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Consider the moving target detection performance degradation of airborne multiple-input multiple-output (MIMO) radar in the
presence of inaccurate target prior information.is paper proposes a joint design method of transmit waveform and receive �lter
bank of airborneMIMO radar based on feasible point pursuit successive convex approximation (FPP-SCA). Firstly, a set of receive
�lter banks is designed in the region where the target may appear on the angle-Doppler plane, and the worst-case output signal-to-
clutter-plus-noise ratio (SCNR) is maximized as the optimization criterion. Secondly, considering the energy constraint and
similarity on the transmit waveform, the maximin joint design problem is formulated to improve the robustness of the MIMO
space-time adaptive processing (STAP) radar against the uncertainty of target parameters. Finally, an FPP-SCA algorithm is
employed to solve the maximin nonconvex joint design problem. Simulation results demonstrate the e�ectiveness of the proposed
method in terms of better output SCNR, lower computational load, and more robustness against the errors of target parameters.

1. Introduction

As the information hub of the modern battle�eld envi-
ronment, early warning aircraft can e�ectively improve the
combat e�ectiveness of the battle�eld. As the core of early
warning aircraft, airborne radar can expand the detection
range of radar to ground, ocean, and air targets [1]. However,
the airborne radar su�ers from intense ground/sea clutter
due to its down-looking mode. e clutter is strongly
coupled in the space-time domains, which leads to the weak
target signal completely submerged by the clutter and makes
it more di�cult for airborne radar to detect the moving
target [2]. Collecting the received data of the space-time
domain, space-time adaptive processing (STAP) can e�ec-
tively suppress side-lobe clutter and main-lobe clutter and
improve the detection performance of moving targets under
clutter background [3]. Nevertheless, the airborne radar is
faced with threats such as low observable targets, low-alti-
tude target, and advanced integrated electronic jamming in

the contemporary battle�eld environment. It is necessary to
develop new system airborne radar and corresponding new
theory and technology of signal processing [4].

Multiple-input multiple-output (MIMO) radar can
¡exibly transmit di�erent waveforms through di�erent
antennas [5]. Utilizing the property of waveform diversity,
MIMO radar can design di�erent transmit waveform, which
makes it superior to traditional-phased array radar in target
detection, parameter estimation, recognition, and classi�-
cation [6–10]. In addition, making full use the information
of the target and environment, the cognitive radar extends
the adaptive technology from the receiver to the transmitter
[11]. us, the cognitive radar forms a fully adaptive radar
processing system with a dynamic closed-loop receiver,
transmitter, and environment. According to the prior in-
formation of the dynamic environment database and the
environment information obtained by the radar in real time,
cognitive radar can infer and decide the optimal waveform
or the waveform parameters suitable for the current radar
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working scene. By adaptively adjusting and optimizing the
resource allocation of the radar system and the transmit
waveform, cognitive radar can obtain the optimal target
detection performance in the complex and changeable en-
vironment. Inspired by the cognitive idea and MIMO radar,
and based on the actual prior environment information, it is
possible for the airborne MIMO radar to jointly design the
transmit waveform and receive filter to realize the best
matching between the system and the environment and
improve the target detection performance in the complex
environment.

In the past decades, joint design of transmit waveform
and receive filter for airborne collocated MIMO radar system
has received considerable attention. ,ese research studies
can be divided into two categories. ,e first category deals
with the joint design of transmit-receive exploiting the ac-
curate prior information [12–19]. In [12], maximizing the
output signal-to-interference-plus-noise ratio (SINR) under
the practical waveform constraints (i.e., the energy constraint,
constant-envelope constraint, and similarity constraint), the
joint design problem is formulated in an earlier time and five
iterative algorithms based on generalized Rayleigh quotient,
relaxation and waveform extracting, and fractional pro-
gramming are proposed. In 2016, Setlur and Rangaswamy of
the US Air Force Research Laboratory studied the waveform
design problem in STAP, which assumed that the clutter
response was related to the transmit waveform [13]. Since the
objective function of the weight vector andwaveform vector is
joint nonconvex, while the objective function of a single
weight vector and waveform is convex, the constrained se-
lection minimization technology is proposed to iteratively
optimize another vector while keeping one vector unchanged.
O’Rourke Sean et al. [14] studied the joint design problem of
transmit signal and receive beamformer under the signal-
dependent STAP, and proposed a relaxed biquadratic opti-
mization method to find a feasible solution. In addition, they
extended the energy constraint on waveform to constant-
modulus and similarity constraint [15]. In [16], the minor-
ization-maximization (MM) technique is employed to solve
the resultant quartic waveform optimization problem.
Compared with the semidefinite programming (SDP)
method, the joint design algorithm based on MM technique
exhibits faster convergence speed and better SINR perfor-
mance. In [17, 18], the Riemannian geometry optimization
method is first applied to the joint design of MIMO-STAP
radar, and the Riemannian gradient descent algorithm and
the Riemannian trust region algorithms are proposed to solve
the joint design problem.

However, the performance of MIMO-STAP radar is
severely degraded when the prior information is inaccurate.
,en, the second category addresses the robust joint design
of transmit-receive in the presence of prior information
uncertainties. In [20], considering the presence of target
space-time steering vector mismatch, the worst-case output
SINR over the set of the target space-time steering vector is
maximized as a figure of merit for the robust joint design.
However, the waveform covariance matrix obtained by the
relaxation constraint of the target steering vector and the
diagonal loading technique is still suboptimal. To solve this

problem, Tang Bo et al. [21] used a more general uncertainty
set to describe the steering vector error, and then accurately
derived the worst target steering vector that minimizes the
output SINR.,is method abandoned the heuristic diagonal
loading method to find the globally optimal waveform co-
variance matrix which is robust to the target steering vector
error. In [22], considering the uncertainty of target Doppler
frequency and angle, the joint design of MIMO-STAP radar
with peak-to-average power ratio (PAPR) and transmit
power constraints is studied. However, this method has high
computational complexity, and only three independent
interference is considered in the simulation scene. In [23],
based on the known target Doppler frequency and spatial
angle statistical distribution, the averaged output signal-to-
clutter-plus-noise ratio (SCNR) is deduced as the optimi-
zation criterion, and four robust joint design methods-based
SDP relaxation and fractional programming with power
method-like are proposed. In [24], the maximin joint design
of transmit waveform and receive filter bank under the
energy constraint, flexible modulus constraint, and simi-
larity constraint are considered. In [25], with the prior
knowledge of target and clutter statistics, the averaged SINR
is formulated as a figure of merit to maximize. ,en, an
iterative algorithm based on Dinkelbach transformation and
alternating direction penalty method (ADPM) is proposed
to solve the robust joint design problem.

In this paper, focusing on the joint design problem of
transmit waveform and receive filter bank of airborne MIMO
radar when the target angle and Doppler parameters are
inaccurate, a set of filters that are matched with the target
possible region is designed. ,e worst-case output SCNR is
maximized as a figure of merit under the constant-modulus
constraint and similarity constraint on the transmit wave-
form. ,en, the joint design problem is formulated by
maximizing the worst-case SCNR, and a sequential optimi-
zation algorithm based on feasible point pursuit successive
convex approximation (FPP-SCA) is developed to solve the
resultant problem. Simulation results are provided to dem-
onstrate the performance of the proposed algorithm. ,e
main contributions of the paper are summarized as follows:
(1) By employing a set of receive filter tuned over the possible
spatial angle and Doppler frequency of target, the objective
function of joint design is obtained by maximizing the worst-
case output SCNR. (2) A sequential optimization algorithm
based on FPP-SCA is derived to solve the robust joint design
problem. Specifically, an auxiliary variable is introduced to
transform the maximin problem into a minimization prob-
lem. ,en, the nonconvex constant-modulus constraint is
solved by utilizing the SCA method. ,us, the waveform
optimization problem can be addressed by using the CVX
tool box. (3) Several simulation results indicate that the
proposed joint design algorithm performs better than the
algorithm based on SDP and randomization method in terms
of better output SCNR and lower computational time. In
addition, the performance of the proposed joint design
method is against the target parameters errors.

,e remainder of this paper is organized as follows: In
Section 2, the signal model of MIMO-STAP radar is pro-
vided. ,e problem formulation and the robust joint design
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problem are discussed in Section 3. ,e sequential opti-
mization algorithm based on FPP-SCA is presented in
Section 4. Simulation results are provided in Section 5 to
demonstrate the performance of the proposed algorithm.
Finally, conclusions are drawn in Section 6.

2. Signal Model

We consider an airborne collocated MIMO radar system
with NT transmit antennas and NR receive antennas, as
shown in Figure 1. ,e transmit antenna and receive an-
tenna are uniform linear array (ULA) with interelement
spacing being dT and dR, respectively.,e radar transmitsM

pulses during a coherent processing interval (CPI) with the
pulse repetition frequency (PRF) fr. ,e radar platform is
flying along the X-axis at velocity Vp. Assuming that
sn ∈ CL×1 represents the sampled waveform emitted by the
nth transmit antenna, then the transmit waveform matrix of
the radar system can be expressed as S � [s1,
s2, . . . , sNT

]T ∈ CNT×L, where L represents the number
samples of a pulse and each pulse emits the same waveform.

2.1. Target. Assuming that the spatial angle of the moving
target relative to the platform is ϕt and the normalized
Doppler frequency is ft, then the target echo of the mth
pulse received by the airborneMIMO radar can be expressed
as

yt,m � αte
j2π(m− 1)ft IL ⊗ b ϕt( aT ϕt(   s, (1)

where αt represents the target complex amplitude, IL is the
L × L identity matrix, ⊗ is the Kronecker product, (·)T

stands for the transpose operation, s � vec(S), a(ϕt) and
b(ϕt) represent the transmit spatial steering vector and
receive steering vector of target, respectively, and they have
the form of

a ϕt(  � 1, e
j2πdT cos ϕt( )/λ( ), . . . , e

j2π NT− 1( )dT cos ϕt( )/λ( ) 
T

,

(2)

b ϕt(  � 1, e
j2πdR cos ϕt( )/λ( ), . . . , e

j2π NR− 1( )dR cos ϕt( )/λ( ) 
T

,

(3)

where λ denotes the wavelength of the system.
Let yt � [yT

t,1, . . . , yT
t,M]T ∈ CLMNR×1, then the received

target echo of a CPI can be expressed as

yt � αtV ft,ϕt( s, (4)

where V(ft, ϕt) � (u(ft)⊗ IL ⊗ (b(ϕt)aT(ϕt))), and
u(ft) � [1, ej2πft , . . . , ej2π(M− 1)ft ]T represents the time
steering vector of target.

2.2. Clutter. ,e clutter of airborne MIMO radar system is
the signal-dependent clutter echo, which is distributed in the
whole azimuth domain and range domain. Clutter echo
received by a single range bin consists of all clutter patches of

the range bin.,en, the clutter echo received by the airborne
MIMO radar can be expressed as

yc � 
P

p�− P



Nc

k�1
αc,p,kV fc,p,k, ϕc,p,k s, (5)

Where P denotes the number of range bin around the range
under test, αc,p,k, fc,p,k, and ϕc,p,k represent the complex
amplitude, normalized Doppler frequency, and spatial angle
of the kth clutter patch in the pth range bin, respectively,
fc,p,k � 2Vp cos(ϕc,p,k)/(λfr), Nc is the clutter patch
number in a range bin. V(fc,p,k, ϕc,p,k) �

(u(fc,p,k)⊗ JT
P ⊗ (b(ϕc,p,k)aT(ϕc,p,k))), let Vc,p,k denote

V(fc,p,k, ϕc,p,k) for convenience, where Jp � JT
− p ∈ C

L×L de-
notes the shift matrix, which is calculated by

Jp(i, j) �
1, i − j + p � 0,

0, i − j + p≠ 0.
 (6)

Total received echo: therefore, the echo received by the
airborne radar containing the target (which may exist),
signal-dependent clutter, and noise can be expressed as

y � yt + yc + yn, (7)

where yn denotes the complex Gaussian white noise whose
mean value is zero and covariance matrix is σ2nILMNR

, where
σ2n is noise power.

3. Problem Formulation

Considering that the accurate normalized Doppler fre-
quency and spatial angle of the target are unknown, it is
assumed that the approximate region of the target in the
angle-Doppler plane can be known through spatial angle
estimation and Doppler frequency estimation, as shown in
cyan area in Figure 2. ,e normalized Doppler frequency
and spatial angle range of the target can be expressed as Ψ �

[ftmin, ftmax](ft ∈ Ψ) and Ω � [ϕtmin,ϕtmax](ϕt ∈ Ω), re-
spectively, and are then discretized into I and J grid points,

X

Y

Z

O

target

dR

dT

Vp

θt
φt

ϕt

: transmit antenna
: receive antenna

Figure 1: Configuration of airborne MIMO radar.
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respectively. ,en, we can obtain the discretized normalized
Doppler frequency-spatial angle pair, that is,
(f

n1
t , ϕn2

t ), n1 ∈ I � 1, . . . , I{ }, n2 ∈ J � 1, . . . , J{ }. Next, a
set of LMNR × 1 filterswn1 ,n2

∈W � wn1 ,n2
|n1 ∈ I, n2 ∈ J 

is used to process the received signal, and each received filter
is tuned to a specific normalized Doppler frequency-spatial
angle pair of targets (f

n1
t , θn2

t ). ,erefore, the output SCNR
corresponding to the (n1, n2) th filter branch can be
expressed as

SCNRn1,n2
s,wn1 ,n2

  �
σ2t w

H
n1 ,n2

V f
n1
t , ϕn2

t( s



2

wH
n1 ,n2

Rcn(s)wn1 ,n2

, (8)

where σ2t � E |αt|
2 , E(·) denotes the statistical expectation,

(·)H denotes the conjugate transpose operation, Rcn(s) is the
clutter plus noise covariance matrix, which can be expressed
as

Rcn(s) � 
P

p�− P



Nc

k�1
σ2c,p,kVc,p,kss

HVH
c,p,k + σ2nILMNR

. (9)

Assumed that the prior information of clutter (including
σ2c,p,k, fc,p,k and ϕc,p,k) is known, which can be obtained from
the terrain database. ,erefore, maximizing the worst-case
output SCNR over all possible normalized Doppler fre-
quencies and spatial angles of the target, we can obtain the
optimization of the joint design to deal with the uncertainty
of the target parameters. Concretely, the joint design of
transmit waveform and receive filter bank for airborne
MIMO radar in the presence of target uncertainty can be
formulated as

SCNR s,wn1 ,n2
 ≜ min

n1∈I,n2∈J
SCNRn1 ,n2

s,wn1 ,n2
 . (10)

In practical radar system, constant-modulus constraint
is applied to the transmit waveform to prevent overloading
of the amplifier, i.e., |s(n)| � 1/

����
NTL


, n � 1, . . . , NTL. At

the same time, in order to obtain the good characteristics for
the transmit waveform, for example, good ambiguity
function, it is necessary to impose similarity constraints on
the transmit waveform, namely, ‖s − s0‖∞≤ δ, where, ‖ · ‖∞
represents the infinite norm of a matrix, δ is used to control
the similarity between the optimized waveform and the
reference waveform s0 (‖s0‖

2 � 1), and ‖ · ‖ represents the
Euclidean norm of a matrix.

Considering the constant-modulus constraint and
similarity constraint of the transmit waveform, the joint
design problem of transmit waveform and receive filter bank
of airborne MIMO radar based on maximizing the worst-
case output SCNR can be expressed as

max
s,wn1 ,n2∈W

SCNRn1 ,n2
s,wn1,n2

 ,

s.t.
|s(n)| �

1
����
NTL

 , n � 1, . . . , NTL,

s − s0
����

����∞≤ δ,

(11)

,e problem (11) is NP hard owing to the nonconvex
objective function and the nonconvex waveform constraints.
In the next section, we proposed a sequential algorithm to
address the problem (11).

4. Joint Design Method Based on FFP-SCA

In this section, a sequential algorithm based on FPP-SCA is
proposed to solve the maximin problem (11), which can
obtain monotonically increasing worst-case output SCNR
during the iterative procedure. Specifically, the transmit
waveform s is first fixed, and the receive filter banks
wn1 ,n2
∈W are optimized by maximizing SCNR(s,wn1 ,n2

).
,en, the receive filter banks wn1 ,n2

∈W are fixed and the
transmit waveform s is optimized.

4.1.ReceiveFilterBankOptimization. At the ith iteration, the
optimization of the receive filter bank wn1 ,n2

∈W can be
expressed as

max
wn1 ,n2∈W

wH
n1 ,n2

V f
n1
t , ϕn2

t( s(i− 1)



2

wH
n1 ,n2

Rcn s(i− 1)
 wn1 ,n2

. (12)

,e optimization problem (12) has IJ independent
objective functions corresponding to wn1,n2

. ,erefore, the
problem (12) can be transformed into optimization of each
wn1 ,n2

, and the closed solution of wn1 ,n2
can be obtained by

w(i)
n1 ,n2

�
R− 1
cn s(i− 1)

 V f
n1
t , θn2

t( s(i− 1)

s(i− 1)
 

H
VH

f
n1
t , θn2

t( R− 1
cn s(i− 1)

 V f
n1
t , θn2

t( s(i− 1)
.

(13)
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Figure 2: Possible region of target in angle-doppler plane.
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4.2. Transmit Waveform Optimization Based on FPP-SCA.
With a fixed receive filter bank wn1 ,n2

, the optimization of the
transmit waveform s can be expressed as

max
s

min
n1∈I,n2∈J

w(i)
n1 ,n2

 
H
V f

n1
t , ϕn2

t( s




2

w(i)
n1 ,n2

 
H
Rcn s(i− 1)

 w(i)
n1 ,n2

,

s.t.
|s(n)| �

1
����
NTL

 , n � 1, · · · , NTL,

s − s0
����

����∞≤ δ.

(14)

Substituting (13) into the objective function of problem
(14), and after some mathematical deduction, the problem
(14) can be transformed into

max
s

min
n1∈I,n2∈J

sHVH
f

n1
t , ϕn2

t( R− 1
cn s(i− 1)

 V f
n1
t , θn2

t( s,

s.t.
|s(n)| � 1/

����
NTL


, n � 1, · · · , NTL,

s − s0
����

����∞≤ δ.

(15)

Problem (15) is a nonconvex maximin problem, and it is
difficult to find the optimal waveform in the polynomial
time. A computationally efficient algorithm is derived to
solve this problem. By introducing an auxiliary variable t, the
maximin problem (15) can be transformed as

min
s,t

− t,

s.t.

(1), sHQn1 ,n2 s(i− 1)
 s≥ t, n1 ∈ I, n2 ∈ J,

(2), |s(n)| �
1

����
NTL

 , n � 1, · · · , NTL,

(3), s − s0
����

����∞≤ δ.

(16)

where

Qn1 ,n2 s(i− 1)
  � VH

f
n1
t ,ϕn2

t( R− 1
cn s(i− 1)

 V f
n1
t , θn2

t( . (17)

,e objective function of problem (16) is convex, but the
constraints are nonconvex. ,en, the SCA technique is
employed to deal with the nonconvex waveform constrains.

For the first constraint (1) in problem (16), since
Qn1 ,n2(s(i− 1)) is a semidefinite matrix, for any feasible

solution sf ∈ CNTL×1 of problem (14), the following in-
equality holds:

s − sf 
H
Qn1 ,n2 s(i− 1)

  s − sf ≥ 0. (18)

Expanding the left side of (18), we can obtain

sHQn1 ,n2 s(i− 1)
 s≥ 2Re sHQn1 ,n2 s(i− 1)

 sf  − sH
f Q

n1 ,n2 s(i− 1)
 sf.

(19)

Substituting inequality (19) into the first constraint of
problem (16), we have

sH
f Q

n1 ,n2 s(i− 1)
 sf − 2Re sHQn1 ,n2 s(i− 1)

 sf 

+ t≤ 0, n1 ∈ I, n2 ∈ J.
(20)

For the second constraint (2) in problem (16), it can be
expressed as the intersection of |s(n)|2 − 1/NTL≤ 0 and
1/NTL − |s(n)|2 ≤ 0. ,e former is convex while the latter is
nonconvex. ,en, the first order condition of convex
function is used to approximate the lower bound of |s(n)|2

|s(n)|
2 ≥ sf(n)




2

+ Re
z|s(n)|2

zs(n)
|sf(n) 

∗

s(n) − sf(n)  

� sf(n)



2

+ Re 2s∗f(n) s(n) − sf(n)  .

(21)

,us, the constraint 1/NTL − |s(n)|2 ≤ 0 can be ap-
proximately expressed as
1

NTL
− |s(n)|

2 ≤
1

NTL
− sf(n)




2

− Re 2s∗f(n)s(n) − 2 sf(n)



2

 ≤ 0.

(22)

After some mathematical transformation, the second
constraint (2) can be formulated as

1
NTL

− 2Re s∗f(n)s(n)  + sf(n)



2
≤ 0. (23)

Expanding the third constraint (3) in problem (16), it can
be expressed as NTL independent quadratic constraints, that
is,

s(n) − s0(n)



2 ≤ δ2, n � 1, . . . , NTL. (24)

,erefore, by replacing the nonconvex constraints of
problem (16) with convex approximate representations (20),
(23), and (24), the convex approximate representation of
problem (16) can be obtained

Mathematical Problems in Engineering 5



min
s,t

− t,

s.t.

sH
f Q

n1 ,n2 s(i− 1)
 sf − 2Re sHQn1 ,n2 s(i− 1)

 sf  + t≤ 0, n1 ∈ I, n2 ∈ J,

|s(n)|
2

−
1

NTL
≤ 0, ∀n,

1
NTL

− 2Re s∗f(n)s(n)  + sf(n)



2
≤ 0, ∀n,

s(n) − s0(n)



2 ≤ δ2, ∀n.

(25)

However, since there is only one intersection of |s(n)|2 −

1/NTL≤ 0 and 1/NTL − 2Re s∗f(n)s(n)  + |sf(n)|2 ≤ 0,
problem (25) has only a single feasible solution. Inspired by
the iterative optimization algorithm and FPP algorithm

[26–28], a nonnegative auxiliary variable was introduced to
the third constraint of problem (25) and ‖u‖1 is added to the
objective function at the same time. At the ith iteration,
problem (25) could be transformed into

min
s,t,u

− t + ρ‖u‖1 + κ s − s(i− 1)
�����

�����
2

s.t.

s(i− 1)
 

H
Qn1 ,n2 s(i− 1)

 s(i− 1)
− 2Re sHQn1 ,n2 s(i− 1)

 s(i− 1)
  + t≤ 0, n1 ∈ I, n2 ∈ J,

|s(n)|
2

−
1

NTL
≤ 0, ∀n,

1
NTL

− 2Re s(i− 1)
(n) 
∗
s(n)  + s(i− 1)

(n)



2

− u(n)≤ 0, ∀n,

s(n) − s0(n)



2 ≤ δ2, ∀n,

u(n)≥ 0, ∀n,

t≥ t
(i− 1)

,

(26)

where ρ and κ represent the positive penalty parameters.
Supposing (s(i), t(i)) is the solution of the problem (26) at the
ith iteration, and then the solution of the original problem
(15) (or problem (16)) can be obtained by solving the op-
timization problem iteratively. It is worth noting that the
norm ‖s − s(i− 1)‖2 is added to the objective function to
ensure that a unique specific solution can be obtained when
the problem (26) converges.,e constraint t≥ t(i− 1) is added
to ensure that the algorithm obtains increasing solutions
during the iteration. ,e question (26) belongs to the
quadratically constrained quadratic programming (QCQP)
problem, and it can be solved by transforming into second-
order cone programming (SOCP). ,e interior point
method (convex optimization tool kit [29]) is applied to
obtain the optimal solution, whose computational com-
plexity is O((NTL)3). ,e whole solution of transmit
waveform is completed within the framework of the FPP-

SCA algorithm, so it is called the transmit waveform opti-
mization algorithm based on FPP-SCA.

4.3. Joint Design Method for Airborne MIMO Radar Based on
FPP-SCA. ,e proposed joint design method based on FPP-
SCA to solve problem (11) is summarized in Algorithm 1.
,e main computational complexity of the proposed
method is dependent on the number of iterations and the
computational complexity per iteration. In each iteration,
the optimization of wn1,n2

∈W for fixed s involves
O((LMNR)3) complexity. ,e optimization of s for a given
wn1 ,n2
∈W has a complexity of O((NTL)3). ,e robust joint

design method based on SDP and randomization (SDP-R)
[30] can also address the problem (11), whose optimal
waveform is obtained by interior point method involving
O((NTL)4.5) complexity. It is seen that the computational
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complexity of the proposed joint design method is lower
than that based on SDP-R.

Remark 1. ,e objective function SCNR(s(i),w(i)
n1,n2

) ob-
tained by the joint design method based on FPP-SCA
monotonically increases and converges to a specific value.

It is seen from (26) that the optimized value satisfies
t(i) ≥ t(i− 1). ,us, we have

SCNR s(i− 1)
,w(i− 1)

n1 ,n2
  � min

n1∈I,n2∈J
s(i− 1)

 
H
VH

f
n1
t , ϕn2

t( Φ− 1
cn s(i− 1)

 V f
n1
t , θn2

t( s(i− 1)

≤ min
n1∈I,n2∈J

s(i)
 

H
VH

f
n1
t ,ϕn2

t( Φ− 1
cn s(i− 1)

 V f
n1
t , θn2

t( s(i)

� SCNR s(i)
,w(i− 1)

n1 ,n2
 .

(27)

5. Simulation Results

In this section, simulation results are implemented to val-
idate the effectiveness of the proposed FPP-SCA based joint
design method. ,e simulation scenario is set as follows:
consider an airborne collocated MIMO radar with the
transmit antenna and receive antenna being ULA, the
number of transmit array is NT � 4, the number of receive
array is NR � 4, the interelement spacing of the transmit
antenna and receive antenna is dT � dR � λ/2, the pulse
number within the coherent processing interval is M � 4,
the PRF is fr � 2000, and the sampling number of single
pulse is L � 8. ,e platform altitude is 8000m and the flight
speed is Vp � 140 m/s. We consider the clutter of five range
bin (P � 2) is received, the number of clutter patches of a
single range bin is Nc � 181, and the clutter power is
σ2c,p,k � R0/Rp, p � − P, · · · , P, k � 1, · · · , Nc, where R0 and
Rp, respectively, represent the distance from the range under
test and the pth range bin to the platform.,e noise power is
0 dB. ,e real position of the target on the space-time two-
dimensional plane is (0.2, -0.2), the target uncertainty set is
Ψ � [0.1, 0.3] and Ω � [− 0.3, − 0.1], and the uniform sam-
pling step is 0.02. ,en, the number of sampling points of
normalized Doppler frequency and normalized spatial fre-
quency are 11, thus forming 121 groups of normalized
Doppler frequency-spatial frequency pairs, and 121 groups
of receive filters are required to process the received signals.
,e SNR is 20 dB. ,e orthogonal linear frequency modu-
lation waveform is used as the reference waveform, i.e,

S0 nt, l(  �
exp j2πnt(l − 1)/L exp jπ(l − 1)

2/L 
����
NTL

 , (28)

where nt � 1, · · · , NT, l � 1, · · · , L, and s0 � vec(S0). ,e
parameters of FPP-SCA are set as follows: ρ � 1, η � 10− 4,
and κ � 10− 5. ,e comparison algorithm is the robust joint
design method based on SDP-R [30]. ,e iteration termi-
nation condition of SDP-R is 10− 4 and the number of
random trials of SDP-R is 1000. ,e simulation experiment
platform is notebook (I7–9750U CPU and 32GB RAM)
Matlab 2016b.

Figure 3 shows the worst-case output SCNR versus the
number of iterations. ,e similarity parameters are c � 0.4,

c � 1, and c � 2, respectively, where c � δ
����
NTL


. As can be

seen from Figure 3, the worst-case output SCNR obtained by
both FPP-SCA and SDP-R gradually increases with the
increase of iterations. In addition, it is seen that all the worst-
SCNR curves obtained by the proposed FPP-SCA remain
unchanged when the number of iterations is greater than 5.
,is shows that the proposed algorithm is convergent. When
the similarity parameter increases, the worst-case output
SCNR of FPP-SCA and SDP-R also increases. It is worth
noting that, when c � 0.4, 1, and 2, the c � 0.4 worst output
SCNR obtained by the proposed FPP-SCA is significantly
better than that obtained by SDP-R. For example, FPP-SCA
is about 5.27 dB higher than SDP-R when c � 2.

Table 1 provides the iteration number and runtime
comparison of FPP-SCA and SDP-R, where c � 0.4 ,1, and 2.
As can be seen from Table 1, the total runtime of SDP-R is
apparently larger than FPP-SCA for all c. In addition, when
c � 0.4, 1, and 2, the running time change of FPP-SCA and
SDP-R in a single iteration is relatively small. In particular,
the running time of FPP-SCA and SDP-R in a single iter-
ation is the largest when c � 0.4 while the smallest when
c � 1. For fixed c, the running time of a single iteration of
FPP-SCA is significantly smaller than SDP-R. In fact, SDP-R
method involves the solution of two SDP problems, and we
can obtain from [30] that the computational complexity is
O((LMNR)4.5) and O((LNT)4.5), respectively. ,us, the
total computational complexity of the SDP-R method is
O(I((LMNR)4.5 + t(LNT)4.5)), where I denotes the number
of iterations. Contrarily, the total computational complexity
of FPP-SCA is O(I((LMNR)3 + t(LNT)3)), which is much
smaller than that of SDP-R. In addition, the more con-
straints exist, the longer the running time of the SDP-R
algorithm. For example, 121 groups of receive filters are set
in this paper, and the number of constraints including re-
ceive filters is 121. ,us, the computational load is much
heavy, which leads to a much longer running time required
for a single iteration.

Figure 4 depicts the worst-case output SCNR versus the
target uncertainty value, where the target normalized
Doppler frequency error and the target spatial frequency
error both increase from 0 to 0.2. In addition, the FPP-SCA-
ROB represents “robust design,” where the worst-case
output SCNR is obtained by the proposed FPP-SCA iterative
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algorithm (where the number of receive filters is set as 121),
while FPP-SCA-NROB denotes the “nonrobust design,”
where the output SCNR is obtained by the presumed target
position (where the number of receive filters is set as 1). We
can see that the output SCNR curves obtained by FPP-SCA-
ROB and FPP-SCA-NROB all utilize the FPP-SCA iterative
algorithm, where the difference between them lies in the
number of receive filter bank. ,e more the number of
receive filters, the stronger the robustness of the algorithm.
,e FPP-SCA-NROB is not robust against the target un-
certainty value since the number of filter banks is set as 1. As
can be seen from Figure 4, the worst-case output SCNR of
FPP-SCA-NROB is a little better than FPP-SCA-ROB when
the target uncertainty value is small. ,e reason is that more
degree of freedom of the system is utilized to deal with the
target uncertainty. It is seen that the worst-case output

SCNR of FPP-SCA-ROB is higher than that of FPP-SCA-
NROB when the target uncertainty value is larger than 0.08.
Furthermore, the larger the value of target uncertainty value
is, the more worst-case output SCNR of FPP-SCA-NROB
decreases, while FPP-SCA-ROB decreases slowly. ,e
simulation results demonstrate that the proposed FPP-SCA-
ROB is robust to the target uncertainty parameters.

Figure 5 shows the worst-case output SCNR versus the
target position, where the target normalized Doppler fre-
quency ranges from 0 to 0.4, the target normalized spatial
frequency ranges from − 0.4 to 0, and the real position of the
target is (0.2, − 0.2). As can be seen from Figure 5, when the
target is near the actual target location, the worst-case output
SCNR of FPP-SCA-NROB is superior to that of FPP-SCA-
ROB. However, when the target is far from the real location,
the worst-case output SCNR of FPP-SCA-NROB is

Input: V(f
n1
t , ϕn2

t ), n1 ∈ I, n2 ∈ J, Rcn(s) , w(0)
n1 ,n2
∈W , s(0) , η

Output: ,e optimal solution to problem (11) (s∗,w∗n1 ,n2
∈W).

Iteration:
Step 1: i � 1.
Step 2: Calculate Rcn(s(i− 1)) with (9) and s(i− 1), compute w(i)

n1 ,n2
∈W with (13).

Step 3: Obtain the optimal waveform s(i) by solving problem (26) with FPP-SCA algorithm.
Step 4: If |SCNR(s(i), tw(i)

n1 ,n2
) − SCNR(s(i− 1), tw(i− 1)

n1 ,n2
)|≤ η, stop the iteration, otherwise, go step 2.

Step 5: Output s∗ � s(i) and w∗n1 ,n2
� w(i)

n1 ,n2
.

ALGORITHM 1: Joint design method based on FPP-SCA to solve (11).
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Figure 3: Worst-case output SCNR versus the iteration number.

Table 1: Iteration number and runtime comparison of different algorithm.

Algorithm Total runtime (s) Iteration number Average runtime (s)
SDP-R (c � 0.4) 494.82 3 164.94
SDP-R (c � 1) 430.83 3 143.61
SDP-R (c � 2) 438.81 3 146.27
FPP-SCA (c � 0.4) 27.72 14 1.98
FPP-SCA (c � 1) 31.96 17 1.88
FPP-SCA (c � 2) 28.65 15 1.91

8 Mathematical Problems in Engineering



significantly reduced, while the worst-case output SCNR of
FPP-SCA-ROB remains relatively high value. ,is is con-
sistent with the conclusion obtained in Figure 4. In addition,
it can be observed from Figure 5 that when the target po-
sition tends to (0, 0), the worst-case output SCNR of both
FPP-SCA-NROB and FPP-SCA-ROB decreases dramati-
cally. ,e reason is that the point (0, 0) is the location of
clutter, and the worst-case output SCNR forms a deep notch
near the clutter ridge.

6. Conclusion

In order to improve the target detection performance of air-
borne MIMO radar when the target parameters have errors, a
joint design method for transmit-receive of airborne MIMO
radar based on FPP-SCA iteration is proposed in this paper. By
designing a set of receive filters in the region where the target
might appear, we can solve the SCNR degradation caused by

the uncertain target parameters. Considering the constant-
modulus constraint and similarity constraint of the transmit
waveform, an FPP-SCA algorithm was designed to obtain the
optimal waveform. Simulation results show that: (1) compared
with the traditional joint design method based on SDP and
randomization, the proposed method avoids the use of ran-
domization to find the optimal waveform. In addition, we
observe that for different similarity parameters c, apparent
worst-case output SCNR improvement is obtained by the
proposed method with relatively small computational load. (2)
,e achieved worst-case SCNR becomes worse when the
inaccuracy on the target parameters increases. Nevertheless,
adopting more receive filters can provide a better robustness
against these uncertainties than only one receive filter.

However, it should be mentioned that the number of
receive filters is large in this work. In fact, the larger the
number of receive filters, the greater the computational
burden of the algorithm. ,e interval model, ball model,
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Figure 5: Worst-case output SCNR versus the target position.
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ellipsoidal model, and norm model are good choice to
describe the target uncertain parameters [31]. Besides, the
spectral constraint on the transmit waveform is considered
to ensure the spectrum coexistence with other communi-
cation systems [32–34]. ,us, all these directions are pur-
sued in the future research.
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