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In this study, we have used Lie group analysis procedure to propose a novel model for transforming the governing equations of
double diffusive MHD hyperbolic tangent fluid flowmodel into a system of nonlinear ordinary differential equations (ODEs)./e
solution of these equations is then investigated numerically by employing Shooting method. We also reported and presented our
results graphically illustrating the results and analysis of physical parameters on concentration, velocity, and temperature profiles
and on other physical quantities present in the flow model. /e results show that fluid temperature increases with rise in the
modified Dufour and velocity slip parameters whereas opposite behavior is observed for thermal slip parameter. Moreover, the
Nusselt number declines with enhanced values of modified Dufour parameter whereas its opposite effect has been observed for
Dufour-solutal Lewis number and Prandtl number.

1. Introduction

/e magnetohydrodynamic (MHD) flow over a stretching
sheet has numerous industrial and manufacturing applica-
tions, which include polymer extrusion, continuous casting
of metals, petroleum industries, and electrical power gen-
erators. Due to its large-scale applications, many researchers
attempted to study and analyze the solutions of differential
equations describing boundary layer and MHD fluid flow
problems along a stretching sheet. /e pioneering work in
this regard is carried out by Sakiadis [1], who studied the
boundary layer equations over continuous solid surfaces.
Later on, Crane [2] analyzed laminar boundary layer steady
flow caused by a linear stretching sheet. Pavlov [3] obtained
exact solution of momentum equation for MHD fluid flow
along a stretching sheet. Since then, a number of researchers
studied the stretching sheet problems by considering various
aspects [4–8]. /e investigation of numerically solving the

heat transfer of MHD fluid flow in a stretching cylinder is
attributed to Ishak et al. [9]. Mukhopadhyay [10] discussed
the slip flow influence of the magnetic field towards a
stretchable cylindrical surface. Zaimi and Ishak [11] pre-
sented the analysis of heat transfer along a stretching vertical
sheet by considering partial slip conditions on stagnation-
point flow. Bhojappa and Zeb [12] proposed the aspect of
chemical reaction on steady 3D Maxwell nanofluid through
a stretched sheet. /ey noticed that growing values of
chemical reaction enhance the concentration distribution.
Some other researchers recently studied and reported the
dynamics of MHD boundary layer flow problems over the
cylindrical surfaces. Interested readers may refer to [13–17]
for more details.

/e applications of non-Newtonian fluids in different
fields of science and engineering have gained considerable
attention of researchers for investigating their thermo-
physical aspects. /ese fluids are appropriate in chemical,
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pharmaceutical, and other industrial sectors. However, the
study of non-Newtonian fluids poses a number of chal-
lenges. /ese include the existence of highly nonlinear
governing equations in comparison with equations for
Newtonian fluids and the nonexistence of a single consti-
tutive equation, which explicitly describes these fluids due to
their diverse nature. Keeping in view these issues, re-
searchers have suggested a variety of fundamental equations
for evaluating the physical aspects of non-Newtonian fluids.
An important non-Newtonian model is tangent hyperbolic
fluid, which is utilized in a number of industrial processes
and laboratory experiments. /e tangent hyperbolic model
has been studied from different perspectives by various
researchers [18–24]. /e authors in [25] explored the
peristaltic MHD tangent hyperbolic fluid flow by taking into
account an inclined asymmetric channel having partial slip
conditions. /e effect of double diffusive convection on
stagnation-point flow for a model of hyperbolic tangent
nanofluid was inspected in [26] where the authors revealed
that Brownian motion variable decreases the concentration
curves and at the same time increases the temperature.
Rehman et al. [27] deliberated the influence of heat gen-
eration and magnetic parameter for a stretching cylindrical
surface by considering a model of thermally stratified tan-
gent hyperbolic fluid. Zakir et al. [28] appraised the impact
of stretching parameter on the tangent hyperbolic fluid
model with suction/injection. /ey reported the enhance-
ment of velocity distribution for growing values of stretching
parameter.

Lie group analysis is a technique valuable for investi-
gation of nonlinear partial differential equations. /e de-
velopment of this method can be seen in Lie and Ackerman’s
work [29] whereas for the unification of known exact in-
tegration techniques considering differential equations, refer
to [30]. Many researchers studied various fluid flow prob-
lems under different conditions using the Lie group analysis
method [31–36]. Kandasamy et al. [37] used the Lie group
transformation method for analyzing an electrically con-
ducting steady incompressible flow along a vertical
stretchable sheet. In [38], the authors explored the free
convective flow of a nanofluid by considering a porous
media on a chemically reacting horizontal plate and ob-
tained its Lie group solution. Ullah and Zaman [39] studied
Lie group analysis of the MHD hyperbolic tangent slip flow
model along a stretchable sheet. Ahmad et al. [40] delib-
erated characteristics of heat transfer and flow behavior
along a shrinking sheet considering the effects of thermal slip
conditions and magnetic parameter.

In this work, we investigated numerical simulation of the
double diffusive MHD hyperbolic tangent fluid flow model.
We found new similarity transformations using Lie group
analysis procedure, which transformed the nonlinear gov-
erning equations into a system of nonlinear ODEs. Its
numerical solution is then investigated by employing the
Shooting method in Mathematica software. We also carried
out the analysis of different parameters including Weis-
senberg number, Lewis number, Prandtl number, Brownian
motion, Hartmann number, power law index, source/sink
parameter, thermophoresis on temperature, and velocity/

concentration profiles. All the important findings are il-
lustrated graphically.

We organized this paper as follows. In Section 2, the
problem is formulated under certain assumptions. In Section
3, similarity transformations are obtained using Lie group
analysis procedure, which gives us nonlinear ODEs. In
Section 4, the numerical results, graphical illustrations, and
discussion are presented. In Section 5, conclusion of the
proposed work is drawn.

2. Mathematical Model

In this work, we consider a double diffusive convectiveMHD
incompressible flow for a tangent hyperbolic fluid model
and assume that the flow generation is anticipated from
linear stretching. Further, we assume that the flow is
bounded to the region y> 0 and coincident with the plane
y � 0 (see Figure 1). We define the extra stress tensor for
hyperbolic tangent fluid model as shown in following
equation [25, 41].

S � η∞ + η0 + η∞( tanh(Γ _c)
n

  _c, (1)

where n is the flow behavior index, η∞ stands for infinite
shear rate viscosity, Γ represents time dependent material
constant, and η0 appears for zero shear rate viscosity. /e
term _c in (1) is defined as given in the following equation:

_c �

�������
1
2
ΣiΣj _cij
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tr gradV + gradV
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Incorporating Γ _c< 1 and η∞ � 0 due to shear thinning
characteristics of the fluid flow, the modified form of (1)
implies

S � η0[(1 + n(Γ _c − 1)] _c. (3)

Under the assumptions mentioned above, we have the
continuity equation, i.e., as follows:
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/e equation of momentum as of [28] is given as follows:
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/e energy equation as of [42] is given as follows:
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/e concentration equation as of [42] is expressed as
follows:

u
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zy
2 . (7)

In these governing equations, the terms Dsm, DCT, and B

represent the solutal diffusivity of porous medium, diffu-
sivity of Soret type, and applied uniform magnetic field,
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respectively. Similarly, ] stands for kinematic fluid viscosity,
ρ denotes the fluid density, and σ stands for electrical
conductivity of the fluid. Also, velocity components along
(x, y) coordinate system are represented by (u, v). /e term
cp represents the specific heat, Q0 stands for volumetric rate
of the heat generation, and k represents thermal conduc-
tivity. Moreover, the terms T, Tw, T∞, and C represent the
temperature, temperature at the wall, the free stream tem-
perature, and concentration, respectively.
/e appropriate boundary conditions associated with
Equations (4)–(7) are identified as follows:

aty � 0, u � ax + L0
zu

zy
, v � 0, T � Tw + K0

zT

zy
, C � Cw,

asy⟶∞, u⟶ 0, T⟶ T∞, C⟶ C∞,

(8)

where K0 stands for thermal slip factor, L0 stands for velocity
slip factor, and a stands for the stretching rate. For re-
quirements of nondimensionalized form of Equations
(4)–(7) and (8), we consider the following:

u �
u
��
a]

√ , x �

��
a

]
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v
��
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��
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]



y, ϕ �
C − C∞

Cw − C∞
, θ �

T − T∞
Tw − T∞

, (9)

which shows dimensionless quantities. After simplification,
(4) implies the following:
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Similarly, (5) implies the following:
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Likewise, (6) implies the following:
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and (7) becomes
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From boundary conditions in (8), we have

aty � 0, u � x +
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(14)

where for brevity, we removed bars from the equations
above.

3. Scaling Transformations

Before applying scaling transformations, we first introduce
the stream function ψ as follows:

u �
zψ
zy

,

v � −
zψ
zx

,

(15)

and put it into (10)–(13) and (14) so Equation (10) is satisfied
automatically and Equation (11) is transformed into
Equation (15).

Momentum boundary layer

Thermal boundary layer

Concentration boundary layer

v u → 0, T → T∞ , C → C∞

u = ax + L0uy, v = 0, T = Tw + K0Ty, C = Cw
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y-
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is

x-axis
o
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B

Figure 1: Flow configuration.

Mathematical Problems in Engineering 3



zψ
zy

z
2ψ

zxzy
−

zψ
zx

z
2ψ

zy
2  � (1 − n)

z
3ψ

zy
3 +

�
2

√
nΓa

z
2ψ

zy
2 

z
3ψ

zy
3 −

σB
2

ρa

zψ
zy

. (16)

Similarly, (12) becomes the following:
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Equation (13) becomes the following:
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and its associated boundary conditions become as shown in
the following:
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Let ε be the small parameter of the scaling transfor-
mation. /en, transformation 5 (a special form of Lie group
analysis) is considered as given in the following:

5: x
∗
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where r1, r2, . . . , r6 are arbitrary real numbers. /e point-
transformation given in (20) transformed the co-ordinates
(x, y,ψ, θ, ϕ, Γ) into (x∗, y∗,ψ∗, θ∗, ϕ∗, Γ∗).

/erefore, utilizing Equation (20), Equation (16) results
in the following:
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Equation (17) implies the following:
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and (18) is transformed into the following:
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If the exponent of these transformed systems of equa-
tions satisfies the following equations:(26)

r1 + r2 − 2r3 � 3r2 − r3 � 5r2 − 2r3 − r6 � r2 − r3, (24)

r1 + r2 − r3 − r4 � 2r2 − r4 � −r4 � 2r2 − r5, (25)

r1 + r2 − r3 − r5 � 2r2 − r5 � 2r2 − r4, (26)

then Equations (21)–(23) will remain invariant under the
transformation 5.

Next, by solving Equations (24)–(26) simultaneously, we get

r1 � r1,

r2 � 0,

r3 � r1,

r4 � 0,

r5 � 0,

r6 � −r1.

(27)

Putting (27) into the scaling transformations in (20), we
obtain
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5: x
∗

� xeεr1 , y
∗

� y, ψ∗ � ψe
εr1 , θ∗ � θ, ϕ∗ � ϕ, Γ∗ � Γe− εr1 .
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By utilizing Taylor’s series expansion on transformations
in (28), we get the characteristic equations as
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From (29), one can easily obtain new similarity trans-
formations as given in the following:

y � η,ϕ � ϕ(η), θ � θ(η),ψ � xf(η), Γ � x
− 1Γ0. (30)

Putting quantities given in (30) into equations (16)–(18)
and in boundary conditions specified in (19), we obtain
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where n stands for power law index, M2 � σB2/ρa stands for
Hartmann number, and We �
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√
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θ′′ + Pr fθ′ + Qθ(  + PrNdϕ″ � 0, (32)

where Pr � μcp/k is the Prantdl number, Nd � DCT/](Cw −

C∞)/(Tw − T∞) is modified Dufour parameter, and Q �

Q0/ρcpa is the source/sink parameter.

ϕ′′ + Pr Le fϕ′(  + Ldθ″ � 0, (33)

where Le � k/ρcpDsm represents Lewis number,
Ld � DCT/Dsm(Tw − T∞/Cw − C∞) stands for Dufour-sol-
utal Lewis number, and

at η � 0, f′ � 1 + αf″(0), f � 0,ϕ � 1, θ � 1 + bθ′(0),

as η⟶∞, f′ ⟶ 0,ϕ⟶ 0, θ⟶ 0,

(34)

where α �
���
a/]

√
L0 stands for velocity slip parameter and b ����

a/]
√

K0 represents thermal slip parameter. /e prime in
these equations denotes differentiation with respect to η.

Hence, it is required to solve equations (31)–(33) subject
to the conditions in (34).

Here, we define equations (35)–(37).
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where Cf stands for skin friction coefficient, Shx is the local
Sherwood number, Nux stands for the local Nusselt number,
and
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�
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2
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(36)

where hm is the mass flux, qw stands for the heat transfer
from the plate, and τw represents the skin friction.
Substituting (9), (30), and (36) into (35), we obtain its di-
mensionless form as follows:

Re1/2Cf � (1 − n)f″(0) +
n

2
We f″(0)( 

2
,Re− 1/2Nux � −θ′(0),Re− 1/2

Shx � −ϕ′(0), (37)

where the local Reynolds number is represented as
Re � ax2/].

4. Numerical Results and Discussion

Here, the Shooting method is utilized to numerically solve
the governing nonlinear system of ODEs (30)–(33). For
coding purpose, MATHEMATICA 10 software is used. A
small step size (Δη � 0.0001) along with convergence cri-
teria is taken upto 10−7. We used a variety of values of the
controlling parameters describing the flow problem for
numerical simulations. We have also compared our pro-
posed scheme in Table 1 for the skin friction coefficient with
Zakir and Zaman [39] and Noreen Sher Akbar et al. [25]. We
carried out the comparison by keeping α (the velocity slip

parameter) absent./e results show excellent agreement and
demonstrate accuracy for each considered value.

/e graphical representations of the numerical results
for different governing parameters influencing the heat
transfer and flow behavior of the proposed model are
depicted in Figures 2–9.

Figures 2(a)–2(d) depict the behavior of We, α, M, and n

on velocity distribution, respectively. It is evident that a
decline in velocity and momentum boundary layer thickness
occurs with growing intensity of M. /is behavior is owing
to the occurrence of Lorentz force, which causes retardation
and opposes the fluid flow. /e thickness of the hydrody-
namic boundary layer declines with growing n values. /e
velocity profile reduces showing more resistance to the flow
for each increasing value of We due to increase in relaxation
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Table 1: Comparison of skin friction coefficient values.

n↓ M↓
Akber et al. [21] Zakir and Zaman [39] Results of the present study

We � 0 We � 0.3 We � 0.5 We � 0 We � 0.3 We � 0.5 We � 0 We � 0.3 We � 0.5

0.0 0 1 1 1 1 1 1 1.0014 1.0014 1.0014
0.1 0 0.94868 0.94248 0.93826 0.94868 0.94248 0.93826 0.949674 0.943456 0.939227
0.2 0 0.89442 0.88023 0.87026 0.89442 0.88023 0.87026 0.895092 0.880871 0.870891
0.3 0.5 1.02472 0.98804 0.96001 1.02472 0.98804 0.96001 1.02472 1.07482 1.06011
0.3 1.0 1.18322 1.13454 1.09616 1.18322 1.13454 1.09616 1.18322 1.23764 1.09616
0.3 1.5 1.32288 1.26193 1.21235 1.32288 1.26193 1.21235 0.33288 1.26193 1.21235
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Figure 2: Variations in velocity profiles for M, n, We, and α.
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time. In addition to this, we also observe that velocity profile
reduces with increase in α.

Figures 3(a) and 4(b) show the effects of Pr, Q, α, b, Nd,
and n on temperature profile, respectively. Here, the tem-
perature profile reduces and a rapid decline occurs in
thermal boundary layer for growing Pr values. /e skin
parameter Q has the same behavior on temperature function
as of Figure 3(a). /e temperature distribution reduces with
rising b values. /e qualitative behavior of α on the tem-
perature profile is opposite to the quantities that are shown
in Figure 3(c). Moreover, the qualitative behavior of
Figures 4(a) and 4(b) is similar.

In Figures 5(a) and 6(b), we can see the effects of Le, Ld,
n, b, α, and M on concentration profile of the flow. /e
concentration profile reduces with increase in Le. It is

attributed to the reason that mass diffusivity reduces by
increasing Le. /e concentration function ϕ(η) and the
concentration boundary layer thickness increase by en-
hancing Ld. /e concentration profile increases for in-
creasing values of n and α whereas for b it has an opposite
effect. Moreover, the concentration function and thickness
of boundary layer observe a strict rise by increasing M,
which are depicted in Figure 6(b).

/e skin friction coefficient reduces for augmented
values of n and α as shown in Figure 7(a). Moreover, less
resistance to the flow is depicted for increasing values of We
whereas it shows an increasing trend for M as illustrated in
Figure 7(b).

/e heat transfer rate enhances for increasing Pr
whereas Nd has an opposite effect on it as shown in
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Figure 3: Variations in temperature profiles for Pr, Q, b, and α.
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Figure 5: Continued.
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Figure 8(a). /e variations in local Nusselt number against
Le for distinct values of Q are shown in Figure 8(b). It is
same qualitatively as of Figure 8(a). Further, it is observed
that Ld and α have opposite behavior on the local Nusselt
number as illustrated in Figure 8(c). /e decreasing be-
havior of heat transfer rate with increase in n and b is
highlighted in Figure 8(d).

Sherwood number reduces with increasing values of Nd
and Pr as depicted in Figure 9(a). Figure 9(b) shows that
Sherwood number enhances for b and Le whereas reduces
for α and M as shown in Figure 9(c). Sherwood number with
Dufour-solutal Lewis number for distinct values of n is
shown in Figure 9(c). Moreover, the qualitative behavior of
Figures 9(d) and 9(c) is similar.
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Figure 5: Variations in concentration profiles for Le, Ld, n, and b.
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Figure 6: Variations in concentration profiles for α and M.
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Figure 7: Influence of governing parameters on skin friction coefficient.
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Figure 8: Influence of several parameters on local Nusselt numbers.
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5. Conclusion

We presented numerical solutions for the double diffusive
MHD hyperbolic tangent fluid flow model by developing
similarity transformations through implementing Lie group
procedure. /e transformed nonlinear ODEs solution is then
obtained by utilizing the Shooting method. Furthermore, we
conclude the present study with the following remarks:

(i) Intensity in the flow for governing parameters
including velocity slip, Hartmann number,
Weissenberg number, and power law index causes
the velocity to decrease

(ii) /e temperature profile reduces for enhancing
values of Prandtl number, thermal slip, source/
sink, and Dufour parameter

(iii) /e power law index, modified Dufour, and ve-
locity slip parameters show similar behavior on
temperature function θ(η)

(iv) Enhancement of the concentration profile is ob-
served for increasing power law index, thermo-
phoresis parameter, Hartmann number, and
velocity slip

(v) Increasing Lewis number has reducing effect on
concentration profile

(vi) Reduction in skin friction coefficient shows less
resistance to the flow for velocity slip parameter,
Weissenberg number, and power law index but
opposite behavior for the Hartmann number

(vii) /e local Nusselt number of the flow shows in-
creasing behavior for source/sink parameter,
Prandtl number, and Dufour-solutal Lewis num-
ber whereas decreasing behavior for power law
index, modified Dufour parameter, Lewis number,
and slip parameters

(viii) /e thermal slip parameter and Lewis number
enhance the Sherwood number whereas they re-
duce the power law index, Dufour parameter,
Prandtl number, Dufour-solutal Lewis number,
velocity slip parameter, and Hartmann number
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