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�e study pro�ers the need to strengthen supply chain resilience toward the minimization of disruptions. We investigate the
�nancial performance of agricultural commodities' supply chain amid external uncertainty shocks in both time and frequency
dimensions. �e wavelet techniques are employed for the analysis. Speci�cally, both the Windowed Scalogram Di�erence (WSD)
and Wavelet Multiple techniques are utilized. First, the study �nds from the WSD that disruption which we proxy with global
economic policy uncertainty (GEPU) hurts all the agricultural commodities in the medium and long terms. For instance, we �nd
high comovements between agricultural raw material (ARM) and GEPU. �is is similar to the comovements between rice and
GEPU. Additionally, high potential comovements between 2005 and 2016 in the medium and long term for fertilizer, maize, and
possibly wheat with the GEPU are found. Generally, there seem to be fewer comovements between soybeans and the GEPU which
is indicative of a resistance to shocks. Second, we �nd from the Wavelet Multiple approaches that most of the agricultural
commodities are highly integrated, except rice. Findings from the study imply minimization of diversi�cation, hedge, or safe
haven bene�ts with regard to market conditions among the commodities. �e �ndings have important inferences for policy-
makers, supply chain actors of agricultural commodities, and investors to extensively examine the heterogeneous and adaptive
dynamics of the commodity markets. We advocate that supply chains of agricultural commodities must be borne with dynamic
capacities to manage vulnerabilities in an uncertain environment, necessitating resilience capabilities to thrive in the long run.
Also, investors should hedge against the portfolio risk present in these agricultural commodities. �is study is the �rst to provide
insights into the supply chain of agricultural commodities from a �nancial perspective through time and/or frequency analysis.

1. Introduction

Agricultural commodities (such as wheat, cocoa, soybean,
and maize) can be purchased as inputs for a company’s
goods or as components of purchased items from a com-
pany’s suppliers and/or as part of a company’s operations
and overhead costs [1].�is makes agricultural commodities
a signi�cant input for food companies.When a large amount
of a company’s overall purchasing is made up of price-
volatile commodities, however, a major issue is that com-
modity prices will ¡uctuate dramatically, jeopardizing the

company’s economic survival [1]. Commodity price ¡uc-
tuation, if not adequately controlled, can seriously jeopar-
dize a company’s capacity to meet customer needs, posing
problems for product pricing decisions, budgeting, and so
on.

Supply chains are frequently subjected to various in-
terruptions as global commerce becomes more complex
[2, 3]. �is is due to a variety of factors. Catastrophic
procedures have seriously interrupted numerous supply
systems. Globalization has expanded the length and com-
plexity of supply networks, as well as their openness to
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disruption. If the impacts of such adverse events accumulate
and are not addressed promptly, they can be quite severe [2];
for instance, when disruptions are revealed in the media, the
implications are significantly greater, resulting in quickly
falling prices.

A supply chain disruption is a break in the usual flow of
the supply chain that has a negative consequence [4]. A
supply chain disruption may originally target or incapacitate
just one or a few firms. However, disruptions may spread
further down the supply chain via material flow, information
flow, and finance flow, thereby disrupting supply chain
operations. As a result, any firm’s failure could result in the
entire supply chain failing catastrophically [5, 6].

+e occurrence of several disruptive events has sparked
interest in supply chain resilience, as standard risk man-
agement methods are inadequate in today’s extremely un-
certain and dynamic corporate environments [2, 7].
Organizations must create a resilient approach to fight the
problems posed by uncertain and dynamic settings [5, 8].
Managers and academics have demonstrated a strong in-
terest in resilience as a way to guard supply chains against
disruptions and recover from them [5].

+e likelihood of a supply chain resuming normal op-
erations after an unanticipated disruption is known as
supply chain resilience [9]. Supply chain resilience,
according to Al-Talib et al. [10], is the supply chain’s
adaptive ability to prepare for unexpected events, respond to
disruptions, and recover from them by maintaining oper-
ations at the desired level of connectedness and control over
structure and function. +e features of supply chain resil-
ience were examined by Soni and Jain [11] in terms of
flexibility, control, collaboration, and visibility. In today’s
business climate, which is marked by complexity, constant
change, and uncertainty, supply chain flexibility is critical
[12]. Flexibility ensures that disruptions can be handled
without causing harm to the supply chain. Incorporating the
Internet of things (IoT) into supply chain management can
reduce the requirement for humans to physically monitor
supply chain processes. +e ability to share information in
real time is essential for effective supply chain collaboration.
Supply chain collaboration necessitates the sharing of in-
formation among all parties involved. Because supply chain
resilience is network-wide, it is critical to ensure reduced
ambiguity and event readiness [10]. Supply chain visibility
entails timely information sharing and transparency. As a
result, IoTprovides visibility into the supply chain, allowing
it to track products, delivery, and services, reducing inter-
ruptions through effective reactions.

By knowing every associated practice, an effective co-
ordinating agricultural system ensures varied practices to
successfully manage the entire system. As a result, the lack of
a coordination system will lead to erroneous information
exchange [13]. +is results in higher agricultural product
processing costs, inventory maintenance costs, stockout
times, distribution costs, product promotion costs, and
consumer unhappiness, all of which contribute to fluctua-
tions in agricultural commodity prices [4].

Following a disruption, a resilient supply chain can
rapidly revert to its previous state or transition to a new and

more appealing state [14]. +e resilience of the supply chain
is measured by its ability to respond and adapt quickly to the
production process, demand and supply failures, irregu-
larities and uncertainties in the mix of products and
quantities demanded, and quality problems of delivered
products [15]. Making the supply chain more robust can
help to minimize susceptibility to uncertainties and improve
risk management [5]. Agribusiness supply chains require
greater resilience than traditional manufacturing supply
chains because they have additional sources of volatility [14],
even though agricultural products are subject to inherent
risks in their biological manufacturing processes [14].
Variable weather conditions, illnesses, and pests can all have
an impact on the timing, production, and quality of a
harvest, which can affect the supply chain’s financial per-
formance, particularly agricultural commodity pricing.

According to the Resource-Based View +eory (RBV),
supply chain disruption in agricultural commodities hurts
both physical and capital resources [4, 16]. +e RBV em-
phasizes the need of developing capabilities to overcome
challenges and acquire a competitive edge. When dynamic
changes occur in uncertain contexts, however, the standard
RBV lacks sufficient capability delineation. As a result of the
disruption, supply chain integration capabilities have been
weakened, potentially reducing traceability and flexibility
during logistical activities inside the agricultural commod-
ities supply chain over time.

+e dynamic capability theory (DCV) can be used to
examine the need for resilience capability requirements in
the aftermath of disruptive occurrences [17]. DCV assists in
the allocation of resources and capabilities to respond to
situational changes [2]. +e DCV’s primary concept is that a
company’s ability to integrate, build, and reconfigure or-
ganizational resources utilizing its processes to respond to
environmental changes and uncertainties and design new
value-creating strategies is based on its processes. In terms of
their regularly fluctuating demands, the agricultural com-
modities supply chain system may not be able to match the
needs of customers [4].

In a similar spirit, we suggest that agricultural com-
modity supply chains must acquire dynamic capacities to
manage vulnerabilities in an uncertain environment, ne-
cessitating resilience capabilities to thrive in the long run.
+e supply chain resilience of the agricultural commodities
in this study is examined from the standpoint of fluctuations
in prices over time which influences the supply chain’s fi-
nancial flow. +at is, resilience in agricultural commodities’
supply chain can be better understood when managers and
other partners keep abreast of variations in prices. +is
would enable the resuscitation of price disruption by putting
some mitigation strategies in place for the minimization of
severe uncertainty shocks.

+e DCV emphasizes that market winners must quickly
reorganize their resources and skills to regain competencies
during tumultuous periods. To ensure long-term success of
the supply chain resilience in agricultural commodities
during uncertainties, time-frequency analysis with the quest
of assessing various market conditions needs to be en-
hanced, to provide implications for supply chain managers,
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investors, and policymakers. As provided in the heteroge-
neous market hypothesis (HMH), market participants be-
have in diverse time horizons [18]. +e study also
accentuates the adaptive market hypothesis (AMH) by Lo
[19]. +e AMH advocates that market efficiency fluctuates in
degree at different times. We respond to market fluctuations
in dealing with dynamic changes that ensue in uncertain
financial markets. So long as these hypotheses have a direct
relation with portfolio analysis through markets, there may
be a delayed effect on the supply chain performance through
the supply chain finance flow. We, therefore, examine the
extent of the delayed effect of uncertainties in prices on the
supply chain’s agricultural commodities. +is analysis may
be extended to other commodities or assets whose dynamics
have a potential effect on ensuring supply chain resilience.

It is not daunting to examine resilience in agricultural
commodities prices because, in supply chain risk manage-
ment, effective management of price-volatile agricultural
commodities and associated risks is regarded as a significant,
emerging task [5, 20]. +ough studies in supply chain risk
management have been rising in the area of disruptions
[7, 21], studies on agricultural commodity price volatility are
still limited.+e supply chain management literature equally
labels strategies that businesses adopt to alleviate agricultural
commodity price risk. Yet, the description of mitigation
strategies is not clear in the literature as a result of limited
empirical findings through time-frequencies that provide
some level of coherency with supply chain management.

Commodity price trends have demonstrated sudden
shifts with substantial fluctuations: in the twentieth century,
average commodity prices declined by around half a percent
per year; after 2000, they more than doubled and then
plunged 34% in 2014, leaving prices at 2009 levels [22]. In
addition, over the last ten years, commodity price volatility
has been nearly three times that of the 1990s, posing sub-
stantial challenges to industrial enterprises. Because it
connects to directly sourced inputs (raw materials) globally,
as well as upstream supply chains, the risk of such exposure
grows as the supply chain becomes more complex [23].

Recent changes in global commodity prices may have a
substantial impact on the dynamics of ongoing agricultural
commodity pricing talks [24], necessitating rapid study. Several
agricultural commodities prices have been steadily declining
since their 2011 peak throughout the last ten years. Domestic
pressures on policymakers throughout the world are likely to
shift when these prices reach their lowest levels since 2006,
altering the prospects for international cooperation.

Commodity price volatility is a subcategory of supply
chain disruption connected to operational or resource risk,
according to the literature on supply chain management
[22]. A considerable increase in commodity prices might
result in operational risks, such as a supply chain inter-
ruption if the business lacks the financial resources to
purchase the product [25]. Furthermore, severe drops in
commodity prices might put a supplier’s profit in jeopardy
and, in the worst-case scenario, throw the supplier out of
business [22].

Food and agriculture markets have been notably tur-
bulent in recent years, with several large peaks and troughs

in price patterns for agricultural commodities tracked by the
UN’s Food and Agriculture Organization (FAO). After a
long period of generally declining real food costs, prices
spiked substantially upwards in 2006/07 and again in 2010/
11 [24]. Agricultural commodity prices, on the other hand,
plummeted during the financial crisis of 2008/09, as output
in numerous major economies stalled. Prices have experi-
enced a downward spike from 2011, until very recently. Even
though these aggregate food price trends hide varied pat-
terns among individual product groupings, prices have
dropped dramatically across the board. Farm inputs, pro-
duction, storage, and transportation, as well as the short-
ening of global supply chains and the growing significance of
digital trading, can all be blamed for the price drop.

Recent trade policy surveys have found a return of
protectionist measures in tandem with the decrease in
commodity prices [24]. As countries expand their markets,
they become more subject to foreign price fluctuations,
posing substantial dangers to emerging or established ag-
ricultural production. +e current trends of financialization
in commodities, which has heightened comovements and
volatility spillover within markets in addition to other tra-
ditional asset classes, limit the diversification potentials of
commodities [26–30]. +is has induced the interest of re-
searchers around the globe to ascertain the spillover effects
and predictors of commodity prices to investigate stability in
prices to support the world’s poorest individuals as averred
by Frimpong et al. [30].

+is necessitates a careful investigation of the nexus
between global economic policy uncertainties (GEPU) and
agricultural commodities (see, [30]).+e GEPU is important
in this study because there is a growing set of uncertainty-
generating policies that affect economic policy and financial
decisions as a result of the current conflicts and pervasive
global uncertainty [31].+e GEPU index covers a wide range
of issues, including those that arise internationally, such as
regulatory conflicts, disputes over income inequality, and
price changes [32].

A study by Frimpong et al. [30] sheds light on the
tendency for GEPU to distort comovements in agricul-
tural commodities using biwavelet and partial wavelet
giving implications on finance and economic decisions.
+e current study departs from Frimpong et al. [30] and
other recent studies on agricultural commodities by
employing the Wavelet Multiple (WM) and the Win-
dowed Scalogram Difference (WSD) techniques for
supply chain, finance, and economic implications. +e
WSD allows for a more detailed depiction of the corre-
lation dynamics between variables (see, [33]), whereas the
WM is applied to assess the leading/lagging variable
relative to the scales through linear combinations for
more than two variables to provide the full picture of the
nexus.

+e wavelet techniques are necessary for this study
because prior studies that come close to examining the
relationship in the context of commodities assess this
phenomenon with limited attention on time-frequency
analysis [22, 34–37]. +us, due to the convoluting dynamics
of time series analysis, the time-frequency domain has
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grown, making wavelet analysis a popular tool for evaluating
limited fluctuations in power within a time series. We can
account for the dominant modes of fluctuations and how the
modes alter in time [38–43].

We provide two main contributions to the empirical
literature. First, we assess the comovements among agri-
cultural commodities in the frequency domain to provide
some idea on the degree of resilience required with cog-
nizance from the supply chain finance flow. Hence, we
employ the wavelet multiple correlations and cross-corre-
lations(see, [40, 44]).

Second, we investigate the nexus between global
economic policy uncertainty and agricultural commod-
ities in a time-frequency domain to contribute to the
discussion of supply chain disruption through the WSD.
+e WSD utilized in this study can decipher hidden
structures in the nexus between each of agricultural
commodities returns and GEPU for effective comparison
across time and frequency unlike the wavelet squared
coherence. +erefore, this is the first study, to the best of
our knowledge, that employs both the Wavelet Multiple
and WSD approaches to offer insights into agricultural
commodity prices and GEPU nexus while providing
implications for supply chain resilience and disruptions
in addition to enhancing finance and economic decisions.

We reveal that external uncertainty shock hurts all the
agricultural commodities in the medium and long term.
Also, most of the agricultural commodities are highly in-
tegrated among themselves, except rice. +is may minimize
diversification benefits with regard to market conditions
among the commodities. +e findings have important in-
ferences for supply chain actors of agricultural commodities,
policymakers, and investors alike.

+e subsequent sections deal with methodology, and
Section 3 deals with the study’s findings and discussion.
Section 4 contains the study’s conclusion, which includes the
findings’ implications and suggestions.

2. Methodology

2.1. Wavelet Multiple Correlation (WMC). Let
Xt � x1t, x2t, . . . , xnt follow a multivariate stochastic
process and let Wjt � w1jt, w2jt, . . . ., wnjt be a resultant
scale λj. +e maximal overlap discrete wavelet transform
(MODWT) is used to estimate wavelet coefficients.
Fernández-Macho [45] postulated that the WMC is
known as ΩX(λj) which is customary of multiscale co-
herence estimated from Xt as shown in equation (1). +e
coefficient of determinations’ (R2) square roots from the
regression fashioned by the direct grouping of wijt, i �

1, 2, . . . , n variables that make R2 maximize are estimated
in every wavelet scale λj. Prior research has shown that
supplementary regressions are unnecessary since R2 fits
the conditions for the regression of a variable zi by a set of
predictors zk, k≠ i􏼈 􏼉 which can be represented as
R2

i � 1–ρ− ii, where ρii is the ith diagonal portion of the
inverse of the complete correlation matrix P. +erefore
WMC is in equation (1), as

ΩX(λj) � 1 −
1

maxdiagP−1
j

⎛⎝ ⎞⎠

1/2

, (1)

where Pj is an (n x n) correlation matrix in Wjt.
Fitted value of zi from a theory of regression is 􏽢zt;

therefore the WMC is in

ΩX(λj) � Corr wijt, 􏽢wijt􏼐 􏼑 �
Cov wijt, 􏽢wijt􏼐 􏼑

Var wijt􏼐 􏼑Var 􏽢wijt􏼐 􏼑􏼐 􏼑
1/2, (2)

where wij is used to capitalize on ΩX(λj)and􏽢wijt represents
the fitted values in the regression of wij on the outstanding
wavelet coefficients at scale λj.

+erefore, WMCC is known by permitting a lag τ amid
fitted values and observed at the individual scale λj below

ΩX, τ λj􏼐 􏼑 � Corr wijt, 􏽢wijt+τ􏼐 􏼑 �
Cov wijt,

€􏽢wijt+τ􏼐 􏼑

Var wijt􏼐 􏼑Var 􏽢wijt+τ􏼐 􏼑
,

(3)

where for n� 2, WMCC and WMC unite with the cross-
correlation and standard wavelet correlation.

To calculateWMCC andWMC let X � X1, X2, . . . , XT􏼈 􏼉

be the recognition of the multivariate stochastic process Xt

for t � 1, 2, . . . , T. MODWTof order J is linked to individual
univariate time series {X1i,. . ., X1T}, for i � 1, 2, . . . , n; the
Jlength − T vectors of coefficients of MODWT 􏽥Wj �

􏽥Wj1, 􏽥Wj1, . . . , W 􏽥Wj,T−1􏽮 􏽯, forj � 0, 1, . . . , J, are obtained.
In equation (3), a nonlinear function of all n(n − 1)/2

wavelet correlations of scale λj and a steady estimator of
wavelet correlation from the MODWT is shown in

􏽥ΩX λj􏼐 􏼑 � 1 −
1

maxdiag􏽥P
− 1
j

⎛⎝ ⎞⎠

1/2

� Corr 􏽥wijt,
􏽢􏽥wijt􏼐 􏼑 �

Cov 􏽥wijt,
􏽢􏽥wijt􏼐 􏼑

Var 􏽥wijt􏼐 􏼑Var 􏽢􏽥wijt􏼐 􏼑􏼐 􏼑
1/2,

(4)

where 􏽥wij is the regression of the equivalent set of regressors
􏽥wkj, k≠ i􏽮 􏽯 which optimize the R2, 􏽢􏽥wij denotes meeting the

requirements fitted values, and Lj � (L − 1)(2j − 1) shows
the number of wavelet coefficients impacted by the boundary
constraints associated with a length wavelet filter L and scale
λj but 􏽥T � T − Lj + 1 shows the number of wavelet coeffi-
cients that are not influenced by boundary conditions.

Similarly, a reliable equation for the WMCC can be
estimated as

􏽥ΩX, τ λj􏼐 􏼑 � Corr 􏽥wijt,
􏽢􏽥wijt+τ􏼐 􏼑 �

Cov 􏽥wijt,
􏽢􏽥wijt+τ􏼐 􏼑

Var 􏽥wijt􏼐 􏼑Var 􏽢􏽥wijt+τ􏼐 􏼑􏼐 􏼑
1/2.

(5)

Fernández-Macho [45] uses the transformation arctan
h(r), where arctan h(.) is the inverse hyperbolic tangent
function for simplicity’s sake, to estimate the confidence
interval (CI) ofWMC.+e confidence interval was estimated
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from the same thought of the realization of X in the cal-
culation of WMC and WMCC and hence for 􏽥ΩX(λj) in
equation (4), 􏽥zj ∼ Fℵ(zj, (T/2j − 3)− 1), where zj �

arctanh(ΩX(λj)), 􏽥zj � arctanh( 􏽥ΩX(λj)), and Fℵ symbol-
ize the folded normal distribution. +us, an estimate (1− α)
CI is represented by

CI(1 − α) ΩX λj􏼐 􏼑􏼐 􏼑 � tanh 􏽥zj −
C2

T/2j
− 3􏼐 􏼑

1/2; 􏽥zj +
C1

T/2j
− 3􏼐 􏼑

1/2
⎡⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎦,

(6)

where the Fℵ critical values C1, C2 are Ω(C1) +Ω(C1 −

2z0) � 1 − α/2 and Ω(C2) +Ω(C1 − 2z0) � 2 − α/2 with
Ω(.) as the standard normal distribution function and
tanh(z0) � Ω0X(λ) as the value of a WMC calculated under
the null hypothesis of no connection.

2.2.Windowed ScalogramDifference (WSD). +e concept of
WSD by Bolós et al. [46] compares the behavior of two time
series using their respective scalograms for various time and
scale windows. It, therefore, allows one to identify the scales
and time intervals in which both time series exhibit a similar
pattern, compare their scalograms, and verify the extent of
the same weight application to the various scales.

+eWSD is used to determine andmeasure the degree to
which two time series follow a comparable pattern across
time. In this case, the most dominating scales in the time
series, which is limited in both time and scale, are identified.
Hence, the WSD is capable of detecting hidden structures as
in the case of wavelet squared coherence.

+e WSD of two time series (X(t), Y(t)), centred at
(t, s) with the radius τ and log-scale radius r, is computed as

WSDτ,r 􏽚
s+r

s− r

WSDτ(t, s) − WSτ′(t, s)

WSτ(t, s)
􏼠 􏼡

2

ds⎛⎝ ⎞⎠

1/2

, (7)

where WSτ and WSτ′ show the windowed scalogram of X, Y,
respectively. In this case, the WSτ is given by

WSτ(t, s) 􏽚
t+τ

t− τ
|Wx(u, s)|

2du􏼠 􏼡

1/2

. (8)

+e WSD calculates the difference between the win-
dowed scalograms of two time series using (7). It allows us to
compare two time series for distinct finite time and scale
intervals and quantify the degree of similarity between them.
Similarly, the WS can identify the relative relevance of
various scales when windowed around a certain time point.
When the wavelet is discretely sampled (i.e., class of dyadic
wavelet), time variable u � 2kj and s � 2k is given by the
dyadic version (see, [33]).

2.3. Data Description and Sources. +e study utilizes
monthly data from agricultural commodity prices of agri-
cultural raw materials (ARM: timber, cotton, wool, rubber,
and hides), cocoa, fertilizer, maize, rice, soybeans, and
wheat. In addition, we employ the global economic policy
uncertainty (GEPU) to ascertain the extent of disruptions in

agricultural commodities. +e data spans January 1997 to
May 2021, yielding a total of 293 observations. We chose this
period due to steady data availability. +e data on agri-
cultural commodity prices and GEPU were gleaned from
IMF Primary Commodity Prices Database and the website
https://www.policyuncertainty.com/index.html as devel-
oped by Baker, Bloom, and Davis [31] respectively.+e study
is grounded on monthly returns – rt � ln(Pt/Pt−1), where rt

is the continuous returns, Pt is current index, and Pt−1 is
previous index.

Figure 1 depicts the prices and log-returns of agricultural
commodities over time. Following a downward spike be-
tween 2015 and 2019, the price series for agricultural
commodities trend upward in the early part of 2020,
according to the price series. +e variations in the agri-
cultural commodities are similar across time. +e rise in
commodity prices from 2006 to 2013 can be traced to the
period of the 2008 global financial crisis and the Eurozone
crisis. +is period can be specifically attributed to exogenous
factors such as the food riot in 2007 to 2008 and the Arab
Spring which induced the need for expansionary fiscal and
monetary policy as well as speculative activities which led to
an erupted price spike in agricultural commodities. +e
GEPU illustrates an upward trend which suggests an in-
crease in uncertainty in the global economy. +is, therefore,
indicates the extent to which agricultural commodities are
more likely to be susceptible to shocks from the GEPU.
Moreover, Figure 1 shows how the log-returns series sup-
ports the stylized facts of asset returns, demonstrating
volatility clustering.

In Table 1, we show the descriptive statistics for the
study. +e skewness values observed depict closer to sym-
metry except for rice. +e returns of the commodities are
associated with more drawdowns as shown by the negative
skewness values except for rice. +is may be due to the
increase in demand for rice over the years across the globe,
compared to the other agricultural commodities. Except for
agricultural raw materials, cocoa, and GEPU, the kurtosis
values, on the other hand, further indicate leptokurtic be-
havior. +e Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test
is used to determine stationarity. All of the returns series are
stationary, according to the KPSS observations.

3. Results

3.1. Frequency-Dependent. +e frequency-dependent
wavelet analysis is presented in this section for seven var-
iables: agricultural raw materials (ARM), fertilizer, cocoa,
soybeans, wheat, maize, and rice. We use a monthly data and
set, lj, j � 1 . . . 5, of the wavelet factors, which are connected
to times of, respectively, “2–4 months (short term),
4–8 months (medium term), 8–16 months (medium term),
16–32 months (medium term), and above 32 months (long
term)” for Figures 4 and 5, following Li et al. [47].

3.1.1. Wavelet Bivariate Correlations Matrix (WBCM).
We display the bivariate contemporary correlations at 4
wavelet scales in Figure 2. +e supplied codes include
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agricultural raw materials (C1), fertilizer (C2), cocoa
(C3), soybeans (C4), wheat (C5), maize (C6), and rice
(C7). +e horizontal axis indicates the potential choices

for generating wavelet correlation coefficients. +e sim-
ilarities between the pairs (C1–C7) get weaker as we move
from left to right. +e wavelet scales on the vertical axis
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Figure 1: Price and returns series of agricultural commodities and GEPU.
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represent periods. +e bivariate contemporaneous cor-
relation matrix examines the relationship between the
realizations of two possible time series combinations
during the same era [32, 48, 49].

+e pairwise interactions from Figure 2 have a combi-
nation of positive and negative nexus. Soybeans and maize
had the highest levels of comovement, with coefficients
ranging from 0.59 to 0.87 over a range of time scales av-
eraging 0.72. Wheat and maize are next, followed by soy-
beans and wheat. +is implies that the commodities are
interdependent in some way. Most of agricultural com-
modities record a negative relationship with rice. +is in-
dicates that the demand for rice is inversely related to the
demand for commodities such as agricultural raw materials,
wheat, maize, cocoa, and soybeans, but fertilizer. +is
suggests that rice acts as a substitute for the remaining
agricultural commodities. +e inverse relationships between
some of the agricultural commodities may provide potential
investors in these markets some diversification, hedge, or
safe haven benefits depending on the market conditions.
Also, to achieve a long-term resilient supply chain towards

the improvement of its financial performance, actors are
enjoined to either scale up their commodities that show less
interconnectedness or divest segments that indicate high
associations. Efficient financial risk management techniques,
coupled with resilience in the supply chain, would boost
financial performance and maximize the wealth of supply
chain investors.

3.1.2. Wavelet Multiple Correlations (WMC).
Continuously, Figure 3 and Table 2 establish the degree of
integration among commodities based on short-, medium-,
and long-term dynamics. For the monthly return series, the
degree of integration is relatively high, reaching around
99.6% for the wavelet multiple correlations, 98 percent for
the lower panel, and 99.9% for the upper panel. Multiple
correlations are continuously increasing throughout pe-
riods.+e remaining factors can explain the monthly returns
of one variable to a degree of roughly 98 from monthly,
resulting in scale 16 months’ integration.+is illustrates very
high integration among the agricultural commodities from
short, medium, and long term.

Table 1: Descriptive statistics.

Statistic ARM Cocoa Fertilizer Maize Rice Soybeans Wheat GEPU
Mean 0.0008 0.0018 0.0026 0.0032 0.0010 0.0026 0.0017 0.0031
Std. dev. 0.0298 0.0577 0.0572 0.0593 0.0560 0.0587 0.0693 0.1752
Skewness −0.2500 −0.1227 −0.3745 −0.5703 2.0090 −0.4505 0.0916 0.5193
Kurtosis 1.0086 0.5030 2.4905 1.8947 13.5769 2.0146 1.5959 1.0895
Normtest.W 0.9866 0.9935 0.9592 0.9702 0.8547 0.9718 0.9766 0.9814

Unit root test
KPSS 0.0893 0.0664 0.0824 0.0899 0.1003 0.0803 0.0810 0.0262
Note. Normtest.W indicates a significant difference from a normal distribution at all conventional levels of significance. [∗ ], [∗ ∗ ], and [∗ ∗ ∗ ] indicate
significance at 10%, 5%, and 1% levels, respectively.
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Table 2: Wavelet multiple correlations (WMC).

Scale WMC “lower” Correlation WMC “upper”
1 0.562724825 0.664434745 0.746327286
2 0.604144546 0.732411148 0.823684436
3 0.696629028 0.834235375 0.912638642
4 0.670192631 0.866074239 0.949157882
5 0.982270024 0.996395966 0.999271531

Table 3: Wavelet multiple cross-correlations (WMCC).

Scale Localizations Time lag (months) Leading/lagging variable
1 0.664434745 0 Soybeans
2 0.732411148 0 Maize
3 0.834235375 0 Maize
4 0.886030196 1 Maize
5 0.998611268 −1 Wheat

*

U

L
*

U

L

*

U

L

*

U
U

L

L

*

2 4 8 161

Wavelet Scale

0.0

0.2

0.4

0.6

0.8

1.0

W
av

ele
t M

ul
tip

le
 C

or
re

lat
io

n

Figure 3: Wavelet multiple correlations among agricultural commodities. U: upper limits, L: lower (at 95% confidence interval).

WMCC

Wheat

Maize

Maize

Maize

Soybeans

-5 0 5 10-10
Lag (months)

1

2

4

8

16

Sc
al

e

0.16

0.33

0.5

0.66

0.83

1

Figure 4: Wavelet multiple cross-correlations among agricultural commodities.

8 Mathematical Problems in Engineering



2

4

8

16

32

64

Pe
rio

d 
(m

on
th

s)

50 100 150 200 250
Time

1

0

-1

-2

-3

-4

1999 2002 2005 2008 2011 2014 2017 2020
WSD (Wheat-GEPU)

2

4

8

16

32

64

Pe
rio

d 
(m

on
th

s)

50 100 150 200 250
Time

2

1

0

-1

-2

-3

-5

-4

20201999 2002 2005 2008 2011 2014 2017
WSD (Rice-GEPU)

2

4

8

16

32

64

Pe
rio

d 
(m

on
th

s)

50 100 150 200 250
Time

1

0

-1

-2

-3

-5

-4

20201999 2002 2005 2008 2011 2014 2017
WSD (Fertilizer-GEPU)

2

4

8

16

32

64

Pe
rio

d 
(m

on
th

s)

50 100 150 200 250
Time

2

1

0

-1

-2

-3

-4

20201999 2002 2005 2008 2011 2014 2017
WSD (soybeans-GEPU)

2

4

8

16

32

64

Pe
rio

d 
(m

on
th

s)

50 100 150 200 250
Time

1

0

-1

-2

-3

-4

20201999 2002 2005 2008 2011 2014 2017
WSD (Maize-GEPU)

2

4

8

16

32

64

Pe
rio

d 
(m

on
th

s)

2

4

8

16

32

64

Pe
rio

d 
(m

on
th

s)

50 100 150 200 250
Time

50 100 150 200 250
Time

1

0

-1

-2

-3

-4

20201999 2002 2005 2008 2011 2014 2017
WSD (Cocoa-GEPU)

20201999 2002 2005 2008 2011 2014 2017
WSD (ARM-GEPU)

0

-1

-2

-3

-4

-5

-6

Figure 5: Comovements between agricultural commodities and GEPU.

Mathematical Problems in Engineering 9



+e high integration among the agricultural commod-
ities returns may heighten their vulnerability to adverse
shocks which may influence the financial performance of the
supply chain. In an uncertain environment, dynamic ca-
pabilities are required to mitigate vulnerabilities, and
resilience capabilities are required to survive in the long run.
Although the high integration provides clear indications that
these agricultural commodities are not inversely related or
are entirely substitutes, it is required that more collaborative,
flexible, and control measures are instituted throughout the
supply chain to minimize future disruptions that may arise.
+is would aid in the accomplishment of the supply chain
financial performance within agricultural commodities.

3.1.3. Wavelet Multiple Cross-Correlations (WMCC). +e
WMCC coefficients for four distinct wavelet scales are
shown in Table 3. Figure 4’s y-axis scales have the same
meanings as those described before in the Wavelet
Multiple analysis discussion. According to Asafo-Adjei,
Adam, and Darkwa [43]; Asafo-Adjei, Boateng, Isshaq,
Idun, Owusu Junior, and Adam [48]; and Boateng et al.
[49], the x-axis represents the series’ lag length. +e
positive and negative lags are ten months apart in this
instance. Positive lag represents a lagging variable on the
related scales, while negative lag denotes a leading var-
iable. +ere is no lead or lag at the zero-lag of localization.
+e maximum values in the linear combination of all
variables at the wavelet scales, which are illustrated by
dashed lines within the dotted lines, are referred to as
localization (at all lags). When a variable is placed on a
scale, it can outperform or underperform all other var-
iables. It denotes that it has the highest value in the linear
combination of all the variables at the relevant scales at
that scale. +e wavelet multiple cross-correlations
(WMCC) have an economic impact since it finds the most
influential variable at a specific wavelet scale and displays
the degree of dependency between the variables [44, 48].
As a result, it can function as a leading (first to respond to
shocks) or lagging (last to respond to shocks after other
factors) variable.

From Figure 4, soybeans have the likelihood to lead or lag
for months 2–4, representing the short-term perspective. Also,
maize has the likelihood to lead or lag from 4–16 months but
eventually lags at 16–32 months in the medium-term per-
spective. At scale of 16–32months,maize is considered to be the
last variable to respond to shocks which suggests a possible
supply chain resilience. Finally, we find that wheat maximizes
the WMCC from a linear combination of the remaining ag-
ricultural commodities beyond 32 months representing a long-
run comovement as shown in Table 3 as well as Figure 4. At this
point, wheat is the first agricultural commodity to respond to
shocks (at time −1), which may be less likely to offer diversi-
fication benefits. Supply chain actors are therefore advised to
ensure flexibility, control, collaboration, and visibility [11] in the
supply chain of wheat. +is is necessary to respond and adapt
quickly to the production process, demand and supply failures,
irregularities and uncertainties in the mix of products and
quantities demanded, and quality problems of delivered

products [15] in times where the financial performance of
supply chain, specifically price, is likely to experience disrup-
tions. Ensuring resilience in the supply chain reduces vulner-
ability and makes risk management more efficient [5].

3.2. Time-Frequency Analysis. Figure 5 depicts the Win-
dowed Scalogram Difference (WSD) between agricultural
commodities and GEPU. +e surface color and color palette
indicate the interdependence between the matched series.
+e higher the similarity between time series, the brighter
the color.+e red (warm) color denotes portions with strong
interactions of statistical significance at the 5% level (high
similarity), whereas the blue (cool) color denotes a lower
series of correlations (low similarity) as determined by
Monte Carlo simulations [30, 38]. Outside of the cone of
influence (COI), the outcomes are insignificant (see, [48]).
+e stronger the comovements, the more susceptible the
agricultural commodities to the GEPU.

From Figure 5, it can be seen that there are very high
comovements between agricultural raw material (ARM) and
GEPU in the medium and long term from 2005 to 2016.+is
is similar to the comovements between rice and GEPU.
+ere are high potential comovements between 2005 and
2016 in the medium and long term for fertilizer, maize, and
possibly wheat with the GEPU, as indicated by declining
warm color. Generally, there seem to be fewer comovements
between soybeans and the GEPU which indicates resistance
to shocks from the adverse impact of the GEPU.
Comovements between cocoa and GEPU heighten at
16–32months (medium term) from 2013 to 2016 and
possibly at scale of 32months for 2002. +e high comove-
ments between 2007 and 2017 could be attributed to the
global financial crisis, Eurozone crises, and the US-China
trade tension with interment events such as the 2007–2008
food riot and the Arab Spring.

4. Conclusion

+e study employs two main wavelet techniques, Wavelet
Multiple (thus, WBCM, WMC, and WMCC) and Win-
dowed Scalogram Difference (WSD), to execute the purpose
of the study. +e Wavelet Multiple made it possible to
examine the interdependencies among the agricultural
commodities in the short, medium, and long term. On the
other hand, the WSD was utilized to investigate the inter-
connectedness between each of the agricultural commodities
and the global economic policy uncertainty in time-fre-
quency domain to divulge the extent of similarities between
the variables. Specifically, we draw insights from these fi-
nancial and econometric techniques to support the need for
a more collaborative, flexible, visible, and controlled supply
chain towards resilience and fewer disruptions for a reliable
supply chain financial performance. +e outcome of this
study is also pertinent to all kinds of investors, policymakers,
and risk managers at large.

We found that external uncertainty shock has an adverse
impact on all the agricultural commodities in the medium
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and long term. Also, most of the agricultural commodities
are highly integrated among themselves, except rice, which
may not offer efficient diversification, hedge, or safe haven
benefits based on market conditions.

It is recommended that the supply chain of agricultural
commodities must be incorporated with dynamic capacities
to manage vulnerabilities in an uncertain environment,
necessitating resilience capabilities to thrive in the long run.
Also, investors should hedge against the portfolio risk
present in these agricultural commodities.

Further studies may be conducted on the efficiency,
effectiveness, and economy of the agricultural commodities
supply chain. +is is necessary to ascertain the extent of
supply chain resilience and risk minimization strategies
instituted by supply chain actors in agricultural
commodities.
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