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At present, with the wide application of the quadrotor, accurate positioning has become an increasingly important problem and
needs to be considered. In this study, the inertial navigation system (INS) and ultra-wideband (UWB) technology are used
together to collect the �ight data of the quadrotor, and the particle �lter (PF) algorithm will be employed to fuse the data
information of the two sensors for reducing the error and obtaining the movement path of the quadrotor in the three dimensional
(3D) space. Meanwhile, for making PF work more accurate, the extreme learning machine (ELM) is adopted to map the equation
of state in the �ltering process to make position information more reliable. In addition, ELM can also establish a new signal
through mapping when UWB’s signal is interrupted, so that the whole system can work normally. To verify the e�ectiveness of the
proposed method, a real experiment was carried out. e experimental results show that the ELM-assisted PF strategy has a good
e�ect on INS/UWB-integrated navigation quadrotor positioning. When UWB signals are normal, compared with the single PF,
the ELM-assisted PF is able to improve positioning accuracy by about 18.44%. When UWB’s signal is interrupted, compared with
the least square support vector machine- (LS-SVM-) assisted PF, the ELM-assisted PF could improve positioning accuracy by
about 1.15m. On the whole, the proposed design algorithm not only improves the positioning accuracy but also can predict
UWB’s signal when it is interrupted and thus make the �lter work normally.

1. Introduction

Quadrotor aircraft can adjust its attitude in the space by
changing the speed. Because of the development of modern
control technology, quadrotor aircraft has been more and
more widely concerned. e stable �ight of the quadrotor
can be used in aerial photography, rescue and search, se-
curity, �re-�ghting, pesticide spraying, construction, and
other high-risk operating environments [1, 2]. erefore,
how to control the moving path and space position of the
quadrotor, that is, how to achieve accurate positioning of the
quadrotor, is a much more important subject that needs to
be considered [3–9].

e inertial navigation system measures the acceleration
of the target in the reference frame and obtains velocity,

heading angle, and position information by integrating it
twice over time. e inertial navigation system is based on
Newtonian mechanics, which belongs to the way of calcu-
lation navigation. It has good independence and continuity,
does not depend on external information, nor does it radiate
energy outward, and has low requirements for the working
environment. However, due to the lack of reference, the
solution position of the inertial navigation system a�ects
each other, and the error will gradually increase with time
accumulation; therefore, INS is not suitable for a long pe-
riod, long distance navigation, and positioning. e UWB
technology obtains the position information by collecting
distance information between the reference node and the
motion carrier, and the positions are independent from each
other, so there is no time error accumulation problem.
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However, the signal transmission of the reference node is
affected by the external environment, so there is the pos-
sibility of occlusion, deviation, or interruption. ,erefore, it
is difficult for a single navigation technology to meet the
requirements of accurate positioning. For avoiding that, INS
and UWB-integrated technology was proposed. Such mul-
tisensor fusion manner can give full play to their respective
advantages, eliminate the error accumulation problem of
INS, and ensure the continuity of signal data [10–14].

Measurement data from the sensor are subjects to
various kinds of noise, such as measurement environment,
measuring technology, or hardware itself. Using the ap-
propriate filtering algorithm can suppress the influence of
bad noise, improve the signal quality, and make the posi-
tioning more accurate and reliable, so as to improve the
performance of the whole navigation system. ,e particle
filter algorithm is an effective sampling method, and it
approximates the density function by calculating and
comparing a random sample. In this method, the sample
mean replaced the integral operation. ,e Monte Carlo
method is its central idea, and probability is expressed by the
particle set, which is widely used in practice [15, 16]. In the
positioning process, in order to obtain more stable and
superior effects, we can also use some learning strategies to
match with filtering algorithms, such as the BP neural
network, ELM, and LS-SVM.

,e extreme learning machine was proposed with the
development of computer network technology. It was pre-
sented aiming to improve the backward propagation (BP)
algorithm to improve low learning efficiency and simplify
the setting of learning parameters. ELM is based on the
feedforward neural network and improves the fuzzy neural
network and thence has good adaptability in the supervised
learning problem. In some current views, ELM has ad-
vantages in speed and generalization [17–20].

In this study, the extreme learning machine will be
adopted to assist the particle filter algorithm to calibrate the
INS/UWB-integrated navigation system mounted on a
quadrotor. In this process, the extreme learning machine
plays two roles. ELM establishes the relationship between
each state value in the filtering process, so as to make the
whole model more stable. By establishing the mapping re-
lationship between INS and UWB, even UWB’s signal is
interrupted, and the necessary data needed for filtering can
be provided to make the system work normally and improve
the robustness of the whole system. In order to prove the
availability of the proposed strategy, the experiment has
been carried out in a real environment, and the experimental
results prove the effectiveness of the proposed strategy.

,e main contributions of this study are as follows:

(i) A new PF algorithm based on the extreme learning
machine is proposed to implement the fusion of INS
and UWB’s data, and the mapping relationship of
state values in the filtering process is built by training
of the extreme learning machine, which improves
the reliability of the positioning system.

(ii) ,e mapping between INS and UWB can be built by
training of the extreme learning machine, and the

signal compensation can be carried out when UWB’s
signal is interrupted, so that the whole system can
work normally.

,e remaining construction of this study is outlined as
follows. ,e ELM-assisted PF strategy is explained in “INS/
UWB-Integrated Navigation Quadrotor Positioning
Scheme,” the PF filtering strategy for INS/UWB positioning
and the ELM-assisted strategy are given in the “Particle
Filtering Algorithm” and “,e Scheme of ELM,” and the real
test and error analysis are completed in “Test.” Finally,
“Conclusion” describes the effectiveness of the proposed
method for INS/UWB-integrated navigation quadrotor
positioning.

2. INS/UWB-Integrated Navigation Quadrotor
Positioning Scheme

,e INS/UWB-integrated navigation quadrotor positioning
scheme will be discussed for the following two situations.

(i) When UWB’s signal is available, INS and UWB
measure the position Po(I) and Po(I) of the target
quadrotor, respectively. PF makes more accurate
estimate δPo of the position error δPo by fusing the
information of Po(I) and Po(U) to correct Po(I) and
output the optimized target position. δPo is used as
the observation vector in PF. In the filtering process,
ELM establishes the mapping of the state deviation
Δxt, t ∈ [1,∞) generated at each moment of PF and
correct Δx by the more accurate estimate Δx gen-
erated by ELM to reduce the state deviation.
Meanwhile, the state vector xt|t−1, t ∈ [1, +∞) output
from PF and δPo are taken as input and targets of
ELM, and ELM keeps training to establish the
mapping relationship between them. ,e whole
system works normally, and ELM plays two roles: (1)
to constantly correct Δxt along with PF, and ELM
outputs deviation information; (2) through training,
the mapping relationship between the Δxt output by
PF and δPo is constantly established. At this time,
ELM works offline and does not output observation
information. ,e positioning strategy is shown in
Figure 1.

(ii) When UWB’s signal is interrupted, UWB cannot
provide Po(U) and PF cannot work properly due to
the lack of the observation vector δPo. At this point,
ELM outputs the predicted observation vector δPo

through the mapping established in the previous
stage, and δPo is used as the observation vector of
PF, so PF can work normally when UWB’s signal is
interrupted. At this time, ELM works in the pre-
diction stage and outputs observation information.
,e positioning strategy is shown in Figure 2.

3. Particle Filtering Algorithm

On the basis of INS/UWB integrated navigation, we use the
particle filter algorithm to fuse sensor information. ,e state
equation of particle filter is as follows:
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In (1), t is the time index, ϕt, δVn
t , and δPn

t denote the
errors of the INS’s attitude, velocity, and position, (∇b

t , εb
t )

represent the accelerometers bias and gyroscope drift em-
ploy. ΔT is the sample time, and ωt ∼ N(0, Qt) represent the
noise of the system. In (2), (fn

Ut, fn
Et, fn

Nt) is the acceleration

up, east, and north of the coordinate system. In (3), Cn
b is the

rotation matrix, and θ, c, ψ represent the rotation angle
around x, y, and z axis.

,e observation equation of the particle filter is as
follows.
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In the equation above, Yt is the observation vector of PF,
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t )2 is the square of the difference between the distances
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position of the ith RN, ](i)
t ∼ N(0, R(i)) is the measurement

noise, t is the time index, and superscript i(i � 1 ∼ 6) stands
for the label of RN.

4. The Scheme of ELM

In the navigation positioning process, we use the PF algo-
rithm to fuse the positioning information of the two sensors
and reduce the bad noise and error. ELM is used to assist the
PF algorithm. ELM has two functions here. One is to es-
tablish the mapping relationship between various state
values in the PF filtering process to optimize the accuracy.
,e other is when UWB’s measurement being interrupted;
the mapping relationship between the state value and the
observation value is established to compensate the signal, so
that the filter can work normally and enhance the stability of
the system.

4.1. Scheme 1: Correction of State Deviation in the Filtering
Process. In the particle filter state update process, the state
value xstate describes the state information of the motion
quadrotor, while the state update of the filter xupdate rep-
resents the predicted value of the filter, and the particle filter

outputs the filtering results by comparing the weight rela-
tion. ,e state value xstate and state update xupdate are two
different descriptions of the target state, and there are de-
viations between them, given by

Δxt � xupdate,t − xstate,t, (5)

where t is the time index. Since the filtering effect will always
be affected by the state value, so before the prediction stage,
the state deviation Δx should be optimized. According to
equation (1) and the real motion model, it can be known that
Δx is affected by the previous moment at all moments, that is
to say, the present Δxt is affected by Δx at all previous
moments. ,e (5) is expressed as

Δxt � f Δxt−1,Δxt−2 . . . . . .Δx1( , (6)

where f represents the relational function between them. It
should be emphasized that f is unknown, so we use ELM to
build this function. In the training model, the quantity of Δx
keeps increasing with the change of time, and the training
speed of ELM will decline rapidly. We usually set a training
scale n to limit the number to the right of (6), for ensuring
that the number of states affected by the previous state is the
same. So, (6) can be written as

Δxt � f Δxt−1,Δxt−2 . . . . . . Δxt−n( . (7)

When t> � n + 2, the training model is shown in
Figure 3.

In the filtering process, when time index t> � n + 2,
ELM collects training data (Δxt−1−n, . . . . . . ,Δxt−2), (Δxt−n,

. . . . . . ,Δxt−1) that are generated by PF as input and output
to establish the mapping relationship among them. ,en,
(Δxt−n, . . . . . . ,Δxt−1) as the input of ELM and predict
(Δxt−n+1, . . . . . . ,Δxt) through mapping established in the
previous stage.,e output state deviation array contains Δxt

needed by PF state update at the next moment. Δxt is
corrected by ELM. After entering PF, xupdate is calculated by
(5) to obtain more accurate estimation information. ,e
process is then repeated until filtering is complete. ,us,
the state value of PF is constantly updated by ELM, and the
current state value is jointly determined by the previous
multiple state values, so the influence of noise is reduced and
the positioning accuracy is improved.

4.2. Scheme 2: Replenish Measurement Information When
UWB Interrupted. Complicated or hostile indoor environ-
ment may lead to the interruption of UWB’s signal, and the
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observation vector δPo of PF will not be available. Before
signal interruption, UWB provides observation data, and
ELM is used to establish the mapping between δPo and state
value xt|t−1, t ∈ [1, +∞) output by PF. As in the previous
section, this functional relationship is difficult to describe
with exact mathematical equations.We use xt|t−1 as the input
training data of ELM and δPo as the training target, ELM
through a certain amount of data training to establish the
mapping relationship between them. In this way, in the
absence of UWB’s signal, ELM can predict δPo through the
xt|t−1 and mapping relationship, so that the filter can work
normally and ensure the stability of the system. It should be
noted here that among the training data used, the xt|t−1
output by the filter is obtained through the assistance of
ELM, so it is more accurate than the simple PF.

ELM provides the observation data-assisted PF process
when UWB measurement is interrupted as shown in
Figure 4.

During the training stage, when UWB measurement
Po(U) is available, PF provides xt|t−1. ,e observation vector
Yt � d

(I)
t − d

(U)
t

  is the training target and ELM establishes
offline mapping through training. In the prediction stage,
Po(U) of UWB is not available at this time, ELM predicts δPo

by input xt|t−1 and mapping relationship instead of Yt, and
PF works normally by using δPo provided by ELM.

5. Test

In order to verify the effectiveness of the proposed strategy, a
real experiment has been designed. ,e availability of the
proposed strategy is proved by results of the simulation and
error analysis.

5.1. Experimental Settings. ,e experimental site was se-
lected in an empty space, and (x, y, z) represents the actual
directions east, north, and up. ,e quadrotor is equipped
with the inertial measurement unit (IMU) and UWB blind
node (UWB BN) to provide reference for distance infor-
mation. ,e quadrotor used in the experiment is shown in
Figure 5. In order to better position the quadrotor, six UWB

Figure 5: ,e quadrotor used in the experiment.

Figure 6: ,e test environment.
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reference nodes (UWB RNs) were placed at known coor-
dinate points. ,ree were placed high and three were placed
low (height 2.7m and 0.1m, horizontal distances between
each UWB RN were 2.3m and 4.6m, as shown in yellow,
i � 1 − 6). ,e UWB RN form a 3D space in which the target
quadrotor moves along a planned path. ,e upper computer
collects INS and UWB’s data at an interval of ΔT � 0.02S.
,e actual test scene is shown in Figure 6.

5.2. Localization Errors. In this part, the effectiveness of the
proposed strategy is verified by simulation calculation:

Scheme 1: ELM-assisted PF can effectively reduce
positioning error
Scheme 2: when UWB’s signal is interrupted, ELM
compensates the signal through the mapping rela-
tionship to make the filter work normally

5.2.1. Error Analysis of Scheme 1: Correction of State
Deviation. For scheme 1, the position information Po(I) of
INS and Po(U) of UWB can be calculated, respectively,
through the data collected by the upper computer, and the
flight trajectory in 3D space can be fitted out. ,e ELM-
assisted PF algorithm mentioned in scheme 1 is used to
process the data to reduce the influence of bad noise and
improve the positioning accuracy. Here, an individual PF

algorithm is also used to prove the superiority of the pro-
posed strategy by comparison. ,e trajectory comparison
diagram is shown in Figure 7.

,e error reduction of the ELM-assisted PF model with
that of individual PF was compared. ,e root mean square
error (RMSE) has been used in the x, y, and z directions at all
time indexes, which was calculated as

Table 1: Average RMSES produced by PF and PF+ELM in the east, north, and up.

RMSE (m)

East North UP Mean Improving
UWB 0.0692 0.0996 0.0906 0.0864 —-
PF 0.0600 0.0909 0.0800 0.0770 10.88 %
PF+ELM 0.0515 0.0768 0.0603 0.0628 27.31 %
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Figure 9: CDF comparison of UWB, PF, and PF+ELM.
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 ,

(8)

where RMSE(Po)t means the RMSE of the position at time
index t, (xt, yt, zt) is the estimated position in x, y, and z

directions, and (x
ref
t , y

ref
t , z

ref
t ) is the reference position in

x, y, and z directions at the time index t.
After filtering, RMSE of UWB, PF, and ELM-assisted PF

were calculated, and the results are shown in Figure 8 and
Table 1.

In Table 1, mean represents the average value of the
errors in the three directions. It can be seen that comparing
with UWB, the PF algorithm error is reduced by 10.88% and
the PF + ELM algorithm error is reduced by 27.31%.
Compared with the PF algorithm, PF +ELM algorithm error
is reduced by 18.44%. It should be emphasized that UWB
positioning and PF are quite exact.

Otherwise, the cumulative distribution function (CDF)
is also used to describe the achievement rate of each

algorithm. ,e comparison of CDF is shown in Figure 9. As
shown in the figure, the PF +ELM strategy achieves the ideal
state faster than PF alone, indicating that for the INS/UWB
combined navigation model, scheme 1 has a better effect on
reducing noise and optimizing accuracy.

5.2.2. Error Analysis of Scheme 2: Replenish Measurement
Information. For scheme 2, after the position information
Po(I) of INS and Po(U) of UWB are fitted, four interrupt
regions (#1, #2, #3, #4) were set to simulate the interruption
of UWB’s signal, as shown in Figure 10.

To demonstrate the performance of the proposed
strategy, LS-SVMwas also used. In the outage area, ELM and
LS-SVM perform signal compensation, respectively, as
shown in Figure 11. Meanwhile, RMSEs of four areas are
calculated, respectively, according to (8), as shown in Fig-
ure 12 and Table 2.

As shown in Figure 11, the red line represents the outage
areas of the reference trajectory, the green line represents the
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Figure 11: Comparison of ELM and LS-SVM prediction values in outage areas.
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result of ELM-assisted PF prediction, and the blue line
represents the result of LS-SVM prediction. (a), (b), (c), (d)

indicate the outage areas #1, #2, #3, #4. Obviously, the dif-
ference between PF+ELM and the reference value is smaller,
proving that compared with LS-SVM, the proposed strategy
is more effective. According to Table 2, the error of
PF +ELM is reduced by 1.15m compared with LS-SVM.

6. Conclusion

In this study, ELM-assisted PF for INS/UWB combined
navigation quadrotor positioning strategy is studied. In this

scheme, INS and UWB acquire the position information of
the motion quadrotor, respectively, PF performs data fusion
and filtering, and ELM is used to assist the filter. ELM es-
tablishes the mapping between the difference deviation of
each state in the filtering process to correct state deviation.
Meanwhile, during the normal operation of PF, ELM keeps
training and establishing the relationship between the state
vector output by PF and the observation vector. When
UWB’s signal is interrupted, the observation vector fails;
under this condition, ELM makes signal prediction and
provides observation signal to make the filter work normally.
,e experimental results show that the proposed ELM-

10 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9 11
Time [s] Time [s]

0

0.5

1

1.5
RM

SE
 [m

]

13.3 13.4 13.5 13.6 13.7 13.8 13.9 14 14.1 14.2 14.3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

RM
SE

 [m
]

28 28.1 28.2 28.3 28.4 28.5 28.6 28.7 28.8 28.9 29
0

0.2

0.4

0.6

0.8

1

1.2

RM
SE

 [m
]

32 32.1 32.2 32.3 32.4 32.5 32.6 32.7 32.8 32.9 33
0

0.2

0.4

0.6

0.8

1

1.2

1.4

RM
SE

 [m
]

PF+LS-SVM
PF+ELM

Time [s] Time [s]

PF+LS-SVM
PF+ELM

PF+LS-SVM
PF+ELM

PF+LS-SVM
PF+ELM

Figure 12: ,e RMSEs estimated by ELM and LS-SVM in outage areas.

Table 2: Average RMSEs produced by ELM and LS-SVM in outages #1, #2, #3, #4.

RMSE (m)

#1 #2 #3 #4 Mean
PF+ LS-SVM 1.3742 1.5339 0.9910 1.1561 1.2638
PF +ELM 0.1176 0.1046 0.0767 0.1502 0.1123

8 Mathematical Problems in Engineering



assisted PF strategy can effectively correct the state deviation,
further reduce the position error on the basis of PF, and
improve the positioning accuracy by 18.44% compared with
single PF. When the signal is abnormal, PF can also work
normally through the observation vector provided by ELM.
Compared with LS-SVM, the positioning accuracy provided
by ELM improved by 1.15m.
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