in amplitude, but the error in LVIM is insignificant.

*e effectiveness of the LVIM for the nonlinear analytic
frequency and the approximate solution can be seen in
Figure 2 which represents the influence of different
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Figure 1: Comparison of results obtained by LVIM and EBM with RK4 findings for electrically excited microbeam.
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parameters on the deflection of microbeams. To this end,
one of the mentioned parameters is supposed to change
while the three other ones remain constant. *e graphs in
this figure demonstrate the accuracy of the solution obtained
in equation (26) because the observations attained by the LVIM
are in good agreement with those achieved numerically using
RK4.

3.2. CASE II: Motion of Nanobeams Actuated by Van der
Waals Attractions. Consider the motion of an N/MEMS of
nanobeams induced by the Van der Waals attractions
[11, 39]. Intermolecular interactions or van der Waals force
have been used instead of electrostatic force in this mi-
crostructure for actuation. *e mathematical model can be
represented as follows:

h0 + h1y + h2y
2

+ h3y
3

􏼐 􏼑€y + h4 + h5y + h6y
2

+ h7y
3

+ h8y
4

+ h9y
5

+ h10y
6

� 0,
(29)

where the coefficients h0, h1, . . . , h10 can be written as fol-
lows and a detailed derivation of equation (29) and the
physical understanding of each coefficient are available in
Refs. [11, 39].

h0 � 􏽚
1

0
ξ2dη,

h1 � −3􏽚
1

0
ξ3dη,

h2 � 3􏽚
1

0
ξ4dη,

h3 � − 􏽚
1

0
ξ5dη,

h4 � −λ􏽚
1

0
ξ dη,

h5 � 􏽚
1

0
ξξ′′′′ − Nξξ′′( 􏼁dη,

h6 � 􏽚
1

0
−3ξ2ξ′′′′ + 3Nξ2ξ′′􏼐 􏼑dη,

h7 � 􏽚
1

0
3ξ3ξ′′′′ − 3Nξ3ξ′′􏼐 􏼑dη − β􏽚

1

0
ξξ′′dη􏽚

1

0
ξ′2dη,

h8 � 􏽚
1

0
−ξ4ξ′′′′ + Nξ4ξ′′􏼐 􏼑dη + 3β􏽚

1

0
ξ2ξ′′dη􏽚

1

0
ξ′2dη,

h9 � −3β􏽚
1

0
ξ3ξ′′dη􏽚

1

0
ξ′2dη,

h10 � β􏽚
1

0
ξ4ξ′′dη􏽚

1

0
ξ′2dη,

(30)
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Figure 2: Influence of the parameters on the deflection of electrically excited microbeam.
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where ξ(η) � sin πη is the trail function. Equation (29) is
solved for different trail function by means of the spreading
residue harmonic balance method (SRHBM) [11], which can
be attained by putting the parameters α0 � h0, α1 � h1, α2 �

h2, α3 � h3, α4 � 0, α5 � h4, α6 � h5, α7 � h6, α8 �

h7, α9 � h8, α10 � h9, α11 � h10, and α12 � 0 in the general
form of equation (7).

Equation (29) can rewrite in the following form:

1 + k1y + k2y
2

+ k3y
3

􏼐 􏼑€y + k4 + k5y + k6y
2

+ k7y
3

+ k8y
4

+ k9y
5

+ k10y
6

� 0,
(31)

where the coefficients kn � hn/h0(n � 1, 2, . . . , 10). *e
nonlinear frequency of this oscillatory system using LVIM
can be gained by placing the abovementioned parameters in
equation (18) and can be written as follows:

Ω �

�����������������
8k5 + 6k7B

2
+ 5k9B

4

8 + 6k2B
2

􏽳

, (32)

which is similar to the frequency of order first calculated
by SRHBM [11]. *e approximate analytic solution of
equation (29) is obtained by LVIM from equation (19) as
follows:

yLVIM � e0 + e1 + B( 􏼁cos Ωt + e2 cos 2 Ωt + e3 cos 3 Ωt

+ e4 cos 4 Ωt + e5 cos 5 Ωt + e6 cos 6 Ωt,

(33)

where

e0 � −
Υ0
Ω2

,

e1 �
1
Ω2
Υ0 −
Υ2
3

−
Υ3
8

−
Υ4
15

−
Υ5
24

−
Υ6
35

􏼒 􏼓,

e2 �
Υ2
3Ω2

,

e3 �
Υ3
8Ω2

,

e4 �
Υ4

15Ω2
,

e5 �
Υ5

24Ω2
,

e6 �
Υ6

35Ω2
,

(34)

where the expression of coefficients Υ0,Υ1, . . . ,Υ2 can be
identified as follows:

Υ0 � −BΩ2
k1B

2
+
3k3B

3

8
􏼠 􏼡 + k4 +

k6B
2

2
+
3k8B

4

8
+
5k10B

6

16
,

Υ1 � −BΩ2 1 +
3k2B

2

4
􏼠 􏼡 + Bk5 +

3k7B
3

4
+
5k9B

5

8
,

Υ2 � −BΩ2
k1B

2
+

k3B
3

2
􏼠 􏼡 +

k6B
2

2
+

k8B
4

2
+
15k10B

6

32
,

Υ3 � −BΩ2
k2B

2

4
􏼠 􏼡 +

k7B
3

4
+
5k9B

5

16
,

Υ4 � −BΩ2
k3B

3

8
􏼠 􏼡 +

k8B
4

8
+
3k10B

6

16
,

Υ5 �
k9B

5

16
,

Υ6 �
k10B

6

32
.

(35)
Figure 3 represents the deflection obtained analytically

from a numerical solution for the vibration of nanobeams
excited by Van der Waals attraction. We have also plotted
the variation of error for the above-mentioned system in the
corresponding bottom panels. From the top panel of Fig-
ure 3, it is seen that the approximate results were achieved
numerically using RK4 (blue line), the SRHBM [11] (black
line), and those obtained by the LVIM (red line) equation
(33) for two sets of parameters (B, N, β, λ), which reveals the
accuracy of the findings achieved by the present application
of LVIM. Errors of the SRHBM are symbolized with black
stars with solid lines, while errors of LVIM are denoted with
red circles against time for the same parameter values in the
bottom panel confirming the supremacy of LVIM over
SRHBM. Furthermore, in the top panel, a significant dif-
ference between the solutions of RK4 and SRHBM can be
observed on the trough part of the wave, but the LVIM
solution matches extremely well in that part. *e same is
observed in the error graph shown in the bottom panel.
*ese facts authenticate the great potential of the LVIM for
solving nonlinear problems over SRHBM.

Figure 4 demonstrates the effect of change in midpoint
deflection of the nanobeams due to variation in parameter
values of the model. *e LVIM results and those attained by
RK4 are almost similar which indicates that LVIM can
correctly predict the oscillatory behavior of these
microstructures.

3.3. CASE III: Motion of Multiwalled Carbon Nanotubes.
Consider the equation of motion of multiwalled carbon
nanotubes that includes both the electrostatic and Van der
Waals attraction forces for actuating [42].
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€y + ℓ0 + ℓ1y + ℓ2y
2

+ ℓ3y
3

+ ℓ4y
4

� 0, (36)

where the coefficients ℓ0, ℓ1, . . . , ℓ4 and detailed derivation of
the model equation can be found in [42]. *is vibratory
model can be achieved by substituting
α1 � α2 � α3 � α4 � α10 � α11 � α12 � 0, α0 � 1,

α5 � ℓ0, α6 � ℓ1, α7 � ℓ2, α8 � ℓ3, and α9 � ℓ4 in the
generalized equation (7).*e LVIM frequency may obtained
from equation (18) as follows:

Ω �

���������

ℓ1 +
3
4
ℓ3B

2
􏽲

. (37)

*e LVIM solution of equation (36) is as follows:

yHPLTM � Ψ0 + Ψ1 + B􏼂 􏼃cos Ωt + Ψ2 cos 2 Ωt

+ Ψ3 cos 3 Ωt + Ψ4 cos 4 Ωt,
(38)

where

Ψ0 � −
1
Ω2

ℓ0 +
ℓ2B

2

2
+
3ℓ4B

4

8
􏼢 􏼣,

Ψ1 �
1
Ω2

ℓ2B
2

3
−
ℓ3B

3

32
+
ℓ4B

4

5
􏼢 􏼣,

Ψ2 �
1

3Ω2
ℓ2B

2

2
+
ℓ4B

4

2
􏼢 􏼣,

Ψ3 �
1

8Ω2
ℓ3B

3

4
􏼢 􏼣,

(39)

and

Ψ4 �
1

15Ω2
ℓ4B

4

8
􏼢 􏼣. (40)

Both frequency and solution are similar to those given by
[42] gained by means of the iteration perturbation method
and also the same as those given by [43, 44] employing the
parameter expansion method.
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Figure 3: Comparison of results obtained by LVIM and SRHBM with RK4 findings for the nanobeams actuated by Van der Waals force.
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4. Conclusion

A vibratory equation for N/MEMS in its general form is
reduced to ordinary differential equations with nonlinear-
ities such as the motion of a microbeam actuated electrically,
the vibration of nanobeams under the effect of Van der
Waals attractions, and the motion of multiwalled carbon
nanotubes. *e variational iteration method (VIM) coupled
with the Laplace transformation is utilized to achieve the
nonlinear analytic frequency and approximate solution of
the generalized model of N/MEMS and its relevant systems
with great success. We considered some novel variational
iteration formulas where the Lagrange multiplier is iden-
tified with the help of the Laplace transform which elimi-
nates the elusive theory of variations. *e merit of the
proposed method is its simplicity (no need to do any in-
tegration) and capability to solve nonlinear models with high
accuracy. Comparative results of the Laplace-based varia-
tional iteration method, energy balance process, spreading
residual harmonic balance technique, and Runge–Kutta
scheme were given to show the efficacy of the suggested
strategy. It is concluded that the obtained results for the
generalized model enable us to examine numerous non-
linear physical N/MEMS easily in a similar way.
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