
Research Article
Semantic Association and Decision-Making for the Internet of
Things Based on Partial Differential Fuzzy Unsupervised Models

Wansu Liu and Biao Lu

Information Engineering Department, Suzhou University, Suzhou 234000, China

Correspondence should be addressed to Biao Lu; lubiao@ahszu.edu.cn

Received 17 December 2021; Accepted 20 January 2022; Published 7 February 2022

Academic Editor: Gengxin Sun

Copyright © 2022 Wansu Liu and Biao Lu. *is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

*is study presents an in-depth study and analysis of IoT semantic association and decision-making using a partial differential
fuzzy unsupervised approach. It focuses on a semantic annotation framework for device metadata and a knowledge base
construction method to further improve the interoperability of IoT domain knowledge by building a unified IoT domain
knowledge base and designing and implementing a semantic IoT knowledge management and application generation system.*e
main proposal is an IoT generic domain ontology, which reuses the existing excellent ontologies of IoT as much as possible,
extracts the commonly used concepts of the domain and combines them, and provides a unified semantic template for IoT
applications. On the other hand, by applying the entity linking technique to the extension of the knowledge base and linking the
structured metadata of devices to the corresponding entities of the background knowledge base, the domain knowledge base can
be made to share the rich background knowledge. At the same time, the interoperability of heterogeneous IoTmetadata between
applications is enhanced by unifying data and concepts from different device applications to the same background knowledge base
through entity alignment techniques.*e semantic representation of events applicable to IoTapplication scenarios is investigated,
and an IoTevent ontology for representing abstract events and event relationships in IoT is designed; next, a domain ontology with
IoT sensing and control event representation capability is constructed based on the IoT event ontology, in which the typical
domain ontology (SSN) that can be used for IoTapplications is followed by the ontology reuse principle is improved and extended
to support the description of event types and interevent relationships, and the IoTevent model is associated with the improved IoT
base ontology through an ontology alignment approach. Finally, the IoT sensing and control ontology are validated by semantic
modeling of device composition, component relationships, and operational processes based on the IoT sensing and
control ontology.

1. Introduction

Internet of things (IoT) extends and extends the connotation
of the internet connection to any things and things and is a
network that enables things to establish communication
connection and information sharing with the internet based
on standard protocols through terminal information sensing
devices such as infrared sensors, radiofrequency identifiers,
laser scanners, and global positioning systems to achieve
positioning, monitoring, and management, with the goal of
the interconnection of all things. *e core elements of IoT
can be summarized as terminal sensing, network commu-
nication, and application services, and the three elements

reflect the essential characteristics of IoT interconnection of
everything [1]. With the rapid expansion of the application
scope of IoT and the gradual deepening of the application
degree of domain integration, new scenarios and new de-
mands are constantly generated, and new theories and
technologies are proposed one after another around the
three elements of IoT, which promote the rapid develop-
ment of the IoT field [2]. *en, two nonlinear partial dif-
ferential equation approximation solution methods are
applied to the prediction model of the flow field, and the
research on the prediction identification of the medium
physical parameters in the flow field and the prediction of
the flow field development trend is carried out, which proves
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that the use of neural network model can not only make
accurate prediction identification of the relevant parameters
in the flow field but also play an effective role in the short-
term prediction problem of the flow field. *e internet of
things (IoT) refers to the collection of any object or process
that needs to be monitored, connected, and interacted with
in real-time through various devices and technologies such
as various information sensors, radiofrequency identifica-
tion technology, global positioning systems, and other in-
formation needed for sound, light, heat, electricity,
mechanics, chemistry, biology, location, etc. *e LSTM
neural network model with coupled N-S system of equations
is also developed, and the errors of several flow field pre-
diction models in the short-term prediction of the flow field
are compared, showing that the LSTM neural network has
higher accuracy in the short-term prediction of the flow
field, and the introduction of the corresponding physical
laws in the neural network model can effectively improve the
flow field prediction ability of the model [3].

As an extension of the internet, the internet of things
(IoT) connects all objects that transmit information through
the internet to realize the connection of things and to achieve
intelligent management on this basis [4]. IoT obtains in-
formation of objects through various sensing devices, such
as radiofrequency identification, sensor networks, infrared
sensors, and global positioning system. With the develop-
ment of IoT technology, sensing devices are popular in all
occupations and have a great impact on our work and life,
such as intelligent transportation systems; people can use
intelligent terminals to obtain various conditions of the road
in time, to know whether the road ahead is blocked, for
example, smart home system; and people can use various
sensing devices to obtain home information, to carry out
remote monitoring, remote operation, security manage-
ment, etc. NB-IoT, 5G, artificial intelligence (AI), cloud
computing, big data, blockchain, edge computing, and a
series of new technologies and topics will be continuously
injected into the field of IoT, which will help “IoT+ industry
applications” to be rapidly implemented and promote the
popularity of IoT in industry, energy, transportation,
medical, new retail, and other fields, and also it also gives rise
to many new applications of IoT, such as smart door locks,
smart speakers, drones, and other single products. In the
coming years, the relationship between artificial intelligence,
blockchain, big data, cloud computing, and IoT will be
rationalized to build a new, ubiquitous, and intelligent ICT
(information, communication, and technology) infrastruc-
ture that can be applied to the whole society and industry.

In this study, we study how to use the partial differential
equation learning model, combined with the characteristics
of remote sensing images, and make a series of adaptations
to the original partial differential equation learning model,
which is mainly aimed at processing natural images, so that
the model can process remote sensing images that are very
different from natural images. *e research goal of using the
same framework model to deal with many different remote
sensing image processing problems by using machine
learning theory is thus achieved. In this study, this model is
used to solve three advanced visual processing problems in

remote sensing image processing such as declouding, spa-
tial-temporal fusion, and land cover type classification in
remote sensing. Graph representation learning techniques
are then used to learn potential semantics from IoT con-
textual graphs and to represent the semantics such as low-
dimensional vectors. Modeling IoT semantics using graph
representation learning techniques helps to mine valuable
semantic information behind item interactions, thus en-
abling the processing and fusion of IoT data and facilitating
the automation of IoT.

2. Related Work

*e platform first uses the generic ontology to semantically
annotate the sensor data so that it is rich in semantic in-
formation and then establishes links between them with the
same descriptive information to form linked sensor data,
which is finally published to the platform [5]. Although this
method constitutes linked sensor data, the ontology used in
its annotation method is a generic ontology, and it does not
use the sensor ontology with special meaning for semantic
annotation, so its accuracy is not high, the linked data are
still a single sensor data, and it does not link with related data
of other fields to form linked sensor data with various
contents. *e platform has the function of querying-related
sensor data in the LOD Cloud, mainly by building some
functions to find related information [6]. In this method, the
annotation of sensor data and querying data related to
sensor data in LOD Cloud are performed, but there is no
linkage of sensor data with related data, and themethod used
to query data related to sensor data in LOD Cloud has some
limitations.

Technologies such as sensor networks, sensor web, and
semantic sensor networks process IoT data at different
granularities and attempt to address interoperability issues
in the IoT [7]. Sensor networks connect various sensors to
the network through proximity wireless communication
technologies and then monitor and record environmental
conditions in each area, including aspects such as temper-
ature and humidity [8]. *e data recorded and collected by
sensor networks can be used as information about the at-
tributes of an item, providing a basis for later mining value
from the data and developing applications [9]. However, the
heterogeneity of data and interoperability between items
create difficulties in the development of cross-domain ap-
plications and the processing of data. It is explained which
ontologies can be used in different IoT platforms to develop
interoperable applications [10]. By considering a combi-
nation of user preferences over time and the social similarity
of items, an item recommendation model is proposed that
first maps the social relations of items into a low-dimen-
sional space by understanding user preferences over time to
estimate the social similarity of items [11]. A recommen-
dation list is generated based on this social similarity using
collaborative filtering [12].

*e breakthrough in deep learning first appeared in the
area of unsupervised learning, and it was the introduction of
efficient optimization algorithms for deep confidence net-
works that alleviated the gradient disappearance problem
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that had plagued deep neural network training for years [13].
Unsupervised learning is characterized by directly learning
generic features of the data and making them available for
other tasks downstream, optimizing each constrained
Boltzmann’s machine first during its training and then fine-
tuning them for a specific task. Generative adversarial
networks (GANs) based on the idea of zero-sum games can
learn more complex data distributions, disrupting the way
deep learning models generate new samples and taking the
quality of generated samples to a new level. Generative
adversarial networks consist of a pair of generators and
discriminators that confront each other. *e input to the
generators is randomly sampled noise from the hidden
space, and the output needs to obey the true sample dis-
tribution as much as possible. *e discriminator is a binary
classification network and scores each sample to learn a
hyperplane that partitions the generative and true distri-
butions. *e goal of the generator is to produce realistic
samples, and the discriminator needs to enhance the gen-
erator by measuring the distance between the generated
samples and the true samples.

3. Partial Differential Fuzzy Unsupervised
Models for Semantic Association Decision
Analysis for the Internet of Things

3.1. Partial Differential Fuzzy Unsupervised Model Design for
the Internet of (ings. Nonlinear dynamics belongs to the
domain of nonlinear science, and many processes of
nonlinear dynamics can be formulated using nonlinear
partial differential equations; therefore, the problem of
solving nonlinear partial differential equations has been
the key research content in various fields. *ere are
various nonlinear partial differential equations, and since
the research in this study belongs to the interdisciplinary
area of machine learning and fluid dynamics, the non-
linear partial differential equations that have a wide range
of applications in fluid dynamics are mostly considered
when choosing nonlinear partial differential equations as
the research object [14]. Sensing devices can collect real-
time information of any object that needs to be moni-
tored, connected, and interacted and then access it
through wired or wireless networks to finally realize the
connection between things and things, and things and
people, to achieve intelligent sensing, identification, and
management of objects and processes. It belongs to the
most basic nonlinear partial differential equations that
apply to only one spatial dimension and can be used to
model the propagation and reflection processes of shock
waves, acoustic waves, and so on. Also known as the
viscous Burgers’ equation in fluid mechanics, it can be
derived from the N-S equation for the velocity field by
neglecting the pressure gradient term. Although Burgers’
equation does not contain a pressure gradient term, the
convection term and the diffusion term, it still allows to
exhibit the hybrid nature of the N-S equation. *erefore,
it is studied as a mathematical model for a class of ki-
nematic problems in fluid mechanics.
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where zu/zt is the unsteady term, u(zu/zx) the convective
term, and μ(z2u/zt3) the diffusive term, μ denotes the ve-
locity, and μ the viscosity of the medium. *e differential
invariants used in the model belong to the Lie group theory,
which is a theory of real or complex flow forms with a group
structure and can be used to explain the phenomenon that
some objects can keep their shape and volume constant
while moving. Differential invariants can be expressed in
differential equations for each invariant system and each
invariant variational problem and can also be applied in
product-invariant ordinary differential equations. A se-
quence of functions in the IoT is usually a combination of
two causally related functions. For example, recipes in
IFTTTcan be called a sequence of functions in the IoT. *is
section formally defines the IoT context diagram and its
representation.
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*e first equation in equation (2) is the momentum
conservation equation, where the zv/zt left side of the equal
sign is the nonstationary term and the convective
term(v · ∇)v, both collectively referred to as the inertial
force, the right side of the equal sign is the ∇p pressure
gradient, or surface force, the ∇2v viscous force term, or
diffusion term, μ is the viscosity coefficient, and F is the
volume force, mainly gravity. *e introduction of sparsity
using KL scatter will penalize neurons with large activation
values [15]. If the sparse self-encoder uses sigmoid such that
hj(x) denotes the activation value of the jth neuron in the
hidden layer, the average activation value of the jth neuron
in the hidden layer is expressed as

pi �
1
N



N

i�1
hj x

i
i , (3)

where N denotes the number of samples. Assuming that
each hidden layer neuron is activated with a certain prob-
ability and that the hidden layer neurons are independent of
each other, the sparse parameters p ≈ 1 are defined, and the
sparse regularity is introduced using the KL scatter p � pi:

KL p‖pi(  � p ln
p

pi

− (1 − p)ln
1 − p

1 + pi

. (4)

*e IoT is a huge information network consisting of
sensing devices interconnected by signals, in which all ob-
served objects in the network can exchange information with
each other through the sensing devices, and a large amount
of sensor data related to the monitored objects that are
generated during the communication process. How to ex-
tract effective information from the cluttered sensor data is
crucial, and based on the huge amount of sensing data, it is
the function of the IoTsystem to be able to extract the useful
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data resources from it and to transmit, store, and display
them. *e basic support layer provides the virtual servers
required by the big data service platform, the database of
structured, semistructured, and unstructured data and IoT
network resources, and other basic support environments.
Focus on tackling distributed virtual storage technology,
visualization interface technology for big data acquisition,
storage, organization, analysis, and decision-making oper-
ations, network transmission and compression technology
for big data, and privacy protection technology for big data.

On the other hand, IoT systems analyze useful IoT data
resources and provide a series of feedback control, decision-
making actions, and prediction information to various in-
telligent services based on the analysis results [16]. However,
since the sensing attributes of sensor data are described and
differently processed in different detection scenarios, and
since the sensing devices can be distributed all over the world
regardless of geographical and national restrictions, the
collected IoT sensing data are multisource and heteroge-
neous, and it makes it difficult to fuse and share sensing data
among them so that they cannot serve applications well, as
shown in Figure 1.

*is part is the process ofmatching the querywords entered
by the userwith the relevant dataset in the retrieval database and
returning it to the user. Among them, to address the problem of
inaccurate query words input by users and thus semantic
ambiguity, this module preprocesses the query words before
matching them with the retrieval library. First, the query words
are subjected to operations such as splitting and destaying
words to form a key vocabulary set of query words, and then,
the domain ontology of the observed object is conceptually
extracted to form a semantic lexicon. *en, the keyword vo-
cabulary set of the query words is matched with the semantic
lexicon using an ontology-based semantic similarity algorithm,
and the semantic object with the highest semantic similarity is
replaced with the keywords to form a more accurate and
complete vocabulary set.
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It is easy to see that when Uc
n− 1 is known, the problem is

transformed into an optimization problem concerning invi.
WhenUN-1 is solved, according to equation (5), the problem is
transformed into an optimization problem concerning (Uc

n− 1)
2.

*is results in iterations, and the original problem can be re-
duced to the initial problem. All these quantitative evaluation
methods approximate the true distribution by obtaining a finite
number of samples from the model generator without the need
to know the specific model that generated the samples. *e
inception score measures the distance between the generated
distribution and the true distribution using the Inception V3
model, which is calculated as follows:

ID(G) � exp Ex− p[KL(p(y|x)‖p(y)] 
2
, (6)

where x denotes the generated sample. *e inception score
measures the correlation between the quality and diversity of

the generated image and is suitable for the evaluation of clear
and diverse generated samples. A larger value indicates that
the generated sample is closer to the real sample but cannot
detect overfitting problems.

*e Wasserstein distance metric measures the EM dis-
tance between the generated and true distributions, which is
defined as follows:

W pr, pg  � infEx− y[x − y]
2
. (7)

*e Wasserstein distance performs better when the
samples are computed in the appropriate feature space, but
the sample complexity is high. *e smaller the Wasserstein
distance, the more similar the two distributions are. Given a
kernel function k, it measures the difference between the
generated distribution and the true distribution. When
running the kernel maximum mean difference on a pre-
trained residual network, it can identify the generative
samples and the true samples. *e smaller the kernel
maximum mean difference, the more similar the two dis-
tributions are.

Semantic retrieval is the process of matching the data
resources of the retrieval library from the semantic level
of query words, so it is necessary to preprocess the word’s
multiple meanings of query words before resource
matching to ensure the accuracy and professionalism of
query words and to form a collection of RDF triples of
query words after matching, replacing and adding cor-
respondence between query words and the ontology-
related semantic dictionary [17]. With unsupervised
learning, we can quickly classify behaviors. Although we
do not know what these classifications mean, this clas-
sification allows us to quickly exclude normal users and
more targeted in-depth analysis of abnormal behaviors.
In this study, the semantic retrieval library is composed of
linked sensor data, which are associated data, and the
associated data are composed of a large number of as-
sociated RDF triple sets, so in essence, the semantic re-
trieval library is composed of a large number of associated
RDF triple set documents, and to better achieve matching
with the query term RDF triple set, the retrieval library
needs to be parsed to form the set of RDF triples asso-
ciated with the retrieval library, as shown in Table 1.

*e above core behaviors defined by SSN can all be
considered as narrow events, i.e., transient and delayed
events, which are characterized by heterogeneity, i.e., the
event leads to a change in an objective state, e.g., data are
obtained or an operation is performed, and termination,
i.e., the process of state change caused by the event that
has been completed, which is expressed in the time di-
mension as having a start time and also an end time.
While observation, drive, sampling, and stimulation are
typical behavioral abstractions in IoT sensing and con-
trol, in the X-ray single-crystal diffractometer device
control scenario, it is more important to observe the logic
of events during different modes of scanning than to
make observations of the above typical behaviors, i.e., to
distill the laws from the common features of event
instances.
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3.2. Semantic Linked Decision Analysis for the Internet of
(ings. *is module is the most core part of the semantic
retrieval system based on linked sensor data, and the above
three modules are all prepared for the implementation of
this module. *e semantic retrieval module contains three
submodules as parsing of retrieval library data resources,
matching of semantic similarity algorithms, sorting, and

returning of matching results. *e processing results of each
module serve the higher level in turn and work together with
each other to present to the user the retrieval results asso-
ciated with the query terms.

*is module first parses the retrieval repository data
resource and extracts the three parts containing the
observed object, the observed value, and the descriptive
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Figure 1: Semantic retrieval model based on linked sensor data.
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relationship between them to form the set of RDF triples.
*e query terms have been accordingly processed in the
second module to form the set of RDF triples of the query
term vocabulary. Since semantic similarity matching is
between RDF triples, this study uses a trans-based al-
gorithm to achieve semantic matching between RDF
triples with similarity values above a threshold value, and
the retrieved library document with the correlation is
used as the retrieval result and returned to the user [18].
Since the retrieval results are not unique in most cases, it
is necessary to rank the retrieval results according to the
relevance, and the system uses the transalgorithm to
calculate the semantic similarity value between RDF
triples as the basis for the relevance, and the larger the
semantic similarity value is, the greater the relevance is,
and the higher the corresponding retrieval results are
ranked. *e module data flow diagram is shown in
Figure 2.

A uniform random walk with a fixed length can effi-
ciently capture the local structure of the graph without
distinguishing between edge types. For each edge ei,j, the
uniform random wandering strategy is defined as
p(μi|μj) � d(μi), where d(μi) is μi, that is, the degree of the
node. *e transfer probability tx is defined as follows:

atx �

1
p

, dtx � 0

p, dtx � 1

1
q
, dtx � 2

q, dtx � − 1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

, (8)

where dtx denotes the shortest path between node t and node
x. Inspired by this intuition, we integrate graph-sw and
graph-tf into the IoT context graph and design an improved
random wander with bias. *e proposed method introduces
an additional factor β to adjust the transfer probability used
to sample the IoT context graph, which is defined as

πvx �

atxβvx

Z
, if(v, x) ∈ E

1, otherwise

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(9)

*ings can learn the underlying semantic representation
of the nodes [19]. In the previous section, we generated a set
of nodes on the IoT context graph by randomly wandering
with bias. Our goal is to construct the mapping function:
f: V⟶ PV×d, where f(μi) is a vector representation of the
nodes μi ∈ V . To achieve this goal, we estimate the likeli-
hood of a node, given all previous nodes in a walk μi, as
follows:

P μi|f μ1( , f μ2( , . . . , f μi( ( . (10)

Unsupervised learning algorithms based on self-encoder
structures are often trained using a self-supervised form, and
their performance has approached that of supervised models
in some computer vision tasks, but there are many more
directions worth investigating.*ere is also a trend to collect
data from the web to train models. A large number of images
and videos can be easily downloaded with the help of search
engines, but these data have different raw data structures,
different titles, different keywords, etc. *erefore, it is an
open question how to efficiently utilize these data, which are
not in a uniform format and may contain noise at the same
time.

*e correlation entropy can measure the similarity of
two random variables and determine the effective range of
the algorithm by adjusting the kernel width in the kernel
function. *erefore, compared to the traditional mean
square error, by choosing the appropriate kernel width, the
correlation entropy-based algorithm can effectively suppress
the adverse effects of outliers and preserve as much infor-
mation as possible in the signal, providing more useful data
for the subsequent information processing. *e correlation
entropy between two random variables X and Y can be
defined as

V(x, y) � E ka(x − y) , (11)

where V(x, y) � E[ka(x − y)] is the Gaussian kernel with
the equation

ka(x) � exp
x
2

sσ2
 . (12)

*us, correlation entropy can map the input data to
high-dimensional kernel space, and kernel methods are a
powerful and effective tool in the field of machine learning.
In practice, since the probability density functions of the
random variables X and Y are unknown, the correlation
entropy between the random variables X and Y is usually
calculated using a discrete form, i.e.,

V(x, y) �
1
N
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i�1
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j
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Once the entity reallocation for each attribute node is
completed, these new candidate entities will be re-entered

Table 1: Event ontology fragments.
. . .

ito-eo:Event a rdfs:Class; a owl:Class;
rdfs:subClassOf iot-eo:Event;
rdfs:isDefinedBy ito-eo:.
ito-eo:TimeInterval a rdfs:Class; a owl:Class; rdfs:isDefinedBy
ito-eo:.
ito-eo:Location a rdfs:Class; a owl;:Class;
rdfs:isDefinedBy ito-eo:.
ito-eo:Participaunt a rdfs:Class; a owl:Class;
rdfs:isDefinedBy ito-eo:.
ito-eo:TemporalRelation a owl:ObjectProperty;
rdfs:isDefinedBy ito-eo:.
ito-eo:LogicalRelation a owl:ObjectProperty;
rdfs:isDefinedBy ito-eo:.
iot-eo:CausalRelation a owI:ObjectProperty;
rdfs:subPropertyOf ito-eo:Logic alRelation;
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into the corresponding factor nodes and start a new
round of iterative inference computation. Ideally, the
algorithm will stop after all attribute nodes have received
candidate values that satisfy the type and relationship
constraints, i.e., all nodes do not need to operate or re-
place candidate entities after the comparison judgment
[20]. However, this stopping condition is too demanding
and the condition cannot be reached in actual operation.
*erefore, the algorithm is designed to execute five it-
erations and then judge the number of messages received
by all nodes; if the ratio of this number to the total
number of messages was less than a threshold, it can be
seen that the algorithm has reached convergence and each
current candidate entity will be output as the final
matching result; otherwise, the algorithm will continue to
iterate until no node receives a message or the tenth
iteration is executed, as shown in Figure 3.

A good model should be robust to small changes in the
input data, in addition to being robust to outliers in the
training set [21]. For a self-encoder, if a little noise is added
to the input data, hopefully, the feature representation it
extracts should be very similar to the feature representation
of clean input data, so the starting point of a shrinkage self-
encoder (CAE) is to reduce the effect of noise in all di-
rections of the training samples on the model, making the
model itself a benign system and thus obtaining more robust
features. Shrinkage self-encoders force the model to learn a
function whose target does not change much even when the
input samples are perturbed by penalizing the model’s
sensitivity to changes in the input samples.

4. Analysis of Results

4.1. Performance Results of the Partial Differential Fuzzy
UnsupervisedModel for IoT. To demonstrate the advantages
of the semantic retrieval part of the retrieval model, the
retrieval quality of the semantic retrieval model will be
evaluated by comparing it with the keyword retrieval. *e
keyword retrieval mainly forms the query vocabulary set
after dividing and destaying the query conditions, which is
directly matched with the data resources in the retrieval
library. Compared with this system, the semantic replace-
ment and the semantic matching part based on the trans-
model are missing, so the keyword retrieval is inferior to the
semantic retrieval part in the retrieval system of this study in
terms of search accuracy. *e role of the generator is to
generate similar data with the characteristics of the training
set by learning the characteristics of the training set data and
fitting the random noise distribution to the true distribution
of the training data as much as possible under the guidance
of the discriminator.*e discriminator, on the other hand, is
responsible for distinguishing whether the input data are real
or fake data generated by the generator and feeding it back to
the generator. *e two networks are alternately trained, and
their capabilities are simultaneously improved until the data
generated by the generator network can be faked and reach a
certain balance with the capabilities of the discriminator
network.

*e corresponding query conditions are entered into the
retrieval system, respectively, and the arithmetic mean of the
values corresponding to the two retrieval mechanisms is
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Figure 2: Data flow diagram of the semantic retrieval library building module.
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calculated as the accuracy of the retrieval system to evaluate
the search quality of the two retrieval mechanisms, where the
calculation is shown in equation (8), for example, only the
first 10 items in the retrieval results are looked at, of which 6
are relevant results. *e values of semantic search and
keyword search are shown in Figure 4.

*e visualization of the network weights trained using
the cross-entropy-based algorithm is some graph without
clear structure due to the influence of outliers, which at this
point dominate the whole learning process, thus making the
network to learn some meaningless features. In contrast, the
weights learned using the C-CAE algorithm are similar to
Gabor filters and are similar to the receptive fields in the V1
region of the visual cortex, which are the basic curves that
make up the image. Smart devices are dramatically in-
creasing the amount and type of data available from the
environment, and new types of software applications are
creating new ways to benefit from these data. Together, these
advances are driving a fundamental shift in how we manage
and operate these environments, enabling us to move from
traditional control strategies based on simple feedback loops
to a data-driven approach that gives parties real-time insight
into how smart devices and systems are operating.

Semantic processing is comprised of static semantic
data processing and dynamic semantic data processing.
Semantic data processing systems are important com-
ponents of an ecosystem that can integrate both
streaming and static RDF data sources and perform se-
mantic data processing, where semantic data can be
combined through standard models, descriptions, and
query languages and protocols. *e IoT knowledge
management system introduced in the previous section is
a software system that implements static semantic data
processing; streams are the general form that IoT data
take in generation, transfer, and processing, so semantic
stream processing in IoT applications is the basic re-
quirement for dynamic data processing, and the semantic
stream processing engine (system) is the software system

that implements the overall semantic data processing.*e
input data of the semantic stream processing engine are
the semantic stream, so the generation of the semantic
stream is a prerequisite for the realization of the semantic
stream processing, as shown in Figure 5.

From the recorded values, the values of all three loss
terms are very close to 0, and the values of loss and loss_h are
the same. It can be inferred that the introduction of the
auxiliary function does not have too much influence on the
trend of the loss terms in the pure data-driven part of the
model, but only serves as a training guide, so that the
training of the model no longer pursues the minimization of
loss but chooses the update direction of the parameters both
numerically and from the laws of physics. *is also confirms
the effectiveness of purely data-drivenmethods as a means of
approximating the solution of nonlinear partial differential
equations.

*e sparse filtering algorithm claims to guarantee both
population sparsity and presence sparsity, but it obtains the
lowest population sparsity compared to other algorithms.
Since sparse autoencoder explicitly forces the presence of
sparsity to be obtained, it has the highest level of presence
sparsity and achieves good results in terms of population
sparsity. In a relational database management system, the
relationship between the data does not have to be deter-
mined when the table is created, and often all the infor-
mation of an entity is stored in one table. When retrieving
data, the information of different entities stored in multiple
tables is queried through join operations. *e join operation
gives users a lot of flexibility as they can add new data types
at any time. New tables are created for different entities and
subsequently queried through joins. *e EPLS algorithm
obtained a better balance between population sparsity and
presence sparsity due to imposing a strict operation on
feature sparsity.
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First, the related algorithms and research status of sparse
feature extraction are analyzed; then, the competitive acti-
vation mechanism between neurons is explored; finally, the
sparse target matrix is constructed based on sparse feature
extraction and competitive activation of neurons; and sparse
features are extracted by minimizing the distance between
the output of the competitive layer and the sparse target
matrix to provide a basis for solving downstream tasks such
as image classification. *e algorithm extracts sparse feature
representations of the data without explicitly modeling the
data distribution by introducing a competitive activation
mechanism. Experimental results verify the effectiveness and
generalizability of the sparse feature extraction algorithm
based on sparse target matrix generation.

4.2. IoT Semantic Association Decision Results. *e same
variables in different locations in the tread patterns seem to
capture the number of different connection operations.
Variables that always appear in the same position in all
triadic patterns contain many low-selective self-linking
operations; the likelihood of the outcome of a linking op-
eration is lower if there are cases where the same variable acts
as both subject and predicate, a feature represented by the
following priority relations.

In this subsection, it is necessary to make full use of the
known data, and at the same time, to save some compu-
tational resources, the training data can be appropriately
added based on the validation data in Section 3.2. Subject to
the computational capacity, 50,000 random data from
500,000 data points of 0∼99 Nt moments (500 data points
out of 5,000 points per moment are guaranteed to be se-
lected) are used as training data, and the number of training
steps is 30,000 steps, while the validation dataset is selected
from the completely unknown 100∼120 Nt moments for the
comparative validation of the two methods on the future
trend prediction ability of the flow field, as shown in
Figure 6.

For a given model, when the predicted moments are
100–110 Nt, the prediction error of the model can be

controlled in a small range, only about 5% of the average
relative error; while when the moments are predicted larger
than 110 Nt, the prediction error will rapidly increase. When
the distance reaches 20, the error reaches about 12%. *is
indicates that the neural network method for flow field
prediction can only be applied to short-term prediction
problems, and for long-term flow field prediction problems,
its prediction effect will not meet the error requirement.*is
is precise because the neural network model is only an
approximate solution model, so in the absence of infor-
mation at a certain moment in time, its error will be infi-
nitely magnified as time progresses, resulting in insufficient
prediction capability. An autoencoder is a neural network
that can be used to learn a compressed representation of the
original data. *e autoencoder consists of an encoder and a
decoder submodel. *e encoder compresses the input, while
the decoder tries to recreate the input based on the com-
pressed version provided by the encoder. After training, the
encoder model is saved and the decoder is discarded. *e
encoder can then be used as a data preparation technique to
perform feature extraction on the raw data to be used for
training different machine learning models.

It must be made clear that this does not mean that neural
network methods cannot be used for flow field prediction;
the method can still be a powerful tool for achieving fast
prediction in areas where practical modeling is difficult and
there is no need for long-term prediction, and only realistic
data need to be continuously supplemented to make short-
term predictions within accuracy. *e error curve of the
neural network model with coupled N-S equations always
lies below that of the purely data-driven approach, and its
error growth rate is also smaller than that of the purely data-
driven approach. *is indicates that the neural network
model with coupled N-S equations has better performance
in the flow field prediction problem, as shown in Figure 7.

However, this copy and paste strategy assumes that
suitable image patches can be found in the same image, and
because such methods are not capable of generating new
content, they often lead to failure in cases where the missing
regions contain complex and nonrepetitive structures. *e
data recorded and collected by sensor networks can be used
as information about the attributes of an item, providing a
basis for later mining value from the data and developing
applications. However, the heterogeneity of data and in-
teroperability between items create difficulties in the de-
velopment of cross-domain applications and the processing
of data. It is explained which ontologies can be used in
different IoT platforms to develop interoperable applica-
tions. By considering a combination of user preferences over
time and the social similarity of items, an item recom-
mendation model is proposed that first maps the social
relations of items into a low-dimensional space by under-
standing user preferences over time to estimate the social
similarity of items. A recommendation list is generated
based on this social similarity using collaborative filtering.
Furthermore, while patch-based methods can patch high-
frequency texture details, they are unable to capture high-
level semantic or global structural information in the
missing regions, so they remain local approaches. Another
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Figure 5: Experimental strategy for crystal scanning of experi-
mental data.
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type of approach is the data-driven approach, which focuses
on the repair by searching for the most appropriate image
patch in a large dataset. *is approach assumes that regions
surrounded by similar contexts may have similar content.

5. Conclusions

Based on the principle of correlation entropy suppression of
data outliers, a correlation entropy-based robust feature
extraction algorithm for systolic self-encoders is proposed,
which can be applied to downstream tasks such as image
classification and reconstruction based on the ability of the
correlation entropy loss function to suppress training data
outliers and the regularizing effect of systolic self-encoders
on perturbations, which together suppress the impact of
outliers in the data on the quality of features in the pre-
training phase of the self-encoder. First, the definition and
properties of correlation entropy are described, and the

principle of the correlation entropy loss function to suppress
training outliers is derived, where linked sensor data, as an
extension of sensor data, are not only semanticized using
semantic techniques for the original sensor data but also
processed in terms of the content singularity of sensor data
to link it with associated web data resources. Semantic re-
trieval based on content-rich and uniformly represented
sensor datasets is a hot research topic today. In this study, a
semantic retrieval model based on linked sensor data is
proposed to link sensor data with associated web data to
form linked sensor data and build a semantic retrieval library
based on this dataset to realize semantic retrieval and to
achieve the research purpose of obtaining the retrieved
content required by users.
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