
Research Article
Multi-Error Location Method Based on Path Clustering and
Failure Weighting

Xiaoyin Wang ,1,2,3 Chunyang Hu,4 Jiaze Sun,1,2,3 and Shuyan Wang1

1Xi’an University of Posts & Telecommunications, Xi’an, Shaanxi 710121, China
2Shaanxi Provincial Key Laboratory of Network Data Analysis and Intelligent Processing, Xi’an, Shaanxi 710121, China
3Xi’an Key Laboratory of Big Data and Intelligent Computing, Xi’an, Shaanxi 710121, China
4Hubei University of Arts and Science, 441053 Xiangyang, Hubei, China

Correspondence should be addressed to Xiaoyin Wang; wangxiaoyinxy@126.com

Received 17 May 2022; Revised 4 July 2022; Accepted 22 July 2022; Published 28 August 2022

Academic Editor: Tahir Mehmood

Copyright © 2022 XiaoyinWang et al.�is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Since the traditional multiple-error locating method in software testing is di�cult to achieve, and its information analysis is
inaccurate, a software multiple-error locating method based on path clustering and failure weighting is proposed in this paper. In
an environment with complete test cases, the program execution context information is dynamically captured by running test
cases, and a path matrix of execution trajectory information is constructed. �e cluster analysis is used to divide clusters and
expand the weight of failed execution and added to suspicious in the process of degree evaluation to troubleshoot multiple errors.
Experiments are implemented on four benchmark programs. �e results show that compared with the �ve methods based on the
equivalent evaluation function, the error location cost of the proposed method was reduced by 19.15% on average and e�ectively
improved the e�ciency of error location.

1. Introduction

Software testing is an important stage in the process of
software development and software quality assurance [1]. It is
a very time-consuming and energy-consuming work, which
needs to consume almost 50% of software system develop-
ment resources [2]. �e problem of software error location is
widely concerned by the industry and academia [3]. Error
location is exploited to detect the existing error software
statements i and improve the e�ciency of software testing.
�e techniques of error location are frequently explored in the
�eld of software research in recent years, and any optimi-
zation will decrease the cost of software development [4].

Lots of research studies in the �eld of software error
location are conducted. Peng et al. [5] have put forward the
ABFL method using spectrum-based (SBFL) technology to
accurately locate code error. Zheng et al. [6] used the genetic
algorithm to achieve a highly �exible software multi-fault
location FSMFL framework. Feyzi and Parsa [7] have put
forward a statistical method of fault tendency based on

elastic network regression namely FPA-FL. Zhu [8] used
supervised and semisupervised learning techniques for
software testing. Gao et al. [9] de�ned the DStar method to
�nd the focus of solving the problem of wrong location by
improving the experimental results with the increase of
parameter values. Wong et al. [10] introduced a method to
predict software error location based on test Hamming
distance and the K-means algorithm. Huang et al. [11]
proposed a software error location method FGAFL based on
the function call path and the genetic algorithm. Li et al. [12]
have proposed a top-down software error location algorithm
based on the weakest precondition. Wang and Sun [13]
devised a software error location technique based on pro-
gram variation analysis to reduce the impact of accidental
successful test cases by analyzing program variation. Jiang
et al. [14] proved the equivalence relationship of 30 suspicion
formulas and the pros and cons of the positioning e�ect
based on genetic algorithm analysis; Digiuseppe and Jones
[15] proposed an error location based on the combination of
program dynamic slicing and the Bayesian method.

Hindawi
Mathematical Problems in Engineering
Volume 2022, Article ID 9768400, 8 pages
https://doi.org/10.1155/2022/9768400

mailto:wangxiaoyinxy@126.com
https://orcid.org/0000-0001-6091-5024
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/9768400


*e existing software multi-error locating method [16]
and the multi-objective optimization algorithm [17] has a
relatively larger difficulty coefficient and inaccurate infor-
mation analysis. When software testing is carried out in a real
environment, the type, number, and distribution of errors
cannot be known in advance. When there are multiple errors
in the program, the single error locating strategy, which ig-
nores the interaction between them, becomes less applicable.
At this stage, there are relatively few research works focusing
on the problem of multiple error localization in software.
Each method has its special scope of application. How to
improve the limitations of the method from different angles
and reduce the high cost is worth thinking and exploring.

*is paper proposes a method to troubleshoot errors
from the perspective of multiple errors in software. First,
cluster analyzing model processes the path matrix of the
program execution context, increases the weight of the
failure execution and is applied to the calculation process of
suspicious sentence suspicion to search error. On one hand,
it circumvents the problems of limited positioning results
and high calculation difficulty coefficients of the existing
multiple-error positioning methods. On the other hand, it
enriches the theories and methods of data mining tech-
nology in the field of error positioning.

2. Path Cluster

2.1. Principles of Cluster Analysis. Clustering analysis is an
unsupervised learning process in which a data object is
divided into clusters with different attribute characteristics
to realize the similarity coefficient of the same cluster ele-
ments and the similarity coefficient of different cluster el-
ements. Single error location method is mostly a repeated
test in one-bug-at-a-time way with low efficiency. And when
the number and distribution of errors cannot be learned in
advance, the effectiveness of the software single error lo-
cation method to achieve multi-error location will be lim-
ited.*erefore, it is necessary to use cluster analysis to locate
multiple errors.

In this paper, a clustering analysis algorithm is intro-
duced by using the similar relationship between program
execution trajectories to divide the huge execution trajectory
information set into several smaller information sets and
calculate the suspicion based on the coverage information
according to the execution trajectories in the subsets. *e
efficiency of strategy execution is improved by reducing
redundant data. At the same time, the size and type of the
sample set are not limited, and targeted constraints can be
added, which is beneficial to the selection of the execution
trajectory.

2.2. Path Clustering Generation. When setting parameters, a
pathmatrix Pwith dimension m × (n + 1) from the program
execution path and execution result information is con-
structed, m represents the number of test cases, n represents
the number of lines of the sentence, and the element
xi(n+1)(1≤ i≤m) in the n + 1 column of the matrix repre-
sents the actual output obtained by executing the test case

number i. If the execution result is consistent with expec-
tations, xi(n+1) � 1, and if the execution result deviates from
expectations, xi(n+1) � 0. *e matrix element
xij(1≤ i≤m, 1≤ j≤ n) represents the statement coverage
information of the line number j when the ith test case is
executed. If the jth sentence is covered, xij � 1 is obtained by
applying the binary vector method, otherwise xij � 0. P is
formally represented as

P �

x11 x12 . . . x1n x1(n+1)

x21 x22 . . . x2n x2(n+1)

. . . . . . . . . . . . . . .

xm1 xm2 . . . xmn xm(n+1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (1)

where P abstractly expresses the execution trajectory and
covers information of all test cases in the form of a path
matrix, and then a series of operations after clustering can be
established on the basis of matrix operations in the field of
numerical analysis, which expands the idea of solving
problems within a limited range and vividly conveys the
essence of the data object. *e process of path clustering is
illustrated in Figure 1.

In the process of path clustering, the value of k and the
definition of the initial centroid determine the performance
of the clustering strategy. *e connection of data objects in
the cluster and the proximity of the cluster determine the
classification effectiveness of clusters. *e multi-dimen-
sional Euclidean distance method is selected to measure the
distance between the execution trajectories. When the dis-
tance is shorter, the similarity coefficient between the tra-
jectories is higher, so that the probability that they belong to
the same cluster will be greater, respectively.

3. Software Error Positioning Model

3.1. Path Cluster Analysis. Assuming Pf is a Java program
containing multiple errors and n is the number of executable
code lines, T � t1, t2, . . . tn  is a set of test cases,
ti(1≤ i≤ n) ∈ T, and T � Tf⋃Tp, where Tf is a test case
that fails to execute. Tp is a test case that executes
successfully.

To reduce the computational overhead of NP-hard intra-
cluster variation optimization, the complexity will be O(nkt)

(where n is the number of data objects, k is the number of
clusters to be clustered, t is the number of cumulative it-
erations, k<< n and t<< n). *e K-means clustering strategy
uses multi-dimensional Euclidean distance measurement
method for cluster analysis. Suppose execution profile
vectors are X � s1, . . . , si, . . . sn, s(n+1) . and Y � s1′, . . . ,

si
′, . . . sn
′, s(n+1)
′ }, then the N-dimensional Euclidean distance

formula is

Distance �

�����



n+1

i�1
d
2
i




�

�������������������������������������

s1 − s1′( 
2

+ . . . si − si
′( 
2

+ . . . s(n+1) − s(n+1)
′ 

2


.

(2)

2 Mathematical Problems in Engineering



Among them, si is the ith coordinate of the first point and
si
′ is the ith coordinate of the second point. If si � si

′, then
di � 0, otherwise di � 1.

When clustering, the determination of the k value
changes according to the scale of the data object and is
empirically selected as 0.5%–2% of the scale.

3.2. FailureWeighting. When troubleshooting errors based
on spectral characteristics, the number of test cases will
continue to vary. Successful test cases are negatively

correlated with suspicion, while failed test cases are
positively correlated with corresponding suspicion.
*erefore, this article adopts an approach inspired by
Wong et al.’s claim that “when more and more test cases
are run, the weight of successful test cases should be
gradually reduced in stages,” and proposes a technique to
increase failure’s weight. *e suspicion calculation
method increases the proportion of failed executions for
the sentence of a certain line number, instead of directly
counting the frequency of failed test cases, to improve the
shortcomings of the Wong method, which is difficult to
select the weight interval and the weight reduction factor
cannot be adaptive.

When the process of the path matrix clustering is
completed, the ratio of failure to successful test cases in each
cluster is far less than 1. *is results in the probability of
statement execution failure being much less than the exe-
cution success. *e influence of different sentence coverage
and the same proportion on the calculation of suspicion are
weaken and different test case sets are adapted only by
changing the failed execution weight.

When the total number of test cases in a certain cluster is
m, the number of coverage for the statement execution
failure of line number i is

fail(i) � 
m

i�1
Covx,i ×(1 − t(x)). (3)

*e number of successful coverage is

Pass(i) � 
m

i�1
Covx,i × t(x), (4)

where x is the sequence identifier of the test case, the cal-
culation formula of the statement coverage Covx,i and the
execution result t(x) is

Covx,i �
1, If the i th statement is covered by thex th test case,

0, If the i th statement is not covered by the x th test case,


t(x) �
1, If the x th test case is executed successfully,

0, If the execution of the x th test case fails.


(5)

At this time, the failure weight factor of the statement
with line number i is defined as

w(i) �


m
x�1 t(x)


m
x�1 (1 − t(x))

, 

m

x�1
(1 − t(x))≠ 0,

0, 
m

x�1
(1 − t(x)) � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(6)

Among them, w(i) is the failure weight factor of the
statement with line number i.

*e weight factor changes with the ratio of successful test
cases to failed test cases. *e reason for increasing the failure

rather than the success weight factor is that adding a failed
test case has a greater impact on the suspiciousness of the
statement.

Furthermore, the formula for the total weight of failed
test cases covers the sentence with line number i is

Weigh(fail(i)) � 

fail(i)

x�1
w(i). (7)

For any sentence in the cluster, the frequency of in-
correct coverage is positively correlated with the suspicion,
and the frequency of successful coverage is negatively cor-
related with the suspicion. *erefore, the method of in-
creasing the failure weight factor is selected for a sentence, so

Generate path matrix

Start

Stable distribution
N

Y

Data preprocessing

Execute the program and
run the test case

Select the centroid of the
cluster

Return clustering results

Allocate clusters based on the
distance from the data element to the

centroid

End

Figure 1: Path clustering process.

Mathematical Problems in Engineering 3



the weight of the failed test case increases with the number of
sentence coverage and improves the efficiency of error
location.

3.3. Suspicion Calculation. Under the setting of the
weighting factor, a formula for calculating the suspicion of
failure weight is proposed as follows:

QWo1 � Weigh(fail(i)) − pass(i)

� 

fail(i)

x�1
w(i) − pass(i)

� 

fail(i)

x�1
w(i) − 

m

i�1
Covx,i × t(x).

(8)

QWo2 �
Weigh(fail(i)) + 0.001
Weigh(fail(i)) + pass(i)

�


fail(i)
x�1 w(i) + 0.001


fail(i)
x�1 w(i) + pass(i)

�


fail(i)
x�1 w(i) + 0.001


fail(i)
x�1 w(i) 

m
i�1 Covx,i × t(x)

.

(9)

Among them, in order to preventWeigh(fail(i)) � 0, the
sentence suspicion degree is 0, and then the error location
priority ranking cannot be performed, and QWo2 intro-
duces an adjustment factor of 0.001. In particular, the
premises of establishing QWo1 and QWo2 are


n

j�1
fail(j) + 

n

j�1
pass(j) � 

n

j�1


m

i�1
Covx,i ×(1 − t(x))

+ 
n

j�1


m

i�1
Covx,i × t(x)> 0.

(10)

When calculating the sentence suspicion degree, if the
jth sentence is not covered by the test case, the sentence will
be deleted from the suspicious sentence set.

4. FCW Method

*e implementation steps of FCW method are as follows:

Input: A Java program Pf with a total number of lines
of executable code n and multiple errors
Output: Check statement priority order
Step 1: Run Pf to obtain program execution trajectory
and execution results and extract feature elements to
construct a coverage information matrix P with di-
mension m × (n + 1). *e parameter m represents the

number of test cases P �

x11 x12 . . . x1n x1(n+1)

x21 x22 . . . x2n x2(n+1)

. . . . . . . . . . . . . . .

xm1 xm2 . . . xmn xm(n+1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Step 2: Use the k-means algorithm to divide the test
case set into k(k≤ n) subsets C1, . . . , Cj, . . . Cj, . . . , Ck,

where i≥ 1, j≤ k, Ci ∩Cj � ∅, and use formula (2) to
calculate the similarity between program entities.
Step 3: In each test case set, calculate the suspicious
degree of program entities separately and increase the
proportion of failed test cases at the same time. Add the
weight factor in formula (7) to the calculation process
to obtain an improved suspicious degree calculation
with equations (9) and (10).
Step 4: Arrange the suspicious sentences in descending
order of suspicion and then generate a check sentence
priority sequence Priority Sequence. According to the
principle that the highest Priority Sequence is, firstly to
be checked, the execution trajectory of multiple errors
in Pf is tracked. Finally, the method’s performance and
the pros and cons are compared.

5. Experiment and Evaluation

5.1. Experimental Setup and Design. *e FCW method uses
EvoSuite to generate test cases. Cobertura obtains the exe-
cution path and coverage information and uses path clus-
tering and failure weighting to troubleshoot errors.

According to the basic idea of the FCW method, taking
further verification of its performance as a starting point,
four Java benchmark programs with inconsistent versions of
wrong versions were selected to carry out the experiment.
*e benchmark program descriptions are shown in Table 1.

5.2. Comparison and Analysis of Error Positioning Methods.
When verifying whether the basic idea of the method is
correct, several representative equivalence classes are se-
lected to avoid repetitive operations and steps.

It can be practically proved that the risk assessment
function applied in the direction of software error location
can be divided into six equivalent categories (ER1∼ER6), and
two different methods are shown in each category in Table 2.

Tf represents the test cases that failed to execute, Tp

represents the test cases that executed successfully, and Tef

represents the number of covered program entities and test
cases failed to execute. Tnf represents the number of pro-
gram entities that are not covered and the number of test
cases that failed to execute. Tep represents the number of
entities covered and successfully executed by test cases. Tnp

represents the number of program entities that are not
covered and successfully executed by test cases.

By performing path clustering operation on the
benchmark program, the obtained experimental data are
shown in Table 3. *e columns 2∼5 in the table indicate the
number of errors in the program, the time required to
execute the test case, the number of clustering of the path
matrix, and the time spent in clustering, respectively. *e
experimental results imply that for different programs, al-
though the number of errors is different, the number of path
clusters may be identical. A reasonable number of clusters
should be set according to the program’s scale.

After cluster analysis, each class cluster was taken as a
basic unit, and the failure weight factor was set as a pa-
rameter in the process of suspicion calculation for the

4 Mathematical Problems in Engineering



statements in the cluster, so that the track generated by
errors and multiple errors in the program were traced in
descending check order. Various methods are applied to all
benchmark programs, and the comparison result is illus-
trated in Table 4. Columns 1∼2 of Table 4 are the names of
the program, the average number of sentences needs to be
checked and the cost of error location. Columns 3∼7 are the
cost results of commonly used methods for error location.
Columns 8∼9 are presented in this section. *e cost result of
the FCW method required the error positioning shows the
results by setting two different weighting factors for the
QWo1 method and the QWo2 method. *e data displayed
in bold indicates the positioning cost of this method is
higher than the FCWmethod, and the performance is not as
good as the FCW method. As the scale of the program
gradually increases, the positioning effect of the FCW
method is better than Wong1 and Naish2, but the cost is
higher than Tarantula, Jaccard, and Wong2.

By comparing the error location cost between different
methods, the result is shown in Figure 2.*e performance of
the FCW method is improved. Under the setting of arith-
metic average, it can be assured by checking about 25% of the
code. *e wrong location is reduced by 7.68%, 15.85%,
34.23%, 13.33%, and 25.83% compared with the wrong

location cost of Tarantula, Jaccard, Wong1, Wong2, and
Naish2 methods. In contrast, Tarantula, Jaccard, Wong1,
Wong2, and Naish2 methods need to check 31%–59% of the
code to locate the error and require more time and material
resources, but the efficiency obtained is not as expected.

In order to evaluate the effectiveness of the error location
method proposed in this paper, experiments use the error
location accuracy (called Acc) and the relative improvement
value (called RImp) as the evaluation criteria [18]. Acc is
defined as the percentage of executable statements that
should be checked before a true error statement is found.
RImp is the total number of statements that need to be
checked to find all errors using Context-FL divided by the
total number of statements that need to be checked using the
compare method.*e lower the value of RImp, the better the
positioning effect [19].

As shown in Figure 3, a comparison of the localization
efficiency of the five commonly used methods and the FCW
method in this paper. *e horizontal coordinate represents
the percentage of executable statements checked in all
programs, and the vertical coordinate represents the per-
centage of errors found by the locating method, and each
point in the graph represents the percentage of errors located
when checking the percentage of executable statements.

Table 1: Description of experimental objects.

Experimental procedures Description Number of lines of executable code Number of cases tested
Next day Date issues 132 22
TCAS Air collision system 163 27
Sorting Sorting algorithm 215 29
Tetris Tetris 2397 65

Table 2: Six equivalent risk assessment functions.

Equivalence class Equivalent risk assessment function

ER1 Naish 1 �
− 1, if Tep <Tf

Tp − Tep, if Tep � Tf
 Naish2 � Tef − (Tep/Tep + Tnp + 1)

ER2 Jarcard � (Tef/Tef + Tnf + Tep) Dice � (2Tef/Tef + Tnf + Tep)

ER3 Tarantula � ((Tef/Tef + Tnf)/(Tef/Tef + Tnf) + (Tep/Tep

+Tnp))

CBI � (Tef/Tef + Tep) − (Tef + Tnf/Tef + Tnf + Tep

+Tnp)

ER4 Wong1 � Tef Binary �
0, if Tef <Tf

1, if Tef � Tf


ER5 Wong2 � Tef − Tep Sokal � (2(Tef + Tnp)/2(Tef + Tnp) + Tnf + Tep)

ER6
Scott � (4TefTnp − 4TnfTep − (Tnf − Tep)2/(2Tef + Tnf + Tep)(2Tnp + Tnf + Tep)).

Rogot1 � (1/2)((Tef/2Tef + Tnf + Tep) + (Tnp/2Tnp + Tnf + Tep))

Table 3: Path clustering results.

Experimental program name Number of errors Test case execution time/s Number of clusters Clustering time/ms
Next day 3 0.256 2 14
TCAS 2 0.722 2 21
Sorting 4 1.617 3 20
Tetris 2 2.923 2 19

Mathematical Problems in Engineering 5



0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
Tarantula Jarcard Wong1 Wong2 Naish2 QWo1 QWo2

NextDay
Tcas
Sorting

Tetris
Cost

Er
ro

r L
oc

at
io

n 
C

os
t

Figure 2: Comparison of error location costs.

Table 4: Comparison of error location costs of different methods

Program
name Error location cost Tarantula

method
Jaccard
method

Wong1
method

Wong2
methods

Naish2
methods

FCW method
QWo1
method

QWo2
method

Next day

Find the average number of
check statements for fault 1 15.5 12.5 6.5 45.5 2.5 17 17

Find the average number of
check statements for fault 2 4 3 17 3 15 3 3

Find the average number of
check statements for fault 3 4 9.5 23.5 7.5 22.5 2 2

Positioning cost 0.178 0.189 0.356 0.424 0.303 0.167 0.167

TCAS

Find the average number of
check statements for fault 1 36 64 65.5 25.5 64 2 2

Find the average number of
check statements for fault 2 4.5 50 65.5 4.5 59 4 4

Positioning cost 0.248 0.699 0.804 0.184 0.755 0.037 0.037

Sorting

Find the average number of
check statements for fault 1 42.5 42.5 39.5 56.5 42.5 4.5 4.5

Find the average number of
check statements for fault 2 22 11.5 8.5 22 11.5 41.5 41.5

Find the average number of
check statements for fault 3 42.5 42.5 39.5 56.5 42.5 30.5 30.5

Find the average number of
check statements for fault 4 8 3 8.5 3 3 4.5 4.5

Positioning cost 0.535 0.463 0.447 0.642 0.463 0.367 0.367

Tetris

Find the average number of
check statements for fault 1 5 1 5 3 1 7 7

Find the average number of
check statements for fault 2 2.5 5 12.5 3 10.5 2.5 2.5

Positioning cost 0.313 0.25 0.729 0.25 0.479 0.396 0.396

6 Mathematical Problems in Engineering



6. Conclusion

Aiming to tackle multiple errors in software testing, this
paper adopts an error location strategy combining path
clustering and failure weighting. *rough the performance
test of the FCW method on four Java benchmark programs,
and the comparison of the pros and cons of the strategy with
five equivalent evaluation functions, the results show that the
use of cluster analysis algorithm can cognize the difference
between multiple errors, and weaken the interference be-
tween errors, and the failure weighted suspicion formula
method can reduce the impact of the proportion of suc-
cessful test cases after clustering. *is method can improve
the positioning accuracy within a certain range, reduce the
complexity of the method implementation and affect the
software testing cost.

Data Availability

*e raw/processed data required to reproduce these findings
cannot be shared as the data contains private data.

Conflicts of Interest

*e authors declare that they have no conflicts of interest.

Acknowledgments

*e work is supported by the National Natural Science
Foundation of China (Grant no. 61876138), the Key R&D
Project of Shaanxi Province (2020GY-010), the Key In-
dustrial Chain Core Technology Research Project of Xi’an
(2022JH-RGZN-0028), and the Special Fund for Key Dis-
cipline Con`struction of General Institutions of Higher
Learning from Shaanxi Province.

References

[1] A. Bertolino, “Software testing research: achievements,
challenges, dreams,” in Proceedings of the Future of Software
Engineering, pp. 85–103, IEEE, Minneapolis, MN, USA, May
2007.

[2] C. Sharma, S. Sabharwal, and R. Sibal, “A survey on software
testing techniques using genetic algorithm,” International
Journal of Computer Science Issues, vol. 10, no. 1, pp. 381–393,
2013.

[3] P. Hao, Z. Zheng, Z. Y. Zhang, Y. C. Gao, C. Gong, and
Y. Z. Xue, “Self-Adaptive fault localization algorithm based on
predicate execution information analysis,” Chinese Journal of
Computers, vol. 37, no. 3, pp. 500–511, 2014.

[4] Li Zheng, H. Wang, and Y. Liu, “HMER: a hybrid mutation
execution reduction approach for mutation-based fault lo-
calization,” Journal of Systems and Software, vol. 168, Article
ID 110661, 2020.

[5] Z. Peng, X. Xiao, G. Hu, A. Kumar Sangaiah, M. Atiquzzaman,
and S. Xia, “ABFL: an autoencoder based practical approach
for software fault localization,” Information Sciences, vol. 510,
pp. 108–121, 2020.

[6] Y. Zheng, Z. Wang, X. Fan, X. Chen, and Z. Yang, “Lo-
calizing multiple software faults based on evolution algo-
rithm,” Journal of Systems and Software, vol. 139,
pp. 107–123, 2018.

[7] F. Feyzi and S. Parsa, “FPA-FL: i,” Journal of Systems and
Software, vol. 136, pp. 39–58, 2018.

[8] H. Zhu, “Software testing as a problem of machine learning:
towards a foundation on computational learning theory,” in
Proceedings of the 2018 IEEE/ACM 13th International
Workshop on Automation of Software Test (AST), p. 1,
Gothenburg, May2018.

[9] R. Gao, W. E. Wong, Z. Chen, and Y. Wang, “Effective
software fault localization using predicted execution
results,” Software Quality Journal, vol. 25, no. 1,
pp. 131–169, 2017.

[10] W. E.Wong, V. Debroy, R. Gao, and Y. Li, “*eDStar method
for effective software fault localization,” IEEE Transactions on
Reliability, vol. 63, no. 1, pp. 290–308, 2014.

[11] Q. Huang, Y. Mou, Z. Cui, and Z. Zhang, “Function level
software error location,” Computer Engineering and Appli-
cations, vol. 55, no. 20, pp. 1–10, 2020.

[12] Y. Li, S. Huang, Y. Li, C. Ronghua, and D. Lang, “A software
error location algorithm,” Journal of Electronics, vol. 47,
no. 01, pp. 25–32, 2019.

[13] Q. Wang and W. Sun, “Software error location,” Computer
Engineering, vol. 43, no. 12, pp. 55–59, 2017.

[14] Y. Jiang, W. Li, Y. Qiao, and S. Jiang, “Approach of fault
localization based on Bayesian,” Computer Engineering and
Design, vol. 35, no. 11, pp. 3845–3849, 2014.

[15] N. Digiuseppe and J. A. Jones, “Fault density, fault types, and
spectra-based fault localization,” Empirical Software Engi-
neering, vol. 20, no. 4, pp. 928–967, 2015.

[16] T. T. Wang, C. Wang, X. H. Su, and Z. Lei, “Invariant based
fault localization by analyzing error propagation,” Future
Generation Computer Systems, vol. 94, pp. 549–563, 2019.

[17] J. Sun, J. Deng, Y. Li, and N. Han, “A BCS-GDE multi-ob-
jective optimization algorithm for combined cooling, heating
and power model with decision strategies,” Applied >ermal
Engineering, vol. 213, Article ID 118685, 2022.

100

90

80

70

60

50

40

30

20

10

0
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

%
 o

f f
au

lty
 v

er
sio

ns

% of the executable statements examined

Tarantula
Jarcard

Wong1
Wong2

Naish2
QWo1
QWo2

Figure 3: Comparison of localization efficiency.

Mathematical Problems in Engineering 7



[18] V. Debroy, W. E. Wong, X. Xu, and B. Choi, “A grouping-
based strategy to improve the effectiveness of fault localization
techniques,” in Proceedings of the 10th Int’l Conference on
Quality Software. Zhangjiajie, pp. 13–22, IEEE Computer
Society, Zhangjiajie, China, July 2010.

[19] Y. Lei, X. G. Mao, Z. Y. Dai, and C. S. Wang, “Effective
statistical fault localization using program slices,” in Pro-
ceedings of the 36th Annual Int’l Computer Software and
Applications Conference Izmir, pp. 1–10, IEEE Computer
Society, Izmir, Turkey, July 2013.

8 Mathematical Problems in Engineering


