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Combined hybrid element method is one kind of stable �nite element discrete method in which the famous Babuska–Brezzi
condition is satis�ed automatically. So, the method is more widely used, compared with other kinds of mixed/hybrid element
methods. In this paper, we develop a non-nested multigrid algorithm for combined hybrid quadrilateral or hexahedron elements
of linear elasticity problem. �e critical ingredient in the algorithm is a proper intergrid transfer operator. We establish such an
operator on quadrilateral or hexahedron meshes and prove the mesh-independent convergence of the kth level iteration and full
multigrid algorithm in L2 norm. Numerical experiments are reported to support our theoretical results and illustrate the e�ciency
of the developedmethods.We also give the numerical experiments showing the convergence of the developedmethod as Poisson’s
ratio is close to 0.5.

1. Introduction

Finite element method is one of the most e�cient numerical
methods for the linear elasticity problem. So far, there are a
number of previous works on �nite element method for this
problem. Various conforming [1, 2] and nonconforming
[3–6] �nite elements were applied to this problem. To ap-
proximate the stress variables independently, mixed and
hybrid element methods [7–10] were proposed. But in the
two methods, the �eld variables must satisfy the so-called
Babuska–Brezzi condition [11], which restricts the wide and
convenient application of the methods. To avoid this re-
striction, Zhou [12, 13] put forward combined hybrid ele-
ment method. It is a stabilized hybrid element method where
Babuska–Brezzi condition is satis�ed automatically, when
the displacement space is weakly compatible. �erefore, a
wider range of approximation spaces is supplied for the �eld
variables. Furthermore, since the energy error can be re-
duced by adjusting the combined parameter in the combined
hybrid variational principle [14], the more exact numerical
solutions can be obtained. But like other �nite element

methods, the combined hybrid �nite element may still lead
to ill-conditioned linear system, while mesh size goes to zero.
Hence, it is necessary to consider e�cient solver for the
discrete system.

Multigrid method (MGM) has been used extensively to
e�ciently solve the linear systems from various �nite ele-
ment discretization of the elasticity problem. Lee [15]
adopted MGM for the discrete system from P1 conforming
mixed element. Xu [16] focused on a MGM for Wilson
nonconforming element. P1 nonconforming mixed element
MGM has been provided by Brenner [17]. In 2009, Lee [18]
developed a robust MGM for the higher order conforming
element. A type of multigrid method based on the local
relaxation has been applied to the system discretized by an
adaptive �nite element method [19]. In recent years, Xiao
[20, 21] proposed the algebraic multigrid method which is
based only on information available from the linear system
to be solved. To the best of our knowledge, there is almost no
corresponding work about MGM for combined hybrid el-
ements developed by Zhou and Nie [22, 23]. In this paper,
we will present the convergence of the multigrid algorithm
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for a series of combined hybrid quadrilateral or hexahedron
elements.

In combined hybrid element formulation, one can elim-
inate the stress unknowns and obtain a global system solely
involving the displacement parameters. Once the displacement
is computed, the stress can be obtained through local opera-
tions on element. So, we need an efficient solver for the global
system. In this paper, we use multigrid method to this system.
,e work [17] presented the multigrid method for P1 non-
conforming mixed element and provided a direct convergence
analysis in L2 norm. In order to prove the convergence of the
proposed method, we will use the idea in [17]. By the
framework developed there, it is critical to establish a transfer
operator which is bounded in L2 norm. However, it is not
trivial and there exist difficulties in the following two aspects:
(1) how to design an appropriate intergrid transfer operator for
the non-nested multigrid method and (2) how to prove the
bounded property of the operator on quadrilateral or hexa-
hedron elements other than just rectangular or cube element.

In this paper, an intergrid transfer operator defined on
quadrilateral or hexahedron elements is given and then its
stable property is verified by direct computation and the
scaling argument. Based on this property and the proof idea
in [17, 24], the optimal convergence of kth level iteration can
be achieved in L2 norm. Subsequently, we prove that the
solution of the full MGM satisfies the same type of error
estimates as the discretization error. Furthermore, numer-
ical examples are supplied to justify the convergence theory
and demonstrate the effectiveness of the method. At last, we
propose an effective multigrid method for nearly incom-
pressible elasticity problem.

,e remainder of this paper is organized as follows. In
the next section, some basic conclusions of combined hybrid
elements are reviewed. In Section 3, an intergrid transfer
operator is given and its stable property in L2 norm is
analyzed; then, MGM is described in Section 4. By intro-
ducing a number of technical lemmas, contracting property
of the kth level iteration and the convergence theorem for
the full MGM are followed in Section 5. In Section 6, the
numerical examples of the elasticity mechanical problems
are investigated. Some concluding remarks are discussed in
the final section.

2. Combined Hybrid Element Method

A linear elasticity problem is

−divσ � f inΩ,

σ � D(ε(u)) inΩ,

ε(u) �
1
2

(∇u)
T

+ ∇u􏼐 􏼑 inΩ,

u � 0 on zΩ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where u is the displacement field, σ is the stress tensor, ε is
the strain, f is the body force, D is the elastic modulus

matrix, and Ω is a convex polygonal domain in Rn with
boundary zΩ.

Assume that T0 � Ωj􏽮 􏽯 denotes a quadrilateral or
hexahedron subdivision of Ω, with the mesh size
h0 � max diamΩj: Ωj ∈ T0􏽮 􏽯. For 1≤ k≤ J, Tk is obtained
from Tk−1 by connecting the midpoints of the opposite
edges of Tk−1, and hk−1≤2hk. From now on, we always
assume that the mesh partition is shaped regular and quasi-
uniform.

To relax continuity requirement of the displacement and
stress, the following piecewise Sobolev spaces and a Lagrange
multiplier space have been used (see [22] for details):

U � v ∈ 􏽙
Ωj ∈Tk

H
1 Ωj􏼐 􏼑⎛⎜⎝ ⎞⎟⎠

n

|: v|zΩ � 0
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

V � 􏽙
Ωj∈Tk

H div,Ωj􏼐 􏼑,

Uc �
H1

0(Ω)

􏽑jH
1
0 Ωj􏼐 􏼑

⎛⎝ ⎞⎠

n

� traceof v ∈ H
1
0(Ω)􏼐 􏼑

n
at 􏽙

j

zΩj

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(2)

On the above spaces, Hellinger–Reissner principle based
on domain decomposition and its dual principle are in-
corporated into a system by a weight factor α(0< α< 1), and
then the so-called combined hybrid variational principle
[12, 13] for (1) is formulated as follows: find (σ, u, uc) ∈ V ×

U × Uc such that

αsk(σ, τ) − αb2,k(τ, u) + b1,k τ, u − uc( 􏼁 � 0, ∀τ ∈ V,

αb2,k(σ, v) − b1,k σ, v − vc( 􏼁 +(1 − α)dk(u, v) � (f, v),

∀ v, vc( 􏼁 ∈ U × Uc,

⎧⎪⎪⎨

⎪⎪⎩

(3)

where

sk(σ, τ) � 􏽘
Ωj∈Tk

􏽚
Ωj

σ · D
− 1

[τ]dΩj, dk(u, v)

� 􏽘
Ωj∈Tk

􏽚
Ωj

ε(u) · D[ε(v)]dΩj,

b1,k(τ, v) � 􏽘
Ωj∈Tk

􏽚
Ωj

τ · ε(v)dΩj, b1,k(τ, v)

� 􏽘
Ωj∈Tk

􏽚
zΩj

(τ · n) · vds,

(4)

and n represents the unit outer normal to zΩj.
According to [12, 13], there exists a unique solution

(σ, u, uc) ∈ V × U × Uc for (3), u ∈ (H1
0(Ω))2 and

(u − uc)|zΩj
� 0, ∀Ωj ∈ Tk.

We consider the discrete formulation of (3) in the fol-
lowing. Firstly, Wilson’s interpolation space Uk is intro-
duced to approximate U. ,en,

v|Ωj
� 􏽢v°F−1

j � 􏽢vc + 􏽢vI( 􏼁°F−1
j , ∀v ∈ Uk, (5)
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where Fj is the isoparametric mapping from the referential
square 􏽢Ωj � [−1, 1]2 to Ωj and

􏽢vc �
1
4

(1 + ξ)(1 + η)v1 +(1 − ξ)(1 + η)v2􏼂

+(1 − ξ)(1 − η)v3 +(1 + ξ)(1 − η)v4􏼃,

􏽢vI �
1
8

ξ2 − 1􏼐 􏼑λ1 +
1
8

η2 − 1􏼐 􏼑λ2,

(6)

where vi(i � 1, . . . , 4) are the function values at vertexes of
Ωj and λi(i � 1, 2) are the mean values of the second de-
rivatives as follows:

λ1 � 􏽚
Ωj

J
−1
j

z
2
􏽢v

zξ2
· F

−1
j dx1dx2,

λ2 � 􏽚
Ωj

J
−1
j

z
2
􏽢v

zη2
· F

−1
j dx1dx2,

(7)

where Jj is the Jacobian of Fj. Hence, v is uniquely deter-
mined by vi(i � 1, . . . , 4) and λi(i � 1, 2) on Ωj. Since Uk is
weak compatible, an interpolation operator Tc: Uk⟶ Uc

exists, i.e.,

Tc(v) � vc, ∀v ∈ Uk. (8)

,en, Tc(Uk) is employed as the discrete space of Uc. By
such arrangement, the variable spaces are simplified.

Secondly, the stress discrete spaces can be one of the
following spaces: the piecewise constant stress space, the
piecewise linear stress space, Pian and Sumihara’s stress
space [25], or the piecewise linear stress space constrained by
the energy compatibility condition [22]. ,ey can be written
as V0,k, V1,k, VP−S,k, and V0−1,k, respectively.

,e corresponding discrete formulation of (3) is to find
(σk, uk) ∈ Vk × Uk such that

αsk σk, τ( 􏼁 − αb2,k τ, uk( 􏼁 + b1,k τ, uk − Tc uk( 􏼁( 􏼁 � 0, ∀τ ∈ Vk,

αb2,k σk, v( 􏼁 − b1,k σk, v − Tc(v)( 􏼁 +(1 − α)dk uk, v( 􏼁 � (f, v),

∀v ∈ Uk.

⎧⎪⎪⎨

⎪⎪⎩

(9)

,e four combinations Uk × V0,k, Uk × V1,k, Uk× VP−S,k.,
and Uk × V0−1,k correspond to four kinds of combined
hybrid quadrilateral elements, denoted by CH(0), CH(1),
CH(P–S), and CH(0–1).

Furthermore, for the hexahedron element case, Wilson
interpolation space is still adopted to approximate
U. Complete linear space or the one with bilinear terms,
restricted by the energy compatibility condition, is used for
the stress discrete space and represented byH0−1,k orH0−1+,k.
,e combinations Uk × H0−1,k and Uk × H0−1+,k correspond
to the two kinds of combined hybrid hexahedron elements
CHH(0–1) and CHH(0-1)+ [23].

sk(·, ·) is positively definite. b2,k(·, ·) and b1,k(·, ·) are
bounded. ,en, a linear solver operator
Tk: Uk × Tc(Uk)⟶ Vk exists. So, the stress can be linearly
expressed by the displacement as follows. ,at is to say

sk Tk vk( 􏼁, τ( 􏼁 � b2,k τ, vk( 􏼁 −
1
α

b1,k τ, vk − Tc vk( 􏼁( 􏼁,

∀τ ∈ Vk.

(10)

By eliminating the stress, a finally generalized dis-
placement scheme, equivalent to (9), is as follows: find
uk ∈ Uk, such that

ak uk, vk( 􏼁 � f, vk( 􏼁, ∀vk ∈ Uk, (11)

where

ak uk, vk( 􏼁 � αsk Tk uk( 􏼁, Tk vk( 􏼁( 􏼁 +(1 − α)dk uk, vk( 􏼁. (12)

According to [22], a unique solution (σk, uk) ∈ Vk × Uk

exists for (9) and the method has the following discretization
error estimate for the displacement:

u − uk

����
����L2(Ω)
≤Ch

2
k‖u‖H2(Ω). (13)

In the following proof, C (with or without a subscript)
denotes a generic positive constant independent of hk.

3. The Intergrid Transfer Operator

,emultilevelWilson interpolation spaces are not nested, so
the main complication in a non-nested setting is to design an
appropriate intergrid transfer operator to pass data between
the meshes. In this section, we establish an efficient intergrid
transfer operator and prove its bounded property in L2

norm.
Let M be a quadrilateral element in Tk−1, as shown in

Figure 1. ai(i � 1, . . . , 4) are four vertices, and
aj(j � 5, . . . , 8) are midpoints of the four edges. By con-
necting a5, a7 and a6, a8, M is divided into four subelements
Mi(i � 1, . . . , 4). For every v ∈ Uk−1, we define Ik

k−1v on M1
by

I
k
k−1v a1( 􏼁 � v a1( 􏼁,

I
k
k−1v a5( 􏼁 �

1
2

v a1( 􏼁 + v a4( 􏼁􏼂 􏼃,

I
k
k−1v a6( 􏼁 �

1
2

v a1( 􏼁 + v a2( 􏼁􏼂 􏼃,

I
k
k−1v a9( 􏼁 �

1
4

v a1( 􏼁 + v a2( 􏼁 + v a3( 􏼁 + v a4( 􏼁􏼂 􏼃,

􏽚
M1

J
−1
M1

z
2 􏽤
I

k
k−1v

zξ2
· F

−1
M1

dM1 � 􏽚
M

J
−1
M

z
2
􏽢v

zξ2
· F

−1
MdM,

􏽚
M1

J
−1
M1

z
2 􏽤
I

k
k−1v

zη2
· F

−1
M1

dM1 � 􏽚
M

J
−1
M

z
2
􏽢v

zη2
· F

−1
MdM,

(14)

where FM and FM1
denote the corresponding isoparametric

mappings. JM and JM1
are the Jacobians of FM and FM1

,
respectively. Ik

k−1v will be defined similarly on the other
subelements. Subsequently, we will prove that the operator
has the following stable property.
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Lemma 1. �ere exists a constant C such that

Ikk−1v
�����

�����L2(Ω) ≤C‖v‖L2(Ω), ∀v ∈ Uk−1. (15)

Proof. Noting that

Ikk−1v
�����

�����
2

L2(Ω)
� ∑
M∈Tk−1

∑
4

j�1
Ikk−1v
�����

�����
2

L2 Mj( ). (16)

So, we only need to prove

∑
4

j�1
Ikk−1v
�����

�����
2

L2 Mj( ) ≤C‖v‖
2
L2(M). (17)

A careful and direct computation yields

‖v̂‖2
L2(M̂)

�
4
9
v21 + v

2
2 + v

2
3 + v

2
4( ) +

1
30

λ21 + λ22( )

+
4
9
v1 + v3( ) v2 + v4( ) +

2
9
v1v3 + v2v4( )

−
1
6

λ1 + λ2( ) v1 + v2 + v3 + v4( ) +
1
18
λ1λ2.

(18)

Let vj,i � (Ikk−1v)(aj,i)(i � 1, . . . , 4) be the function
values at four vertexes of subelement Mj(j � 1, . . . , 4) and
λj,i(i � 1, 2) be the internal degrees of freedom in
Mj(j � 1, . . . , 4). Making an analogy with (18), we have

Îkk−1v
�����

�����
2

L2 M̂j( ) �
4
9
v2j,1 + v

2
j,2 + v

2
j,3 + v

2
j,4( )

+
1
30

λ2j,1 + λ2j,2( )

+
4
9
vj,1 + vj,3( ) vj,2 + vj,4( )

+
2
9
vj,1vj,3 + vj,2vj,4( )

−
1
6

λj,1 + λj,2( ) vj,1 + vj,2 + vj,3 + vj,4( )

+
1
18
λj,1λj,2.

(19)

By (19) and the de�nition of Ikk−1, we obtain

∑
4

j�1
Îkk−1v
�����

�����
2

L2 M̂j( ) �
16
9

v21 + v
2
2 + v

2
3 + v

2
4( )

+
2
15

λ21 + λ22( ) +
16
9

v1 + v3( ) v2 + v4( )

+
8
9
v1v3 + v2v4( )

−
2
3

λ1 + λ2( ) v1 + v2 + v3 + v4( ) +
2
9
λ1λ2.

(20)

It follows from (18) and (20) that

∑
4

j�1
Îkk−1v
�����

�����
2

L2 M̂j( ) ≤C‖v̂‖
2
L2(M̂)

. (21)

�e scaling argument and (21) give

∑
4

j�1
Ikk−1v
�����

�����
2

L2 Mj( ) ≤C∑
4

j�1
Mj

∣∣∣∣∣
∣∣∣∣∣ Îkk−1v
�����

�����
2

L2 M̂j( )

≤C|M|‖v̂‖2
L2(M̂)
≤C‖v‖2L2(M),

(22)

where |Mj| and |M| denote the areas of Mj and M, re-
spectively. �erefore,

Ikk−1v
�����

�����L2(Ω) ≤C‖v‖L2(Ω). (23)
□

4. The Multigrid Method

�is section is devoted to describing the kth level iteration
and the full multigrid algorithm, a nested iteration of the
former. To facilitate the description and analysis, some
auxiliary operators are introduced �rstly.

�e operator Ak: Uk⟶ Uk is de�ned by

Akv, w( )L2(Ω) � ak(v, w), ∀v, w ∈ Uk. (24)

Clearly,Ak is symmetric and positive de�nite.�e �ne to
coarse operator Ik−1k : Uk⟶ Uk−1 should satisfy

Ik−1k v, w( )
L2(Ω) � v, Ikk−1w( )

L2(Ω), ∀v ∈ Uk, w ∈ Uk−1.

(25)

Ik−1k is the adjoint of Ikk−1 with the inner products
(·, ·)L2(Ω). Moreover, another adjoint operator of Ikk−1 relative
to ak(·, ·) is Pk−1k : Uk⟶ Uk−1 de�ned as

ak−1 P
k−1
k v, w( ) � ak v, I

k
k−1w( ), ∀v ∈ Uk, w ∈ Uk−1. (26)

�e kth level iteration: Let us consider the following
algebraic equations

Aky � b. (27)

�e solution, obtained by the kth level iteration with initial
guess y0, is denoted by MG(k, y0, b). If,
k � 1MG(1, y0, b) � A−11 b. If k> 1, the procedure can be
divided into three steps:

a4

a5

a9 a7

a2

a6

a1

M1

M2 M4

M3

a8
a3

Figure 1: A quadrilateral element in Tk−1 is divided into four
elements in Tk.
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Presmoothing step. ym1
∈ Uk will be formulated recursively

by

yi � yi−1 +
1
Λk

b − Akyi−1( 􏼁, 1≤ i≤m1, (28)

where Λk denotes the upper bound of the spectral radius of
Ak.

Correction step: Let b ≔ Ik−1
k (b − Akym1

). Do the (k −

1)th level iteration p (p� 2 or 3) times to the residual
equation Ak−1q � b for the coarse grid correction qp. More
specifically,

q0 � 0,

qi � MG k − 1, qi−1, b􏼐 􏼑, 1≤ i≤p.
(29)

,en,

ym1+1 ≔ ym1
+ I

k
k−1qp. (30)

Postsmoothing step: Go on the iteration as (28) with the
initial value ym1+1, i.e.,

yi � yi−1 +
1
Λk

b − Akyi−1( 􏼁, m1 + 2≤ i≤m1 + m2 + 1.

(31)

So, the result by the kth level iteration is

MG k, y0, b( 􏼁 ≔ ym1+m2+1, (32)

where m1 and m2 are non-negative integers.
On the basis of the kth level iteration, the full multigrid

algorithm will be constructed as follows.
1e full multigrid algorithm: For k � 1, the solution 􏽥u1 of

(11) is obtained by a direct method. For k> 1, the ap-
proximations 􏽥uk are obtained recursively from

u
0
k � I

k
k−1􏽥uk−1,

u
l
k � MG k, u

l−1
k , f􏼐 􏼑, 1≤ l≤ r,

􏽥uk � u
r
k,

(33)

r is a positive integer independent of k.

5. Convergence Analysis

In this section, we focus on the proof of the contracting
property of the kth level iteration and the convergence
of full MGM for the combined hybrid elements. Fol-
lowing [17, 26], the contracting property of the kth level
iteration mainly depends on that of the two-level itera-
tion. ,us, we begin with the analysis of the two-level grid
algorithm.

Assume that the relaxation operator in smoothing step is
defined by Rk ≔ I − 1/ΛkAk. A trivial computation gives
y − ym � Rm

k (y − y0). Let y and ym1+m2+1 be the accurate
solution and the two-level grid approximation solution of
(27), respectively, then

y − ym1+m2+1 � R
m2
k y − ym1+1􏼐 􏼑

� R
m2
k y − ym1

− I
k
k−1q􏼐 􏼑,

(34)

where q is the exact solution of the residual equation on the
(k − 1)th level. Set em1

≔ y − ym1
and e0 ≔ y − y0; then, we

have the following lemma.

Lemma 2. q � Pk−1
k em1

.

Proof. By (24)–(26), we have

ak−1(q, v) � (b, v)L2(Ω)

� I
k−1
k Akem1

, v􏼐 􏼑
L2(Ω)

� Akem1
, I

k
k−1v􏼐 􏼑

L2(Ω)

� ak em1
, I

k
k−1v􏼐 􏼑

� ak−1 P
k−1
k em1

, v􏼐 􏼑, ∀v ∈ Uk−1.

(35)

Owing to the positivity of ak−1 on Uk−1, the proof is
complete.

It follows from (34) and Lemma 2 that

y − ym1+m2+1 � R
m2
k y − ym1

− I
k
k−1P

k−1
k em1

􏼐 􏼑

� R
m2
k I − I

k
k−1P

k−1
k􏼐 􏼑R

m1
k e0.

(36)

,e above equality implies the relation between the
initial error and the finial error of the two-level grid algo-
rithm. If Rm

k and I − Ik
k−1P

k−1
k can be estimated, the con-

vergence of two-grid algorithm will be obtained.
First, we introduce a series of mesh-dependent norms on

Uk. From the spectral theorem, there exist eigenvalues
0< μ1 ≤ μ2 ≤ · · · ≤ μnk

and eigenfunctions ψ1,ψ2, · · ·

ψnk
∈ Uk, (ψi,ψj)L2(Ω) � δij, such that

Akψi, v( 􏼁L2(Ω) � ak ψi, v( 􏼁

� μi ψi, v( 􏼁L2(Ω), ∀v ∈ Uk.
(37)

Given any v ∈ Uk, then v � 􏽐
nk

i�1 ciψi. ,e norms ‖|v|‖s,k

are defined by

‖|v|‖s,k ≔ v, A
s
kv( 􏼁

1/2
L2(Ω)

� 􏽘

nk

i�1
c
2
i μ

s
i

⎛⎝ ⎞⎠

1/2

, ∀v ∈ Uk.
(38)

□

Lemma 3. [17], [27] 1e following properties of the mesh-
dependent norms hold

(i) ‖|v|‖0,k � (v, v)
1/2
L2(Ω) � ‖v‖L2(Ω), ∀v ∈ Uk,

(ii) ak(v, w)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ ‖|v|‖2,k‖w|‖0,k, ∀v, w ∈ Uk,

(iii) ‖|v|‖2,k � sup
0≠􏽥v∈Uk

ak(v, 􏽥v)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

‖|v|‖0,k

, ∀v ∈ Uk.

(39)

Next, we will estimate the operators Pk−1
k and Ik

k−1, which
play important roles in the proof of the approximation
property.
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Lemma 4. 1ere exists a constant C such that

P
k−1
k v

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

�����

�����2,k−1
≤C|‖v‖|2,k, ∀v ∈ Uk. (40)

Proof. It follows from Lemma 3, (26), and Lemma 1 that

P
k−1
k v

�����

�����

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌2,k−1
� sup

0≠􏽥v∈Uk−1

ak−1 P
k−1
k v, 􏽥v􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

|‖􏽥v‖|0,k−1

� sup
0≠􏽥v∈Uk−1

ak v, I
k
k−1􏽥v􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

‖|􏽥v|‖0,k−1
,

≤C sup
0≠􏽥v∈Uk−1

ak v, I
k
k−1􏽥v􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

I
k
k−1􏽥v

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

�����

�����0,k

� C‖|v|‖2,k.

(41)

□

Lemma 5. Let g ∈ L2(Ω). Assume that ξk ∈ Uk satisfies

ak ξk, 􏽥v( 􏼁 � 􏽚
Ω

g · 􏽥vdΩ, ∀􏽥v ∈ Uk, (42)

and ξk−1 ∈ Uk−1 satisfies

ak−1 ξk−1, 􏽥v( 􏼁 � 􏽚
Ω

g.􏽥vdΩ, ∀􏽥v ∈ Uk−1. (43)

1en, there exists a positive constant C such that

ξk−1 − P
k−1
k ξk

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

�����

�����0,k−1
≤Ch

2
k‖g‖L2(Ω). (44)

Proof. Let ξk−1 − Pk−1
k ξk � η. ‖|η|‖0,k−1 will be estimated by

the duality argument. Assume that (ση, w, wc) ∈ V × U × Uc

satisfies

αsk ση, τ􏼐 􏼑 − αb2,k(τ, w) + b1,k τ, w − wc( 􏼁 � 0, ∀τ ∈ V,

αb2,k ση, v􏼐 􏼑 − b1,k ση, v − vc􏼐 􏼑 +(1 − α)dk(w, v) � (η, v),

∀ v, vc( 􏼁 ∈ U × Uc,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(45)

and wk−1 ∈ Uk−1 satisfies

ak−1 wk−1, v( 􏼁 � 􏽚
Ω
η · vdΩ, ∀v ∈ Uk−1. (46)

By (46), the definition of η, and (26), we have

‖η‖
2
L2(Ω) � ak−1 wk−1, η( 􏼁,

� ak−1 wk−1, ξk−1( 􏼁 − ak−1 wk−1, P
k−1
k ξk􏼐 􏼑

� ak−1 wk−1, ξk−1( 􏼁 − ak I
k
k−1wk−1, ξk􏼐 􏼑.

(47)

It follows from (47), (43), and (42) that

‖η‖
2
L2(Ω) � g, wk−1( 􏼁L2(Ω) − g, I

k
k−1wk−1􏼐 􏼑

L2(Ω)

≤ ‖g‖L2(Ω) wk−1 − I
k
k−1wk−1

�����

�����L2(Ω)
.

(48)

We mainly estimate ‖wk−1 − Ik
k−1wk−1‖L2(Ω) in the fol-

lowing. Assume that Πk−1: U⟶Wk−1 is the bilinear in-
terpolation operator, where Wk−1 is the isoparametric
bilinear finite element space with respect to Tk−1. From the
definition of Ik

k−1, we have Ik
k−1v � v, ∀v ∈Wk−1. Hence,

wk−1 − I
k
k−1wk−1

�����

�����L2(Ω)
≤ wk−1 − 􏽙

k−1
w

���������

���������
L2(Ω)

+ I
k
k−1 􏽙

k−1
w − wk−1

⎞⎠⎛⎝

����������L2(Ω)

.

����������

(49)

By Lemma 1, the interpolation error estimate, and
discretization error estimate, we get

wk−1 − I
k
k−1wk−1

�����

�����L2(Ω)
≤Ch

2
k‖w‖H2(Ω). (50)

Since ‖w‖H2(Ω) ≤C‖η‖L2(Ω), it is evident that

wk−1 − I
k
k−1wk−1

�����

�����L2(Ω)
≤Ch

2
k‖η‖L2(Ω), (51)

which together with (48) and Lemma 3(i) implies the desired
result (44). □

Lemma 6. 1ere exists a constant C> 0 such that

v − I
k
k−1v

�����

�����L2(Ω)
≤Ch

2
k‖|v|‖2,k−1, ∀v ∈ Uk−1. (52)

,e proof of Lemma 6 is trivial. We refer the reader to
Lemma 3.7 in [17] for more details.

Based on the above lemma, we give the approximation
property, which is basically relied on the estimate of
I − Ik

k−1P
k−1
k .

Lemma 7 (Approximation property).1ere exists a constant
C> 0 such that

| I − I
k
k−1P

k−1
k􏼐 􏼑v|

�����

�����0,k
≤Ch

2
k‖|v|‖2,k,∀v ∈ Uk. (53)

Proof. Given any v ∈ Uk, take ϕ � Pk−1
k v, and then

(I − Ik
k−1P

k−1
k )v � v − Ik

k−1ϕ.
Let (􏽥σ,ψ,ψc) ∈ V × U × Uc satisfy

αsk(􏽥σ, τ) − αb2,k(τ,ψ) + b1,k τ,ψ − ψc( 􏼁 � 0, ∀τ ∈ V,

αb2,k(􏽥σ, v) − b1,k 􏽥σ, v − vc( 􏼁 +(1 − α)dk(ψ, v) � v − I
k
k−1ϕ, v􏼐 􏼑,

∀ v, vc( 􏼁 ∈ U × Uc.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(54)

Assume that ψk ∈ Uk satisfies

ak ψk, v( 􏼁 � 􏽚
Ω

v − I
k
k−1ϕ􏼐 􏼑 · vdΩ, ∀v ∈ Uk, (55)

and ψk−1 ∈ Uk−1 satisfies

ak−1 ψk−1, v( 􏼁 � 􏽚
Ω

v − I
k
k−1ϕ􏼐 􏼑 · vdΩ, ∀v ∈ Uk−1. (56)
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By (26) and (55), we have

v − I
k
k−1ϕ

�����

�����
2

L2(Ω)
� ak ψk, v( 􏼁 − ak ψk, I

k
k−1ϕ􏼐 􏼑

� ak ψk, v( 􏼁 − ak−1 P
k−1
k ψk, ϕ􏼐 􏼑.

(57)

It follows from Ik
k−1􏽑k−1 ψ � 􏽑k−1ψ and (26) that

v − I
k
k−1ϕ

�����

�����
2

L2(Ω)
� ak ψk − 􏽙

k−1
ψ, v⎛⎝ ⎞⎠ + ak I

k
k−1 􏽙

k−1
ψ, v⎛⎝ ⎞⎠ − ak−1 P

k−1
k ψk,ϕ􏼐 􏼑

� ak ψk − 􏽙
k−1

ψ, v⎛⎝ ⎞⎠ + ak−1 􏽙
k−1

ψ, P
k−1
k v⎛⎝ ⎞⎠ − ak−1 P

k−1
k ψk, ϕ􏼐 􏼑

� ak ψk − 􏽙
k−1

ψ, v⎛⎝ ⎞⎠ + ak−1 􏽙
k−1

ψ − ψk−1, ϕ⎛⎝ ⎞⎠ + ak−1 ψk−1 − P
k−1
k ψk,ϕ􏼐 􏼑.

(58)

Lemma 3 (ii) together with the discretization error es-
timate, the interpolation error estimate, and (44) yields

v − I
k
k−1ϕ

�����

�����
2

L2(Ω)
≤ ψk − 􏽙

k−1
ψ

���������

���������
L2(Ω)

‖|v|‖2,k + 􏽙
k−1

ψ − ψk−1

���������

���������
L2(Ω)

‖|ϕ|‖2,k−1 + ψk−1 − P
k−1
k ψk

�����

�����

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌0,k−1
|‖ϕ‖|2,k−1

≤Ch
2
k‖ψ‖H2(Ω)|‖v‖|2,k + Ch

2
k−1‖ψ‖H2(Ω)|‖ϕ‖|2,k−1 + Ch

2
k v − I

k
k−1ϕ

�����

�����L2(Ω)
|‖ϕ‖|2,k−1.

(59)

‖ψ‖H2(Ω) ≤C‖v − Ik
k−1ϕ‖L2(Ω) and Lemma 4 give

v − I
k
k−1ϕ

�����

�����L2(Ω)
≤Ch

2
k|‖v‖|2,k. (60)

,e smoothing property is mainly measured byRm
k in the

following lemma. ,e proof is standard [17, 26] and is
omitted here. □

Lemma 8. (Smoothing property For any v ∈ Uk, there exists a
constant C> 0 such that

R
m
k v

����
����

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌2,k
≤Ch

−2
k m

− 1
|‖v‖|0,k, (61)

R
m
k v

����
����

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌0,k
≤ |‖v‖|0,k. (62)

Combining Lemma 7 with Lemma 8, we have the
contracting property of the two-level grid algorithm.

Theorem 1. 1ere exists a constant C> 0 such that

y − ym1+m2+1

�����

�����

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌0,k
≤Cm

−1
1 y − y0

����
����

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌0,k

. (63)

A standard perturbation technique [24, 26] yields the
contracting property of the kth level iteration.

Theorem 2. For any 0< c< 1, as long as m1 is chosen to be
large enough, then

y − MG k, y0, b( 􏼁
����

����
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌0,k
≤ c y − y0

����
����

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌0,k

. (64)

Proof. For k� 1, MG(1, y0, b) � A−1
1 b � y, so the conclusion

is trivial. For k< n − 1, we assume that,eorem 2 is true. Let
us take account of the case for k � n. It follows from (34) that

y − MG n, y0, b( 􏼁
����

����
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌0,n
� R

m2
n em1

− I
n
n−1qp􏼐 􏼑

�����

�����

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌0,n

≤ R
m2
n em1

− I
n
n−1q􏼐 􏼑

�����

�����

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌0,n

+ R
m2
n I

n
n−1q − I

n
n−1qp􏼐 􏼑

�����

�����

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌0,n
,

(65)

where q � Pn−1
n em1

satisfies An−1q � b and qp, the approxi-
mation of q, is obtained by applying the (n − 1)th level it-
eration p times.

Since |‖R
m2
n (em1

− In
n−1q)‖|0,n is the final error of the two-

grid algorithm, by ,eorem 1 we have

R
m2
n em1

− I
n
n−1q􏼐 􏼑

�����

�����

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌0,n
≤C1m

−1
1 e0

����
����

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌0,n

. (66)

Applying Lemma 8, Lemma 1 and the induction hy-
pothesis give

R
m2
n I

n
n−1q − I

n
n−1qp􏼐 􏼑

�����

�����

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌0,n
≤ I

n
n−1q − I

n
n−1qp

�����

�����

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌0,n

≤C q − qp

�����

�����

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌0,n−1
≤Cc

p
|‖q‖|0,n−1.

(67)
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We will mainly estimate |‖q‖|0,n−1 in the following:

|‖q‖|0,n−1 � P
n−1
n em1

�����

�����

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌0,n−1
≤ P

n−1
n em1

− I
n
n−1P

n−1
n em1

�����

�����

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌0,n−1
+ I

n
n−1P

n−1
n em1

− em1

�����

�����

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌0,n
+ em1

�����

�����

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌0,n
. (68)

By Lemma 6, Lemma 7, Lemma 4, and Lemma 8, we have

|‖q‖|0,n−1 ≤Ch
2
n P

n−1
n em1

�����

�����

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌2,n−1
+ Ch

2
n em1

�����

�����

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌2,n
+ em1

�����

�����

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌0,n
≤Ch

2
n em1

�����

�����

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌2,n
+ em1

�����

�����

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌0,n
≤Cm

−1
1 e0

����
����

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌0,n

+ e0
����

����
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌0,n
. (69)

,erefore,

|‖q‖|0,n−1 ≤C e0
����

����
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌0,n
. (70)

Combining (65), (66), (67), and (70), we obtain

y − MG n, y0, b( 􏼁
����

����
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌0,n
≤ C1m

−1
1 + C2c

p
􏼐 􏼑 e0

����
����

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌0,n

. (71)

As long as m1 is an integer greater than C1/(c − C2c
p),

then

y − MG n, y0, b( 􏼁
����

����L2(Ω)
≤ c e0

����
����L2(Ω)

. (72)

Hence, the proof is completed.
Finally, we prove the convergence of the full multigrid

based on the contraction property of the kth level
iteration. □

Theorem 3. If the kth level iteration is a contraction for k �

1, 2, · · · and the parameter r in the full multigrid algorithm is
chosen large enough, then there exists a constant C> 0 such
that

u − 􏽥uk

����
����L2(Ω)
≤Ch

2
k‖u‖H2(Ω). (73)

Proof. Assume uk is the exact solution of the discretized
problem (11). By ,eorem 2 and Lemma 1, it suffices to
prove

uk − 􏽥uk

����
����L2(Ω)
≤ c

r
uk − I

k
k−1􏽥uk−1

�����

�����L2(Ω)
≤ c

r
uk − 􏽙

k−1
u

���������

���������
L2(Ω)

+ I
k
k−1 􏽙

k−1
u − 􏽥uk−1

⎛⎝ ⎞⎠

����������

����������L2(Ω)

⎛⎝ ⎞⎠

≤Cc
r

uk − 􏽙
k−1

u

���������

���������
L2(Ω)

+ 􏽙
k−1

u − 􏽥uk−1

���������

���������
L2(Ω)

⎛⎝ ⎞⎠

≤Cc
r

uk − 􏽙
k−1

u

���������

���������
L2(Ω)

+ 􏽙
k−1

u − uk−1

���������

���������
L2(Ω)

+ uk−1 − 􏽥uk−1
����

����L2(Ω)
⎛⎝ ⎞⎠.

(74)

From the interpolation error and the discretization error
estimate, we have

uk − 􏽥uk

����
����L2(Ω)
≤Cc

r
h
2
k‖u‖H2(Ω) + uk−1 − 􏽥uk−1

����
����L2(Ω)

􏼐 􏼑. (75)

By iterating (75), we get

uk − 􏽥uk

����
����L2(Ω)
≤

Cc
r

1 − 2Cc
rh

2
k‖u‖H2(Ω). (76)

If 2Ccr < 1, then

uk − 􏽥uk

����
����L2(Ω)
≤Ch

2
k‖u‖H2(Ω). (77)

(73) is a consequence of the discretization error estimate
and (77). □

6. Numerical Example

In order to illustrate the theory developed in the previous
sections, numerical results for two- and three-dimensional
problems are reported in this section.

Example 1. ,e plane strain pure bending test [28].

,e material properties used here are Young’s modulus
E � 1500 and Poisson’s ratio ] � 0.25. ,e initial mesh
subdivision is shown in Figure 2, and a sequence of re-
finements is produced by connecting the midpoints of
opposite edges, as explained in Section 2.

,e problem (1) is numerically solved by the combined
hybrid elements CH(0), CH(P–S), CH(0–1), and CH(1) on
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the �nest mesh levels, respectively. For the resulting discrete
systems, we mainly use two di§erent algorithms, i.e.,
W-cycle MGM and full MGM. �e intergrid transfer op-
erator established in Section 3 is utilized. �e damped
Gauss–Seidel iteration with the damped factor ω � 1.5 is the
smoother and m1 � m2. �e zero vector acts as the initial
guess. �e stopping criterion is Ri � ‖rik‖/‖fk‖≤ 10− 6, where
rik � fk − Akuik is the residual after i kth iterations. “Iter” is
the number of the iterations required to achieve the desired
accuracy. �e convergence factor is denoted by
q̂m ≔

��������
‖rmk ‖/‖r0k‖

m

√
[29].

All experiments are run on Inter Core Duo process-
or(CPU @2.20GHZ, 4GB RAM).

�e numerical tests will be performed in the following
aspects:

(1) �e performance ofW-cycle MGM and full MGM is
summarized in Tables 1 and 2, respectively.W-cycle
MGM with i presmoothing and j postsmoothing
sweeps is denoted by W (i, j).

It appears that the two methods converge when the
smoothing is large enough. Moreover, it is evident
that the number of the iterations and the conver-
gence rate are all independent of the mesh size,
which agrees well with the conclusion of �eorems 2
and 3.

(2) We test the in®uence of the number of the nested
iterations “r” on the convergence. As a di§erent “r” is
used in full MGM for CH(0–1), Table 3 gives the
number of the smoothing required to achieve an
relative error of less than 10− 5. It is observed that the
number of smoothing increases as that of the nested
iteration decreases.

(3) We investigate the performance of V-cycle MGM.
Table 4 indicates that the algorithm also has a mesh-
independent convergence.

(4) We apply W (2,2), preconditioned conjugate gra-
dient iteration with diagonal preconditioner (D-
PCG) and SSOR preconditioned conjugate gradient

1.3

1000

1000
0.7

1.1 0.9

A

Figure 2: �e plane strain pure bending test.

Table 1: Convergence results of W-cycle MGM for the combined hybrid elements.

Grid 8 × 8 16 × 16 32 × 32 64 × 64 128 × 128

CH(0-1)

w (2, 2) Iter 9 9 10 12 12
q̂9 0.18 0.18 0.21 0.29 0.30

w (3, 3) Iter 7 7 7 9 9
q̂7 0.13 0.13 0.12 0.19 0.21

w (4, 4) Iter 7 6 6 6 7
q̂6 0.11 0.10 0.09 0.10 0.11

CH(1)

w (2, 2) Iter 13 12 13 13 13
q̂12 0.32 0.31 0.33 0.33 0.32

w (3, 3) Iter 8 8 7 8 9
q̂7 0.16 0.15 0.13 0.18 0.19

w (4, 4) Iter 7 7 7 6 6
q̂6 0.12 0.13 0.12 0.10 0.09

CH(0)

w (2, 2) Iter 10 9 10 12 13
q̂9 0.22 0.21 0.23 0.31 0.32

w (3, 3) Iter 7 7 7 9 10
q̂7 0.14 0.13 0.13 0.20 0.23

w (4, 4) Iter 7 7 6 7 7
q̂6 0.12 0.11 0.09 0.10 0.12

CH(P-S)

w (2, 2) Iter 9 9 10 12 12
q̂9 0.18 0.19 0.21 0.29 0.31

w (3, 3) Iter 7 7 7 9 9
q̂7 0.14 0.13 0.12 0.19 0.21

w (4, 4) Iter 7 7 6 6 7
q̂6 0.11 0.11 0.09 0.10 0.12
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method (SSOR-PCG) to the discrete systems arising
from CH(0–1). ,e numerical results in Table 5
demonstrate that the number of the iterations and
the CPU time are all optimal for W (2,2), compared
with D-PCG and SSOR-PCG.

(5) We test the effectiveness of the aforementioned
multigrid method for CH(0–1) when Poisson’s ratio
]⟶ 0.5. ,e corresponding numerical results are
listed in Table 6. ,e observed behavior is that as ] is
near 0.5, the method diverges. Reference [30]

Table 2: Convergence results of full MGM for the combined hybrid elements.

Grid 8 × 8 16 × 16 32 × 32 64 × 64 128 × 128

CH(0-1)

m1 � 2 Iter 8 8 8 10 11
Time 0.06 0.26 1.85 17.52 161.99

m1 � 3 Iter 6 6 6 7 7
Time 0.05 0.25 1.84 16.44 139.09

m1 � 4 Iter 6 5 5 5 6
Time 0.05 0.26 1.93 15.14 147.27

CH(1)

m1 � 2 Iter 13 13 14 13 13
Time 0.08 0.42 3.24 23.78 191.37

m1 � 3 Iter 7 7 6 7 7
Time 0.05 0.29 1.87 16.51 137.80

m1 � 4 Iter 6 6 5 5 5
Time 0.06 0.30 1.96 15.18 126.54

CH(0)

m1 � 2 Iter 9 9 9 11 12
Time 0.09 0.32 2.13 19.63 177.64

m1 � 3 Iter 6 7 6 7 8
Time 0.05 0.31 1.88 16.91 157.61

m1 � 4 Iter 6 5 5 5 6
Time 0.06 0.26 1.89 15.59 148.36

CH(P-S)

m1 � 2 Iter 9 8 8 10 11
Time 0.05 0.26 1.88 17.94 171.21

m1 � 3 Iter 6 6 6 7 7
Time 0.04 0.24 1.84 16.55 140.89

m1 � 4 Iter 6 5 5 5 6
Time 0.05 0.26 1.90 15.9 150.32

Table 3: ,e smoothing needed for full MGM with a different r of CH(0-1).

Grid 8 × 8 16 × 16 32 × 32 64 × 64 128 × 128
r� 2 m1 37 13 8 8 9
r� 5 m1 3 3 3 4 4
r� 8 m1 2 2 2 2 2

Table 4: Convergence results of V-cycle MGM for the combined hybrid elements.

Grid 8 × 8 16 × 16 32 × 32 64 × 64 128 × 128

CH(0-1)
V (2, 2) Iter 16 14 17 21 26

􏽢q14 0.41 0.36 0.42 0.47 0.51

V (3, 3) Iter 8 10 12 15 17
􏽢q8 0.17 0.22 0.25 0.27 0.29

CH(1)
V (2, 2) Iter 16 14 18 23 27

􏽢q14 0.42 0.37 0.43 0.48 0.52

V (3, 3) Iter 10 12 15 18 22
􏽢q10 0.22 0.29 0.34 0.38 0.40

CH(0)
V (2, 2) Iter 37 26 27 27 27

􏽢q26 0.68 0.59 0.60 0.59 0.59

V (3, 3) Iter 11 8 9 10 13
􏽢q8 0.24 0.17 0.18 0.23 0.24

CH(P-S)
V (2, 2) Iter 17 14 17 22 24

􏽢q14 0.43 0.36 0.42 0.47 0.48

V (3, 3) Iter 8 11 13 15 16
􏽢q8 0.17 0.22 0.25 0.27 0.29
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indicates that the smoothing of PCG is less sensitive
to ] than that of GS, so we adopt the SSOR-PCG as
the smoother. As can be seen from Table 7, the
multigrid method with SSOR-PCG smoother is
e�cient for near-incompressible elasticity
problem.

Finally, we apply the multigrid algorithm to the algebraic
systems arising from the discretization of the cantilever
beam problem by hybrid hexahedron elements.

Example 2. �e cantilever beam problem [31].

�e cantilever beam problem, as shown in Figure 3, is
approximated by two 8-node hexahedron combined hybrid
elements CHH(0-1)+ and CHH(0-1), respectively. W-cycle
MGM and full MGM are used for the discrete systems. �e
trilinear interpolation operator is utilized as the intergrid
transfer operator. �e damped Gauss–Seidel iteration with
the damped factor ω � 1.5 is the smoother and m1 � m2.
Tables 8 and 9 give the number of the iterations (Iter) and the

Table 5: Comparisons of W (2,2), D-PCG, and SSOR-PCG for CH(0-1).

Grid 8 × 8 16 × 16 32 × 32 64 × 64 128 × 128

W (2, 2) Time 0.08 0.27 2.23 20.47 151.58
Iters 9 9 10 12 12

D-PCG Time 0.31 1.53 21.63 401.78 —
Iters 107 195 383 616 —

SSOR-PCG Time 0.10 0.59 7.75 103.3 1773.63
Iters 30 44 72 125 233

Table 6: Convergence results of W-cycle MGM as ] is near 0.5.

Grid 8 × 8 16 × 16 32 × 32 64 × 64 128 × 128

m1 � 10, ] � 0.45
Iter 6 5 5 4 4
q̂4 0.10 0.08 0.08 0.05 0.04

m1 � 10, ] � 0.49
Iter 13 10 10 10 10
q̂10 0.34 0.31 0.30 0.29 0.27

m1 � 10, ] � 0.495
Iter 25 23 32 41 42
q̂23 0.56 0.60 0.69 0.75 0.76

m1 � 15, ] � 0.499
Iter — — — — —
q̂ — — — — —

m1 � 30, ] � 0.4995
Iter — — — — —
q̂ — — — — —

Table 7: Performance of W-cycle MGM with SSOR-PCG smoother as ] is near 0.5.

Grid 8 × 8 16 × 16 32 × 32 64 × 64 128 × 128

m1 � 5, ] � 0.45
Iter 5 4 4 4 4
q̂4 0.07 0.04 0.05 0.05 0.04

m1 � 5, ] � 0.49
Iter 8 8 7 7 6
q̂6 0.23 0.22 0.19 0.16 0.14

m1 � 5, ] � 0.495
Iter 39 13 11 10 9
q̂9 0.74 0.38 0.33 0.30 0.28

m1 � 10, ] � 0.499
Iter 88 22 16 13 12
q̂12 0.88 0.58 0.48 0.40 0.38

m1 � 15, ] � 0.4995
Iter 23 14 12 12 14
q̂12 0.60 0.44 0.37 0.38 0.44
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Figure 3: �e cantilever beam problem.

Mathematical Problems in Engineering 11



CPU time (Time) of the two methods. It appears that the
proposed methods also have the mesh-independent
convergence.

7. Conclusions

In this paper, MGM has been applied to the discrete systems
(11) arising from combined hybrid quadrilateral or hexa-
hedron element discretization of linear elasticity problem
(1). ,e intergrid transfer operator is constructed on
quadrilateral or hexahedron meshes, and we prove the
boundedness of the operator in L2 norm. On the basis of this
crucial property, the kth level iteration is a contraction for
the L2 norm. Moreover, the approximate solution of the full
MGM satisfies the same type of error estimates as the dis-
cretization error. Two numerical examples are given to il-
lustrate the convergence and efficiency of the proposed
method. Finally, we design an efficient multigrid method for
near-incompressible elasticity problem.
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