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Little is known in the literature about the concept of nonuniform heat source/sink and higher-order chemical reaction for the
dynamics of Oldroyd-B nanoparticles. �erefore, the present article addresses the nonuniform heat source/sink and higher-order
chemical reaction features in nonlinear mixed convection bidirectional MHD dynamics of Oldroyd-B nanoparticles with thermal
radiation aspects through porous space. Strati�cation e�ects for both the temperature and concentration setups are also used in
the mathematical model with the signi�cance of random movement and thermodi�usion of nanoparticles. Shape-preserving
transformations have been employed to convert the transport equations into solvable forms. An innovative analytical tactic,
namely, homotopy analysis method, has been adopted to �nd the solution of the modeled problem. Behaviors of pertinent
parameters on thermal and concentration pro�les have been discussed through various graphs. Inspection of heat/mass transport
against appropriate varieties of pertinent parameters has been made and explained physically. �ermal pro�le is augmented with
the higher estimations of space and temperature-dependent heat source/sink links. Concentration pro�le is diminished with the
augmentation of higher-order chemical reaction parameter. Sherwood number is improved with the estimation of 0≤ βt ≤ 100 and
is reduced with the growth of 0≤ βc ≤ 100. Nusselt number is declined with the upgraded amounts of 0≤Nb ≤ 3 and 0≤Nt ≤ 5.

1. Introduction

Rheology of non-Newtonian �uids is based on their mul-
tiphase nature, and they have got great importance on ac-
count of their wide spread involvement in industrial and
technological applications. Shear-thinning, shear thicken-
ing, and viscoelasticity are the main characteristics of non-
Newtonian liquids. �ese characteristics are described by
nonlinear relationship between shear force and shearing
deformation. Several models of non-Newtonian materials
have been suggested, like Maxwell, Je�ery, and Oldroyd-B
models. An Oldroyd-B model is a rate type non-Newtonian
material having relaxation and retardation time e�ects.

�ermal energy has a signi�cant role in almost every
�eld of science, engineering, industries, biomedicine, plant
processing, transports, power houses, generating stations,
and many others. �e e�ectiveness of all the above cited
applications is greatly dependent upon thermal conductivity
of the �uids involved in the heat interchanging processes.
Many �uids like water, ethylene, and oil bear the restrictions
in applications due to low thermal conductivity. Hence,
nanoparticles of average size of about 1–100 nm are inserted
into the base �uid to augment the thermophysical and
concentration circumstances of the �uid, and the obtained
colloidal suspension is regarded as nano�uid. �e novel
attributes of nano�uids make them positively functional in
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the numerous applications of heat transference along with
microelectronics, energy cells, and domiciliary refrigeration
and heating equipment, in disintegrating and cracking units,
machining, hybrid powered engines, medications, and heat
exchange units. Choi and Eastman [1] firstly proposed the
term nanofluid through a permeable prolonging sheet along
with consumption/injection. 2en, Xuan and Li [2] ex-
tended the concept of nanofluids by proposing that fluids
with solidified particles of metalloid and polymeric origin in
a base fluid can also be termed as nanofluids. Buongiorno [3]
formulated amathematical tool for the analysis of convective
transference in nanofluids with the consideration of
Brownian movement and thermal diffusion properties.
Copper, titanium, silicon, aluminum, zinc, magnesium, and
graphene oxide are the best well-known particulates used for
the development of nanofluids, while water, oil, glycol, and
ethylene are the most regular working liquids.

Boundary-layer flows through stretching surfaces have
been considered in studies because of their countless
applications from household practices to aerospace such
as in industries, irrigation waterways, environmental
production, aerodynamics, sports, enhancement of heat
transference, enhancement of mixing, transport of spe-
cies, formation of rubber and plastic sheets, and fiber glass
manufacturing. Boundary-layer flow produced by con-
tinuous elongation of obstacle was primarily studied by
Sakiadis [4]. Crane [5] introduced the development of
boundary-layer stream through stretching of surface and
found exact solutions for the flow field. 2e bidirectional
flow caused as a result of linearly plane bidirectional
stretching of sheet was studied by Wang [6]. Ariel [7]
deduced approximate analytical and numerical solutions
of bidirectional steady flow over an elongating sheet. Sajid
and Hayat [8] premeditated the aspects of thermal de-
position and heat transportation in the boundary-layer
dynamics of a viscid fluid influenced by an exponential
elongation of obstacle. An analysis of the motion of a
nanofluid produced by stretching of surface using con-
nective model was developed by Khan and Pop [9].

Bhattacharyya and Layek [10] investigated the effects of
chemically receptive solute convergence in magnetohydro-
dynamic boundary-layer stream. Ahmad et al. [11] con-
tinued the work accomplished by Liu and Anderson [12] by
estimating the Darcy resistance impact and applied magnetic
field. Stratification is a predominant phenomenon which has
gained remarkable consideration because of its inclusion in
the geophysical flows such as waterways, within lakes,
oceans, ground-water supplies, warm energy stockpiling
frameworks, and so on. A lot of researchers experimented
with stratification with different effects. Ibrahim and
Makinde [13] considered the doubly stratified boundary-
regime flow of nanomaterials through an upright plate.
Loganathan et al. [14] inspected the effect of second-order
slip in a convective dynamic of an Oldroyd-B material with
the aspects of chemical reaction and thermal radiation.
Sandeep and Reddy [15] studied magnetohydrodynamic
(MHD) flow having double stratified and cross diffusion
aspects for an Oldroyd-B fluid. Waqas et al. [16] described
the features of mixed convection progression of an

Oldroyd-B nanomaterial via accumulating the impact of
heat creation as well as heat/mass stratification.

2e notion of heat production/consumption is convenient
in many practices including heat disposal of atomic fuel
wreckage, underground removal of radiative garbage sub-
stances, food storages, and disconnecting materials in packed
bed reactors. In this way, nanocomposites have a capacity to
assemble incident radiation. Turkyilmazoglu and Pop [17]
explored the concurrent effects of heat andmass transport with
thermal radiation through an unsteady nanomaterial pro-
gression. Rashidi et al. [18] analyzed the effect of second law of
thermodynamics in magnetohydrodynamic dynamics of
nanoliquid over a revolving disk. Moradi et al. [19] performed
an analysis to check the effects of nanoparticles in Jeffer-
y–Hamel flow. Makinde et al. [20] analyzed the buoyancy-
driven dynamics of nanoliquid near a stagnated domain with
connective boundary conditions. Mahanthesh et al. [21]
worked toward approximate solution for the dynamics of an
Oldroyd-B material with the significance of thermal deposition
and heat consumption/generation impacting upon a non-
linearly expanding obstacle.

2e subject of fluidmotion with the involvement of porous
medium has developed significantly in many fields of science
and engineering like flow through water rocks, skin pro-
nouncement, liquid purification processes, chemical trash,
crude oil production, porous insulation, grain storage, mastic
transport modeling, and underground removal of atomic
waste. 2e interdependence of the voids in a porous medium
permits certain liquids to flow through material. Ghosh and
Sana [22] studied the time dependent dynamics of an Oldroyd-
B material influenced by reformed sine pulses. Mukhopadhyay
[23] considered and studied the time dependent heat trans-
ference and mixed connective dynamics produced by a pen-
etrable stretching obstacle. 2e magnetohydrodynamic
dynamics of tiny-sized nanoparticles passed over a permeable
wedge is scrutinized by Kandasamy et al. [24]. Tripathy et al.
[25] analyzed the impact of chemical reaction on magneto-
hydrodynamic free connective sheet over an upright moving
plate through permeable material. Ali et al. [26] presented the
analytical solution for flowing fluid through exponential
stretching of permeable surface including heat flux in per-
meable medium utilizing homotopy analysis method (HAM).
Goud [27] introduced the magnetohydrodynamic flow
through an upright appendicular plate including radiation and
chemical reaction effects through a permeable medium. Some
more impactful scientific contributions related to the bidi-
rectional dynamics of nanofluids with various mechanical and
thermal aspects have been made by some researchers [28–36].

2e above literature survey reveals that the study of non-
Newtonian nanofluid performs a vital role in the industrial and
engineering advancements. Moreover, a huge gap regarding
the combined study of nonlinear aspects of mixed convection,
chemical reaction, and heat consumption/generation is found
during literature review. Hence, the novelty of present ex-
ploration is to discuss the steady dynamics of 3D radiative non-
Newtonian (Oldroyd-B) nanofluid with the nonlinear aspects
of mixed convection, chemical reaction, and heat source/sink.
Additionally, significance of porous medium, magnetohy-
drodynamics, and double stratification has been addressed to
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achieve the thermal engineering relevancy of the mathematical
model. To the best of our knowledge, no such attempt has been
made previously.Mathematicalmodeling of the physicalmodel
has been completed with the help of boundary-layer ap-
proximations and basic laws of fluid dynamics. With the
functionality of similarity transformations, transport equations
have been converted into one parameter family of solvable
equations based on the physical domain. Analytical analysis of
the mathematical model has been presented by following the
procedure of homotopy analysis method [37–44]. Some more
solution techniques (Keller-Box method, Lie group analysis,
etc.) have also been offered by some researchers/scholars
[45–50], but here preference is given to homotopy analysis
method because of its compatibility with themodeled problem.
Finally, the obtained outcomes have been discussed physically
with the support of various charts and tables against the
fluctuating choices of involved parameters.

2. Model Development

An incompressible, doubly stratified, and three-dimensional
steady dynamic of radiative Oldroyd-B magneto-

nanomaterial impacting upon an expanding obstacle
through porous space is considered with the nonlinear as-
pects of mixed convection, chemical reaction, and heat
consumption/generation. Effects of random motion and
thermodiffusion of nanoparticles have also been provided
via Buongiorno nanofluid model. 2e Lorentz force is
perpendicular to the xy-plane, whereas gravitational force is
parallel to the x-direction. Influence of chemical reaction has
been included in the nanoparticle mass transport equation,
whereas radiation effects have been involved in the heat
equation of the nanofluid. 2e expansion velocity along
x-direction is explained as uw � ax, whereas expansion
velocity along the y-direction is elaborated as vw � by. 2e
relations for wall and free stream temperatures are settled
according to the rule of thermal stratification, whereas the
relations for wall and free stream nanoparticle mass con-
centration are established according to the regulation of
solutal stratification. 2e graphical abstract of the present
investigation is presented via Figure 1. 2e governing
equations for the present analysis supported by [16, 22, 27,
31, 32, 44] are composed as

zu

zx
+

zv

zy
+

zw

zz
� 0, (1)

u
zu

zx
+ v

zu

zx
+ w

zu

zz
+ λ1

u
2z

2
u

zx
2 + v

2z
2
u

zy
2 + w

2z
2
u

zz
2

+2uv
z
2
u

zxzy
+ 2vw

z
2
u

zyzz
+ 2uw

z
2
u

zxzz

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

� ϑ
z
2
u

zz
2 + ϑλ2

u
z
3
u

zxzz
2 + v

z
3
u

zxzz
2 + w

z
3
u

zz
3

−
zu

zx

z
2
u

zz
2 −

zu

zy

z
2
u

zz
2 −

zu

zz

z
2
w

zz
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

+g α1 T − T∞( 􏼁 + α2 T − T∞( 􏼁
2

􏽨 􏽩

+g α3 C − C∞( 􏼁 + α4 C − C∞( 􏼁
2

􏽨 􏽩 −
μfϕ1
ρfp1

u −
σB°2

ρf

u + λ1w
zu

zz
􏼠 􏼡,

(2)

u
zv

zx
+ v

zv

zy
+ w

zv

zz
+ λ1

u
2z

2
v

zx
2 + v

2z
2
v

zy
2 + w

2z
2
v

zz
2

+2uv
z
2
v

zxzy
+ 2vw

z
2
v

zyzz
+ 2uv

z
2
v

zxzz

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

� ϑ
z
2
v

zz
2 + ϑλ2

u
z
3
v

zxzz
2 + v

z
3
v

zxzz
2 + w

z
3
v

zz
3

−
zv

zx

z
2
v

zz
2 −

zv

zy

z
2
v

zz
2 −

zv

zz

z
2
w

zz
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−
μfϕ1
ρfp1

v −
σB°2

ρf

v + λ1w
zv

zz
􏼠 􏼡,

(3)

Mathematical Problems in Engineering 3



u
zT

zx
+ v

zT

zy
+ w

zT

zz
� αm

z
2
T

zz
2

+
(ρc)p

(ρc)f

DB

zT

zz

zC

zz
􏼠 􏼡 +

DT

T∞

zT

zz
􏼠 􏼡

2
⎛⎝ ⎞⎠ −

1
(ρc)f

zqr

zz
+

q
‴

(ρc)f

,

(4)

u
zC

zx
+ v

zC

zy
+ w

zC

zz
� DB

z
2
C

zz
2 +

DT

T∞

z
2
T

zz
2􏼠 􏼡

− kc1 C − C∞( 􏼁 + kc2 C − C∞( 􏼁
2

􏽨 􏽩.

(5)

Here, q‴ � (kuw/xϑ)[A∗(Tw − T∞)f′ + B∗(T − T∞)].
2e relevant boundary conditions supported by [15, 16,

44] are

u � uw, v � vw, w � 0, T � Tw, C � Cw at z � 0,

u⟶ 0, v⟶ 0, T⟶ T∞, C⟶ C∞ as z⟶∞.
(6)

Using the relation of Rosseland approximation, radiative
heat-flux qr is determined as (see [48])
qr � − (4σ∗/3K∗)(zT4/zz) with T4 � 4T3

∞T − 3T4
∞.

Here, x, y, and z describe the space coordinates; u, v, and
w express parts of velocity in the direction of x, y, and z,
respectively; λ1 and λ2 are used to represent relaxation time
and retardation time, respectively; ϑ � (μf/ρf) denotes ki-
nematic viscosity with μf as dynamic viscosity and ρf as
density; g represents the gravitational acceleration; α1 ex-
hibits the involvement of linear thermal expansion; α2
represent involvement of nonlinear thermal expansion; α3
and α4 depict, respectively, linear and nonlinear concen-
tration coefficients; σ∗ denotes Stefan–Boltzmann constant;
B0 stands for magnetic field strength with electrical con-
ductivity σ; ϕ1 is used to express the porosity constant; p1 the
permeability constant; T is the temperature, C is the con-
centration of nanoparticles; αm � (k/(ρc)f) denotes the
thermal diffusivity with thermal conductivity k; and DB and
DT are the symbols of random and thermodiffusion

coefficients of nanocomposites, respectively. Efficient heat
capability of nanoparticles and efficient heat capability of the
fluid are symbolized by (c)p and (c)f, respectively; kc1 and
kc2 represent the first- and second-order chemical reaction
parameters, respectively; qr is thermal deposition; q′’′ is
nonuniform heat consumption/absorption; Tw is tempera-
ture at the surface; T∞ denotes the ambient temperature;
and Cw and C∞ serve as nanoparticle concentrations at the
obstacle and far from the obstacle. Here, the expansion
velocities, temperature, and nanoparticle mass concentra-
tion at the surface are described as (see [15, 16, 44])

uw(x) � ax,

vw(y) � by,

Tw(x) � T∞,0 + M1x,

Cw(x) � C∞,0 + N1x,

T∞(x) � T∞,0 + A1x,

C∞(x) � C∞,0 + B1x.

(7)

Here, a, b, A1, B1, M1, N1, T∞,0, andC∞,0 are dimen-
sional constants.

We utilize the accompanying similarity transformations
supported by [37, 38, 44] as follows:

u � axf ′(η), v � ayg′(η) w � − (aϑ)
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C
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C
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. (8)

Via using the above-mentioned local similarity set, (1) is
straightforwardly fulfilled and simplified forms of (2-5) are
mentioned below:
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2e boundary conditions are confined as
f � 0,

g � 0,

f′ � 1,

g′ � α,

θ � 1 − εt,

ϕ � 1 − εs at η � 0,

(13)

f′ ⟶ 0,

g′ ⟶ 0,

f″ ⟶ 0,

g″ ⟶ 0,

θ⟶ 0,

ϕ⟶ 0, as η⟶∞.

(14)

In the above-mentioned equations, f′ and g′ are the
dimensionless velocities along x- and y-direction, respec-
tively; θ and ϕ are the dimensionless temperature and
concentration, respectively; β1 � λ1a and β2 � λ2a are the
Deborah numbers corresponding to relaxation and

retardation times, respectively; βt � (α2/α1)T and
βc � (α4/α3)C indicate the nonlinear convection constraints
for temperature and concentration, respectively;
M2 � (σB°

2/ρfa) is the magnetic constraint; δ � (ϑϕ1/p1a)

is used to express the porosity constraint; N∗ � (λ∗/λ)

stands for buoyancy ratio parameter; λ � (Gr/Re2x) and λ∗ �

(Gr∗/Re2x) denote the mixed convective parameters for
thermal and concentration setups, respectively;
Le � (αm/DB) is the Lewis number; Pr � (ϑ/αm) signifies the
Prandtl number; Nb � ((ρc)p/(ρc)f)(DBΔC/ϑ) denotes the
random movement involvement;
Nt � ((ρc)p/(ρc)f)(DTΔT/ϑT∞) corresponds to thermo-
diffusion parameter; A∗ and B∗ denote, respectively, the
quantities of space-dependent and temperature-dependent
heat consumption/generation; c � (kc1/a) is the rate of
chemical reaction; kc � (kc2/kc1)C is the dimensionless
chemical reaction parameter; Rd � (4T3

∞σ∗/kk∗) represents
radiation parameter; k∗ represents the Rosseland mean
absorption constant; α � (b/a) is the expansion ratio pa-
rameter; εt � (A1/M1) and εs � (B1/N1) are the represen-
tatives of the heat and mass stratified parameters,
respectively; and prime represents differentiation taking η as
an independent similarity variable.

2e amount of mass transference is presented by local
Sherwood number Shx while the amount of heat
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g
Tw vw = by

uw = ax

�ermal Radiation
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Chemically
Reactive
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Figure 1: Graphical abstract of the mathematical model.
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transference is described by local Nusselt number Nux, and
these numbers can be expressed in the form of Reynolds
number Rex � (uwx/ϑ) as below:
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x
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zC

zz
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(15)

3. Homotopic Series Solution

2is section deals with the series solutions of the mathe-
matical modeled dimensionless equations (9)–(12) based on
boundary restrictions via (8) and (9) with the procedure of
homotopy analysis method (HAM). For this purpose, pri-
mary guesses are approximated in accordance with
boundary conditions (8) and (9) and are shown as

f0(η) � 1 − e
− η
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2e linear operators are denoted by Lf,Lg, Lθ, and
Lϕ as follows:
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(1 − P)Lθ
􏽢θ(η, P) − θ0(η)􏽨 􏽩 � PℏθNθ[

􏽢f(η, P), 􏽢g(η, P), 􏽢θ(η, P), 􏽢ϕ(η, P)],

(1 − P)Lϕ
􏽢ϕ(η, P) − ϕ0(η)􏽨 􏽩 � PℏϕNϕ[􏽢f(η, P), 􏽢g(η, P), 􏽢θ(η, P), 􏽢ϕ(η, P)].

(17)

In the above relations, Zf, Zg, Zθ, and Zϕ are auxiliary
constraints, whereas Nf, Ng, Nθ, and Nϕ serve as non-
linear operators, and P is the embedding parameter.2e BCs

(boundary conditions) in the coding language can be
expressed as

􏽢f(0, P) � 0, 􏽢f′(0, P) � 1, 􏽢f′(∞, P) � 0, 􏽢g(0, P) � 0, 􏽢g′(0, P) � α,

􏽢g′(∞, P) � 0, 􏽢θ(0, P) � 1 − εt,
􏽢θ(∞, P) � 0, 􏽢ϕ(0, P) � 1 − εc,

􏽢ϕ(∞, P) � 0

⎫⎪⎬

⎪⎭
, (18)

Nf[􏽢f(η, P), 􏽢g(η, P), 􏽢θ(η, P), 􏽢ϕ(η, P)] �
z
3􏽢f

zη3
+ 1 + M

2 ∗ β1􏼐 􏼑(􏽢f + 􏽢g)
z
2􏽢f

zη2
−

z􏽢f

zη
􏼠 􏼡

2

,

+β1 2(􏽢f + 􏽢g)
z􏽢f

zη
z
2􏽢f

zη2
− (􏽢f + 􏽢g)

2z
3􏽢f

zη3
􏼠 􏼡 + β2 2

z
2 􏽢f

zη2
+

z
2
􏽢g

zη2
􏼠 􏼡

z
2􏽢f

zη2
− (􏽢f + 􏽢g)

z
4 􏽢f

zη4
􏼠 􏼡 − δ + M

2
􏼐 􏼑

z􏽢f

zη
,

+λ 1 + βt
􏽢θ􏼐 􏼑􏽢θ + N

∗ 1 + βt
􏽢ϕ􏼐 􏼑􏽢ϕ􏼐 􏼑􏽨 􏽩,

(19)
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Ng[􏽢f(η, P), 􏽢g(η, P), 􏽢θ(η, P), 􏽢ϕ(η, P)] �
z
3
􏽢g

zη3
+ 1 + M

2β1􏼐 􏼑(􏽢f + 􏽢g)
z
2
􏽢g

zη2
−

z􏽢g

zη
􏼠 􏼡

2

,

+ β1 2(􏽢f + 􏽢g)
z􏽢g

zη
z
2
􏽢g

zη2
− (􏽢f + 􏽢g)

2z
3
􏽢g

zη3
􏼠 􏼡 + β2 2

z
2􏽢f

zη2
+

z
2
􏽢g

zη2
􏼠 􏼡

z
2
􏽢g

zη2
− (􏽢f + 􏽢g)

z
4
􏽢g

zη4
􏼠 􏼡 − δ + M

2
􏼐 􏼑

z􏽢g

zη
,

(20)

Nθ[
􏽢f(η, P), 􏽢g(η, P), 􏽢θ(η, P), 􏽢ϕ(η, P)] � 1 +

4
3
Rd􏼒 􏼓

z
2􏽢θ

zη2
+ Pr(􏽢f + 􏽢g)

z􏽢θ
zη

,

− Pr 􏽢θ + εt􏼐 􏼑
z􏽢f

zη
+ Pr∗Nb

z􏽢θ
zη

z􏽢ϕ
zη

+ Pr∗Nt

z􏽢θ
zη

􏼠 􏼡

2

+ A
∗ 1 − εt( 􏼁

z􏽢f

zη
+ B
∗􏽢θ,

(21)

Nϕ[􏽢f(η, P), 􏽢g(η, P), 􏽢θ(η, P), 􏽢ϕ(η, P)] �
z
2􏽢ϕ

zη2
+ Le∗Pr(􏽢f + 􏽢g)

z􏽢ϕ
zη

,

− Le∗Pr 􏽢ϕ + εc􏼐 􏼑
z􏽢f

zη
− Le∗Pr∗ c􏽢ϕ − Le∗Pr∗ c∗ kc

􏽢ϕ2 +
Nt

Nb

􏼠 􏼡
z
2􏽢θ

zη2
,

(22)

Lf fm(η) − χmfm− 1
(η)􏽨 􏽩 � ZfR

m
f (η), (23)

Lg gm(η) − χmgm− 1
(η)􏽨 􏽩 � ZgR

m
g (η), (24)

Lθ θm(η) − χmθm− 1
(η)􏽨 􏽩 � ZθR

m
θ (η), (25)

Lϕ ϕm(η) − χmϕm− 1
(η)􏽨 􏽩 � ZϕR

m
ϕ (η), (26)

fm(0) � fm
′(0),

� fm
′(∞),

� 0,

gm(0)

� gm
′(∞),

� 0,

(27)

θm(0) � θm(∞),

� 0,

ϕm(0) � ϕm(∞),

� 0,

(28)

R
m
f (η) � f

′″
m− 1(η) + 1 + M

2β1􏼐 􏼑 􏽘

m− 1

k�0
fm− 1− kfk

″ + gm− 1− kfk
″( 􏼁 − 􏽘

m− 1

k�0
fm− 1− k
′ + fk
′( 􏼁,

+2β1 􏽘

m− 1

k�0
fm− 1− k 􏽘

k

l�0
fk− 1′fl
″ + 2β1 􏽘

m− 1

k�0
gm− 1− k 􏽘

k

l�0
fk− 1′fl
″ − β1 􏽘

m− 1

k�0
f
″′
m− 1− k 􏽘

k

l�0
fk− 1fl,

− β1 􏽘

m− 1

k�0
f
″′
m− 1− k 􏽘

k

l�0
gk− 1gl − 􏽘

m− 1

k�0
f
′″
m− 1− k 􏽘

k

l�0
gk− 1fl + 2β1 􏽘

m− 1

k�0
fm− 1− k
″fk
″ + 2β1 􏽘

m− 1

k�0
gm− 1− k
″fk
″,

− β2 􏽘

m− 1

k�0
fm− 1− kf

″″
k − β2 􏽘

m− 1

k�0
gm− 1− kf

″″
k − δ + M

2
􏼐 􏼑fm− 1(η),

+λ θm− 1(η) + βt 􏽘

m− 1

k�0
θm− 1− kθk + N∗ ϕm− 1(η) + N∗ ∗ βc 􏽘

m− 1

k�0
ϕm− 1− kϕk

⎛⎝ ⎞⎠,

(29)
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􏽢R
m

g (η) � g
″′
m− 1(η) + 1 + M

2β1􏼐 􏼑 􏽘

m− 1

k�0
fm− 1− kgk

″ + gm− 1− kgk
″( 􏼁 − 􏽘

m− 1

k�0
gm− 1− k
′gk
′,

+2β1 􏽘

m− 1

k�0
fm− 1− k 􏽘

k

l�0
gk− l
′gl
″ + 2β1 􏽘

m− 1

k�0
gm− 1− k 􏽘

k

l�0
gk− lgl
″ − m,

β1 􏽘

m− 1

k�0
g
″′
m− 1− k 􏽘

k

l�0
fk− 1fl − β1 􏽘

m− 1

k�0
g
″′
m− 1− k 􏽘

k

l�0
gk− 1f + 2β1 􏽘

m− 1

k�0
gm− 1− k
″􏽘

k

l�0
gk− 1gl+,

2β1 􏽘

m− 1

k�0
fm− 1− k
″ gk
″ + 2β1 􏽘

m− 1

k�0
gm− 1− k
″ gk
″ − β2 􏽘

m− 1

k�0
fm− 1− kg

″″
k − β2 􏽘

m− 1

k�0
gm− 1− kg

″″
k − δ + M

2
􏼐 􏼑gm− 1(η),

(30)

􏽢R
m

θ (η) � 1 +
4
3
Rd􏼒 􏼓θm− 1″ (η) + Pr 􏽘

m− 1

k�0
fm− 1− kθk

′ + gm− 1− kθk
′( 􏼁 − Pr 􏽘

m− 1

k�0
fm− 1− k
′θk
′,

− Pr∗ εtfm− 1′(η) + Pr∗Nt 􏽘

m− 1

k�0
θm− 1− k
′θk
′ + Pr∗Nb 􏽘

m− 1

k�0
ϕm− 1− k
′θk
′ + A
∗ 1 − εt( 􏼁fm− 1′(η) + B

∗θm− 1(η),

(31)

􏽢R
m

ϕ (η) � ϕm− 1″ (η) + Le∗Pr 􏽘
m− 1

k�0
fm− 1− kϕk

′ + gm− 1− kϕk
′( 􏼁 − Le∗Pr 􏽘

m− 1

k�0
fm− 1− k
′ ϕk,

− Le∗Pr∗ εc ∗fm− 1′(η) − Le∗Pr∗ c∗ϕm− 1(η) − c∗Le∗Pr∗ kc 􏽘

m− 1

k�0
ϕm− 1− kϕk +

Nt

Nb

􏼠 􏼡θm− 1″ (η),

(32)

χm �
0, m≤ 1,

1, m> 1.
􏼨 (33)

2e general solutions fm, gm, θm, and ϕm of (23)–(26)
with regard to particular solutions f∗m, g∗

m′θ
∗
m, ϕ∗m are

expressed by

fm(η) � f
∗
m(η) + C1 + C2e

η
+ C3e

− η
, (34)

gm(η) � g
∗
m(η) + C4 + C5e

η
+ C6e

− η
, (35)

θm(η) � θ∗m(η) + C7e
η

+ C8e
− η

, (36)

ϕm(η) � ϕ∗m(η) + C9e
η

+ C10e
− η

. (37)

2e general constants Ci(i � 1 − 10) in the above
equations are calculated by applying boundary conditions
and are stated as

C1 � C2 � C5 � C7 � C9, C3 �
zf∗m(η)

zη
|η�0 C1 � − C3 − f

∗
m(0), C6 �

zg∗m(η)

zη
|η�0

C4 � − C6 − g
∗
m(0), C1 � − C3 − f

∗
m(0) C8 � − θ∗m(0), C10 � − ϕ∗m(0)

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (38)

4. Convergence Analysis

2e admissible range for unknown boundary restrictions is
the first task to obtain the solution via homotopy analysis
method. 2is range can be traced by identifying those
portions of curves lying exactly parallel to the horizontal axis
as sketched in Figure 2. 2e solid-green line curve expresses
f″(0) with admissible range of − 0.7≤ Zf ≤ − 0.1. 2e ad-
missible range for the curve of g″(0) is − 0.8≤ Zg ≤ − 0.1,
and it is depicted by the black dashed line. Similarly, the
admissible ranges of θ′(0) and ϕ′(0) are estimated as

− 0.6≤ Zθ ≤ − 0.1 and − 0.4≤ Zϕ ≤ − 0.1, and they are rep-
resented by red and blue curves, respectively. For conve-
nience, throughout the analysis we have chosen
Zf � Zg � Zϕ � Zθ � − 0.3 � Z. Hence, the convergence table
for appropriate amounts of emerging parameters is gener-
ated, and the corresponding results are shown through
Table 1. Table 1 illustrates that at least sixty-four orders of
approximation are needed to obtain the missing boundary
conditions for θ(η) and ϕ(η), whereas at least seventy orders
of approximation are required to attain the momentum
boundary conditions. To maintain the convergence and
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stability of the solution, the numbers of approximations are
increased up to eight.

5. Results and Discussion

2is section describes the graphical illustrations of tem-
perature fluctuation, concentration fluctuation, local Nusselt
number, and local Sherwood number under the conse-
quences of important involved parameters. Figure 3 explains
the impact of thermal stratification parameter 0≤ εt ≤ 1 on
dimensionless temperature fluctuation when the similarity
variable is increased from η � 0 to η � 4 with the constant
choices of other involved parameters. Maximum tempera-
ture fluctuation occurs at εt � 0, minimum temperature
fluctuation is achieved at εt � 1, and thermal stratification
phenomenon is generated for 0< εt < 1. Temperature profile
is reduced with the improvement in the choice of εt.
Physically, higher choice of εt develops the ambient tem-
perature and reduces the temperature at the surface. As a
result, the temperature profile is reduced. 2e thickness of
thermal layer is improved with the improvement in the value

of the similarity variable. Figure 4 illustrates the trend of
solutal stratification parameter 0≤ εs ≤ 1 on dimensionless
concentration fluctuation when the similarity variable is
increased from η � 0 to η � 1.8 with the fixed amounts of
other influential parameters. Maximum concentration is
achieved at εs � 0, minimum concentration is obtained at
εs � 1, and solutal stratification phenomenon is traced for
0< εs < 1. Concentration setup is diminished with the higher
estimation of εs. 2e physical reason behind this outcome is
the downfall of nanoparticle concentration at the wall and
improvement of nanoparticle concentration away from the
stretching device. Concentration layer thickness is also in-
creased with the improvement of the similarity variable.

Figure 5 indicates the role of space-dependent heat
source/sink parameter − 1.5≤A∗ ≤ 1.5 in dimensionless
temperature fluctuation with the increase of the similarity
variable from η � 0 to η � 8. Minimum temperature is
attained for heat consumption case,
− 1.5≤A∗ < 0− 1.5≤A∗ < 0; maximum temperature is
achieved for heat generation case, 0<A∗ ≤ 1.50<A∗ ≤ 1.5;
and moderate temperature is reached in the absence of heat

4

M=α=βc=Nt=Rd=kc=0.5,δ=β1=y=0.4,λ=εt=0.2,β2=0.6,βt=εs=0.3,Nb=1.5,Pr=1.2,Le=1.3

2

0

–2

–4

–1.0 –0.8 –0.6 –0.4

h

–0.2 0.0 0.2

f ”
(0

),g
”(

0)
,θ

’(0
),ϕ

’(0
)

f ”(0)

g”(0)

θ’(0)

ϕ’(0)

Figure 2: Estimation of convergent region via Z-curve sketching.

Table 1: Convergence check of series solutions by considering different orders of deformation m when Z � − 0.3 with the values of involved
parameters kept the same as Figure 1.

m − f’’(0) − g’’(0) − θ’(0) − ϕ’(0)

1 0.67180 0.33000 0.60480 0.99566
8 0.54487 0.22133 0.41078 1.45734
16 0.54294 0.22897 0.40751 1.45982
22 0.54220 0.22546 0.41026 1.46269
28 0.54556 0.22697 0.40922 1.45788
34 0.54160 0.22788 0.40893 1.46162
40 0.54399 0.22506 0.41025 1.46070
46 0.54236 0.22702 0.41048 1.46132
52 0.54311 0.22688 0.41057 1.46149
58 0.54286 0.22697 0.41065 1.46158
64 0.54292 0.22692 0.41067 1.46159
70 0.54288 0.22695 0.41067 1.46159
80 0.54288 0.22695 0.41067 1.46159
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generation/consumption, A∗ � 0. Mathematically, A∗ is
involved as a multiple of velocity profile f′(η) in (7);
therefore, the velocity profile also increases with the higher
estimation of A∗, and hence temperature profile is im-
proved. 2erefore, it is called space-dependent heat source/
sink influence on thermal profile. 2e thickness of thermal
layer is also improved with the growth of the similarity
variable. Figure 6 illuminates the potential of temperature-
dependent heat source/sink parameter − 1.5≤B∗ ≤ 1.5 on
dimensionless temperature fluctuation with the growth of
the similarity variable from η � 0 to η � 8. Minimal tem-
perature is accomplished for heat ingestion case,

− 1.5≤B∗ < 0− 1.5≤B∗ < 0; maximal temperature is realized
for heat production case, 0<B∗ ≤ 1.50<B∗ ≤ 1.5; and
modest temperature is touched in the nonappearance of heat
production/consumption, B∗ � 0. Precisely, B∗ is involved
as a multiple of θ(η) in (7); therefore, the thermal profile is
also augmented with the greater estimation of B∗, and hence
it is called temperature-dependent heat source/sink influ-
ence on thermal profile. 2e depth of thermal layer is also
enriched with the progress of similarity variable. Figure 7
establishes the connection between dimensionless concen-
tration fluctuation and chemical reaction parameter
0≤ kc ≤ 20 with the growth of the similarity variable up to
η � 3.2. Decreasing trend in concentration fluctuation is
observed with the growth in the estimation of kc, maximal
concentration is achieved for smaller values of kc, and
minimal concentration is generated for greater estimations
of kc. Physically, higher estimation of kc increases the sec-
ond-order chemical reaction and reduces the first-order
chemical reaction at the same time. As an outcome, negative
trend in the concentration profile is attained. 2e thickness
of concentration layer is also developed with the im-
provement in the similarity variable. Figure 8 explores the
effect of thermal radiation parameter 0≤Rd ≤ 4 on thermal
fluctuation with the evolution of the similarity variable from
η � 0 to η � 7. A huge improvement in the thermal fluc-
tuation is attained with the intensification in Rd. Maximal
temperature is measured for higher Rd, and minimal tem-
perature is obtained for basic/lower Rd. 2e thickness of
thermal layer is also improved and it is found to be higher for
the middle values of Rd. Physically, radiation is basically the
transference of energy in the form of electromagnetic waves.
More electromagnetic waves are produced with the im-
provement of Rd, and hence dominant temperature fluc-
tuation is observed when Rd reaches maximal estimation.
Figure 9(a) deals with the relationship between relaxation
time Deborah number 0≤ β1 ≤ 10 and temperature distri-
bution for the similarity variable 0≤ η≤ 7. Here, thermal
environment is upgraded with the higher estimation of β1.
Basically, β1 is generated in the momentum equation due to
the inclusion of Oldroyd-B nanoparticles and defined as the
product of expansion rate a and the relaxation time λ1.
Hence, higher estimation of β1 enhances the value of λ1 as
well as the expansion rate. As an outcome, improvement in
thermal setup is noticed with the upgraded width of thermal
layer. Figure 9(b) shows the effect of β1 on concentration
fluctuation. Concentration is tremendously promoted with
the advanced values of β1. Physically, upgraded value of β1
enhances the expansion rate that increases the movement of
Oldroyd-B nanoparticles, and so concentration setup is
boosted. Figure 10(a) establishes the link between retarda-
tion time Deborah number 0≤ β2 ≤ 4 and thermal fluctua-
tion for the similarity variable 0≤ η≤ 4. At this time, thermal
environment is degraded with the refined approximation of
β2. Fundamentally, β2 involves in the momentum equation
due to the presence of Oldroyd-B nanoparticles and is de-
fined as the mathematical product of the stretching rate a

and the retardation time λ2. 2erefore, estimation of β2
augments the value of λ2 as well as the expansion rate. As a
conclusion, reduction in thermal setup is perceived with the
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Figure 3: Interference of εt on thermal layer θ(η).
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Figure 4: Interference of εs on concentration layer ϕ(η).
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progressive width of thermal stream. Figure 10(b) illustrates
the influence of β2 on concentration flux. Concentration is
enormously decreased with the advancement of β2. Actually,
improved value of β2 develops the retardation rate, and so
concentration setup is reduced.

Nusselt number measures the rate of heat transference
whereas Sherwood number measures the rate of mass
transference from hot region to cold region. Figure 11 de-
scribes the rate of heat transport with the combined in-
spiration of random motion 0≤Nb ≤ 3 and thermodiffusion
0≤Nt ≤ 5 parameters. Rate of heat transport is declined with
the upgraded amounts of these parameters related to the
nanofluid. Maximal rate of heat transport is measured for

smaller amounts of these nanoparticle parameters, whereas
minimal rate of heat transport is attained for greater
amounts of Nb and Nt. Maximum value of Nusselt number
is approximated as 1.2, whereas minimum value of Nusselt
number is estimated as 0.3 for the adopted ranges of
Brownian and thermodiffusion parameters. Physically, a
higher value of Nb enhances the Brownian diffusion coef-
ficient, and a higher value of Nt enhances the thermo-
diffusion coefficient, whereas kinematic viscosity of
Oldroyd-B nanofluid is reduced with the escalation of these
parameters. As a whole, these physical changes are the main

M
=α

=β
c=

N
t=

R d
=k

c=
0.

5,
δ=

β 1
=y

=0
.4

,λ
=ε

t=
0.

2,
β 2

=0
.6

,β
t=

0.
3,

N
b=

1.
5,

Pr
=1

.2
,L

e=
1.

3

Dimensionless Temperature Distribution [θ(η)]
1.5

1.0

0.5

0.0

–0.5

–1.5

–1.0

Sp
ac

e–
de

pe
nd

en
t H

ea
t S

ou
rc

e/
Si

nk
 P

ar
am

et
er

 [A
* ]

0 2 4 6 8

Similarity Variable [η]

Figure 5: Interference of A∗ on thermal layer θ(η).

M
=α

=β
c=

N
t=

R d
=k

c=
0.

5,
δ=

β 1
=y

=0
.4

,λ
=ε

t=
0.

2,
β 2

=0
.6

,β
t=

0.
3,

N
b=

1.
5,

Pr
=1

.2
,L

e=
1.

3

Dimensionless Temperature Distribution [θ(η)]
1.5

1.0

0.5

0.0

–0.5

–1.5

–1.0

Te
m

pe
ra

tu
re

–d
ep

en
de

nt
 H

ea
t S

ou
rc

e/
Si

nk
 P

ar
am

et
er

 [B
* ]

0 2 4 6 8

Similarity Variable [η]

Figure 6: Interference of B∗ on thermal layer θ(η).

M
=α

=β
c=

N
t=

R d
=0

.5
,δ

=β
1=

y=
0.

4,
λ=

ε t=
0.

2,
β 2

=0
.6

,β
t=

ε s=
0.

3,
N

b=
1.

5,
Pr

=1
.2

,L
e=

1.
3

Dimensionless Concentration Distribution [ϕ(η)]

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Similarity Variable [η]

20

15

10

5

0

Ch
em

ica
l R

ea
ct

io
n 

Pa
ra

m
et

er
 [k

c]
Figure 7: Interference of kc on concentration layer ϕ(η).
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causes for the reduction of heat transport. Figure 12 shows
the rate of mass transport with the collective stimulation of
random motion 0≤Nb ≤ 1 and thermodiffusion 0≤Nt ≤ 6
parameters. Rate of mass transport is degenerated with the
progress in the amount of Nt, whereas it is improved with
the advancement in the amount of Nb. Highest rate of mass
transport is stated for smaller choice of Nt and higher choice
of Nb. Maximum value of Sherwood number is formulated
as 1.4, whereas minimum value of Sherwood number is

predicted as − 0.4 for the implemented ranges of Brownian
and thermodiffusion factors. Physically, a higher value of Nb

enhances the heat capacity induced by nanoparticles, and a
higher value of Nt develops the temperature difference,
whereas density of Oldroyd-B nanofluid is upgraded with
the intensification of these forces. Overall, these physical
variations are the main reasons for the improvement of
Sherwood number with the positive tendency in Nb and
reduction of Sherwood number with the positive
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Figure 9: (a) Interference of β1 on thermal layer θ(η). (b) Interference of βt on concentration layer ϕ(η).
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approach of Nt. Figure 13(a) indicates the rate of heat
transport with the communal effect of thermal convection
parameter 0≤ βt ≤ 100 and concentration convection pa-
rameter 0≤ βc ≤ 100. 2e maximum value of heat transport
is reported as 0.84 for smaller communal effect of convection
parameters, whereas the minimum value of heat transport is
calculated as 0.7 for larger communal effect of convection
parameters. Nusselt number is reduced with the higher
estimation of βc, and it is improved with the growth of βt. On
the other hand, Figure 13(b) explains the rate of mass
transport with the combined effect of convection parame-
ters. Sherwood number is improved with the estimation of

βt, and it is reduced with the growth of βc. Maximum mass
transport is observed at the right top of the figure and
minimal mass transport is noticed at the left bottom of the
figure. Physically, thermal convection parameter depends on
the temperature difference, and thermal environment is
reduced with its escalation; hence, rate of heat transport is
improved. Moreover, concentration convection parameter
relies on the concentration difference, and thermal envi-
ronment is boosted with its growth; hence, rate of heat
transport is reduced for this situation.

Table 2 is arranged to compare the present outcomes
with the previously published work in the absence of

M
=α

=β
c=

R d
=k

c=
0.

5,
δ=

β 1
=y

=0
.4

,λ
=ε

t=
0.

2,
β t

=ε
s=

0.
3,

β 2
=0

.6
,P

r=
1.

2,
Le

=1
.3

Local Nusselt Number [(Rex)–1/2 Nux]

0 1 2 3 4 5

Thermodiffusion Parameter [Nt]

Br
ow

ni
an

 M
ot

io
n 

Pa
ra

m
et

er
 [N

b]

3.0

1.5

2.5

2.0

1.0

0.5

0.0

Figure 11: Nusselt number in the view of Nb and Nt.

M
=α

=β
c=

R d
=k

c=
0.

5,
δ=

β 1
=y

=0
.4

,λ
=ε

t=
0.

2,
β t

=ε
s=

0.
3,

β 2
=0

.6
,P

r=
1.

2,
Le

=1
.3

Local Sherwood Number [(Rex)–1/2 Shx]

0 1 2 3 4 5 6

Thermodiffusion Parameter [Nt]

Br
ow

ni
an

 M
ot

io
n 

Pa
ra

m
et

er
 [N

b]

1.0

0.6

0.8

0.4

0.2

0.0

Figure 12: Sherwood number in the view of Nb and Nt.

Mathematical Problems in Engineering 13



porosity, magnetic environment, dual stratifications,
radiation, chemical reaction, and space-dependent heat
source/sink factors. 2e reduced results for thermal and
concentration gradients are best matched with the pre-
viously published report by Khan et al. [47] via homotopy
analysis method.

6. Conclusions

2e significance of higher-order chemical reaction and
nonuniform heat source/sink influence on the dynamics

of Oldroyd-B nanoparticles have been analytically in-
vestigated in this contribution. For physical relevancy,
thermal radiation, mixed convection, and double strati-
fication have also been incorporated in the bidirectional
flow of the nanoliquid with the help of Buongiorno
nanofluid model. Chief findings/outcomes of the ongoing
exploration are listed below:

(i) Level of heat exposure is improved with the in-
tensification in thermal stratification parameter
εt, whereas level of mass exposure is reduced with
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Figure 13: (a) Nusselt number in the view of βt and βc. (b) Sherwood number in the view of βt and βc.

Table 2: Comparison establishment with the previously published report of Azeem Khan et al. [44] for δ � M � λ �

βt � βc � A∗ � εt � εs � Rd � c � kr � 0.

α Pr B∗ Nb Nt Le
Present outcomes Published outcomes [44]

− θ′(0) − ϕ′(0) − θ′(0) − ϕ′(0)

0.0 1.2 0.2 0.1 0.1 1.0 0.351853 0.474210 0.351853 0.474210
0.3 0.509837 0.482838 0.509837 0.482838
0.4 0.549438 0.488939 0.549438 0.488939
0.5 1.0 0.513728 0.430930 0.513728 0.430930

1.1 0.551238 0.463216 0.551238 0.463216
1.3 0.617393 0.527723 0.617393 0.527723

0.0 0.757208 0.356670 0.757208 0.356670
0.1 0.676907 0.422143 0.676907 0.422143
0.4 0.335390 0.690221 0.335390 0.690221

0.2 0.540514 0.683362 0.540514 0.683362
0.3 0.497586 0.745281 0.497586 0.745281
0.4 0.456841 0.775726 0.456841 0.775726

0.2 0.575795 0.199343 0.575795 0.199343
0.4 0.505394 0.277762 0.505394 0.277762
0.5 0.480757 0.464410 0.480757 0.464410

0.8 0.591165 0.352548 0.591165 0.352548
0.9 0.588200 0.426414 0.588200 0.426414
1.1 0.583427 0.560578 0.583427 0.560578
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the improvement in solutal stratification pa-
rameter εs.

(ii) Level of mass exposure is developed with the higher
selections of Brownian motion Nb and chemical
reaction kr parameters, whereas level of heat ex-
posure is condensed with the escalation in the
choices of heat source/sink parameters A∗&B∗ and
radiation factor Rd.

(iii) Nusselt and Sherwood numbers are decreased with
greater amounts of concentration convection pa-
rameter, whereas opposite trend is noticed for
thermal convection parameter.

(iv) Higher estimations of Brownian and thermodiffu-
sion parameters reduce the rate of heat transport.

(v) Temperature and concentration profiles are reduced
with the positive tendency of retardation time
Deborah number β2, and opposite trends are de-
tected for relaxation time Deborah number β1.

Finally, the outcomes obtained through this investiga-
tion are helpful in the improvement of thermal instruments.
2is mathematical model has some applications in bio-
medicine and chemical and mechanical engineering like
coating a sheet with nanomaterial, paper production pro-
cess, and treatment of cancer.
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