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�e exponentiated generalized Gull alpha power exponential distribution is an extension of the exponential distribution that can
model data characterized by various shapes of the hazard function. However, change point problem has not been studied for this
distribution. In this study, the change point detection of the parameters of the exponentiated generalized Gull alpha power
exponential distribution is studied using the modi�ed information criterion. In addition, the binary segmentation procedure is
used to identify multiple change point locations. �e assumption is that all the parameters of the EGGAPE distributions are
considered changeable. Simulation study is conducted to illustrate the power of the modi�ed information criterion in detecting
change point in the parameters with di�erent sample sizes. �ree applications related to COVID-19 data are used to demonstrate
the applicability of the MIC in detecting change point in real life scenario.

1. Introduction

�e concept of change point is important in statistical
analysis since it helps to identify the points at which a time
series’ distribution changes. Change point Analysis is of
great interest in real-life phenomena such as in health sci-
ence, �nance, and survival analysis. �e contents of change
point inference include the aspect of determining the ex-
istence of a change point and then estimating the number
and the positions of the change points. Since the inception of
the concept of change point analysis, many studies have been
conducted. Sen and Srivastava [1, 2] studied and came up
with a statistic for detecting change in the mean of variables
that were characterized by a normal distribution and derived
the asymptotic, exact distribution. Change point in a

binomial probability model, the power of likelihood ratio,
and cumulative sum tests were investigated in [3]. In the
context of distributions, Ngunkeng and Ning [4] did a study
on change point problem for generalized lambda distribu-
tion. For an exponential distribution characterized by re-
peated values, change point identi�cation was carried out in
[5]. Hassan et al. [6] obtained weighted power Lomax
distribution and its length biased version. Shrahili et al. [7]
discussed the alpha power moment exponential model with
applications to biomedical science. Chen and Arjun [8] did
an extensive study on the statistical change point in the
parametric context and gave applications related to the �elds
of �nance, medicine, and genetics. Change point detection
utilizing the information approach considering regular
models was explored in [9]. Arellano-Valle et al. [10]
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considered the problem of change point for the Skew normal
distribution using the Bayesian approach. Alghamdi et al.
[11] studied the Rayleigh Lomax distribution and used the
information approach to identify potential change points in
the parameters. Almetwally [12] did an extensive study
incorporating oddWeibull inverse Topp–Leone distribution
with applications to COVID-19 data. Recently, Ratnasingam
[13] did an extensive study incorporating modified infor-
mation approach and confidence distribution skew normal
distribution.

In the area of statistics, the unknown time point when
observations follow different distributions before and after
the point is described as change point. Following the defi-
nition of change point, the description follows. Let
Z1, Z2, . . . , Zn be a series of independent random variables
with CDF given as G1, G2, . . . , Gn, respectively. )e change
point problem entails testing the null hypothesis as follows:

H0: G1 � G2 � · · · � Gn. (1)

Against the alternative,

Ha: G1 � · · · � Gk1
≠Gk1+1 � · · · � Gkq

≠Gkq+1 � · · · � Gn,

(2)

where 1< k2 < k2 < · · · < kq < n denotes the change points
number and k1, k2, . . . , kq are the unknown locations of the
change points that are to be estimated. Of importance, if
G1, G2, . . . , Gn are from the same parametric family, the
change point problem turns out to be a test of the null
hypothesis of the parameters of the population
ϕi, i � 1, 2, . . . , n, stipulated as

H0: ϕ1 � ϕ2 � · · · � ϕn � ϕ, (3)

versus the alternative,

H1: ϕ1 � · · · � ϕk1
≠ ϕk1+1 � · · · � ϕk2

≠ϕk2+1

� · · · � ϕkq−1≠ ϕkq
� · · · � ϕn.

(4)

)e Exponentiated Generalized Gull Alpha Power Ex-
ponential (EGGAPE) distribution is a recently developed
distribution in [14]. It is flexible enough and can take various
shapes of the hazard functions depending on the values of
the shape parameters. )e probability distribution of the
EGGAPE distribution is given by

g(z) �
abαe−λz

λe
− λz

− abαe−λz

log(α)λ 1 − e
− λz

 e
− λz

1 − α 1 − e
−λz

 /α1−e−λz

 
1−a

1 − 1 − α 1 − e
−λz

 /α1−e−λz

 
a

 
1−b

,

(5)

where α, a, b> 0 are the shape parameter and λ is the scale
parameter. )e case, where a � b � α � 1, is the exponential
distribution, the case, where α � 1 and a � 1, is the expo-
nentiated exponential distribution, the case, where α � 1, is
the exponentiated generalized exponential distribution.
Several authors have investigated the change point problem
for several distributions. ElSherpienyAlmetwally [15] in-
troduced exponentiated generalized alpha power family.
Jandhyala et al. [16] came up with change-point

methodology that was used to identify changes in the pa-
rameters of the two-parameter Weibull distribution. )e
statistic they developed was the likelihood ratio test that was
used to detected unknown changes in parameters, and the
change points were located. Almongy et al. [17] discussed
likelihood function for multicomponent stress-strength
model under power Lomax distribution. Hafez et al. [18]
studied likelihood of single and multiple ramp progressive
stress with binomial removal. )e application of the model
was on temperature data.

Jarušková [19] did a study to test the presence of change
point using the log-likelihood statistic in a three-parameter
Weibull distribution. Ratnasingam[20] proposed a proce-
dure that was built on the MIC and the confidence distri-
bution in a three-parameter Weibull distribution for
detecting and estimating changes. To identify and find
changes in the parameters of a four-parameter EGGAPE
distribution concurrently, we present a methodology based
on the information approach, specifically modified infor-
mation approach, and Schwarz information approach. )e
proposed method can be applied to a variety of parametric
distributions as long as the regularity and Wald require-
ments are met.

)e following is how the rest of the study is organized. In
Section 2, we look at approaches based on the MIC and SIC
for detecting simultaneous changes in all parameters. In
Section 3, simulations for the scenarios will be run with a
variety of parameter and sample size variations in order to
examine the test’s power. Section 4 shows how the algorithm
was applied to three COVID-19 datasets to demonstrate
change point detection. )e results and areas for additional
research are presented in Section 5.

2. Methodology

2.1. Information Approach. )is section presents the
methodology applied to detect the possible change points.
)e modified information approach and the Schwarz in-
formation criterion are discussed. Change point problem
generally usually involves the estimation of parameters and
testing of hypothesis. To bemore specific, the null hypothesis
tested is that there is no change point against that there exists
at least one change point which is the alternative hypothesis.
)e use of model selection criteria is one of the most popular
methods for change point detection. )e Schwarz infor-
mation criterion (SIC) was developed in [21]. As pointed out
in [9], the SIC technique does not take into account the
model’s complexity, which might lead to redundancy in the
parameter space. To address this shortcoming, Chen et al. [9]
came up with the MIC technique that adjusted SIC penalty’s
term to reflect the contributions of the change points’ lo-
cations to model complexity. Let y1, y2, . . . , yn be a sample
chosen at random from a density function. )e following is
the SIC criterion:

SIC(n) � −2 log L Φq  + k log(n), (6)

where L(Φk) is defined as the likelihood function of the
model, n is the sample size, and q is the number of
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parameters in the model. In this, we denoteΦB andΦA to be
the parameters before and after the change point. )e
symbol k denotes the unknown change point location.When
at least one change point is present, the SIC is as follows:

SIC(k) � −2l ΦB(k), ΦA(k), k  + 2q + 1 log(n), (7)

where 1≤ k< n. Equation (7) does not treat the change
position as a parameter, which could result in redundancy in
the parameter space if the change happens near the end or
beginning of the data. )e MIC under the null hypothesis is
given as

MIC(n) � −2 ln L( Φ) + dim( Φ)log(n), (8)

where Φ maximizes the log likelihood log L( Φ). )e MIC
criterion under the alternative hypothesis is defined as
follows:

MIC(k) � −2 ln L( Φ) + 2dim( Φ) +
2k

n
− 1 

2
⎡⎣ ⎤⎦log(n)1≤ k< n, (9)

where 1≤ k< n.
If

MIC(n)> min
1≤k<n

MIC(k), (10)

choose the model that has a change point, and the location of
the specific change point is estimated by κ such that

MIC(κ) � min
1≤k<n

MIC(k). (11)

)e MIC test statistic, which is used to determine the
statistical significance of a change point, is defined as follows:

Qn � MIC(n) − min
1≤k<n

MIC(k) + dim(Φ)log(n). (12)

Chen et al. [9] showed that, as n⟶∞,

Qn⟶ χ2d, (13)

in distribution under the null hypothesis. )e SIC test
statistic is given as

Pn � SIC(n) − min
1≤k<n

SIC(k) + dim(ϕ)log(n). (14)

)e asymptotic distribution of the statistic in (14) is the
type I extreme value distribution.

2.2. MIC and SIC Detection Approach for EGGAPE
Distribution. In this section, the study focuses on change
point problem using SIC and MIC approaches to detect
changes in parameters of the EGGAPE distribution defined
in Equation (1). Let Z1, Z2, . . . , Zn be a sequence of inde-
pendently random variables from the EGGAPE distribution
with scale parameter λ and shape parameters α, a, and b. )e
null hypothesis is

H0: λ1 � λ2 � · · · � λn � λ

α1 � α2 � · · · � αn � α

a1 � a2 � · · · � an � a

b1 � b2 � · · · � bn � b,

(15)

versus

H1: λ1 � · · · λk � λ∗k ≠ λk+1 � · · · � λn � λ∗∗

α1 � · · · αk � α∗k ≠ αk+1 � · · · � αn � α∗∗

a1 � · · · ak � a
∗
k ≠ ak+1 � · · · � an � a

∗∗

b1 � · · · bk � b
∗
k ≠ bk+1 � · · · � bn � b

∗∗
,

(16)

where 1< k< n denotes the unknown location to be
estimated.

For H0, the SIC and MIC are defined as

SIC(n) � MIC(n) � −2
n

i�1
log f zi,

λ, α, a, b   + 4 log(n),

(17)

where λ, α, a, b are MLEs of scale parameter λ and shape
parameters α, a, b, respectively, fitted to whole dataset.

)e log likelihood function under H0 is

l � 2n log(abλ) + log(log(α)) − 2λ
n

i�0
zi + 

n

i�1
log 1 − e

− λzi  + 2(a − 1)



n

i�1
log 1 −

α 1 − e
− λzi 

α1−e−λzi

⎛⎝ ⎞⎠ + 2(b − 1) 
n

i�1
log 1 −

α 1 − e− λzi( 

α1−e−λzi
 

a

 .

(18)

To obtain the MLEs of a, b, α, λ, then we let

w � 2(a − 1) 
n

i�1
log 1 −

α 1 − e
− λzi 

α1−e−λzi

⎛⎝ ⎞⎠ (19)

and

g � 2(b − 1) 
n

i�1
log 1 −

α 1 − e− λzi( 

α1−e−λzi
 

a

  (20)

so that wa
′ � zy/za, wα′zy/zα �, wλ′ � zy/z λ, ma

′ �
zm/za, mb

′ � zm/zb, mα′ � zm/zα, andmλ′ � zm/zλ:
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gb
′ � 2

n

i�1
log 1 −

α 1 − e− λzi( 

α1−e−λzi
 

a

 ,

ga
′ � 2

n

i�1
log 1 −

α 1 − e
− λzi 

α1−e−λzi

⎛⎝ ⎞⎠,

ga
′ � 

n

i�1
−

α 1 − e
− λzi /α1−e−λzi

 
a

log α 1 − e
− λzi /α1−e−λzi

 

1 − α 1 − e
−λz1 /α1−e−λzi

 
a ,

gα′ � 2(a − 1) 
n

i�1

1 − e
− λzi  1 − α 1 − e

− λzi α− 1
 

1 − α 1 − e
−λzi /α1−e−λzi

 α1−e−λzi
,

gλ′ � 2(a − 1) 
n

i�1

αzie
− λzi (1 − log(α) 1 − e

− λzi 

1 − α 1 − e
−λzi /α1−e−λzi

 α1−e−λzi
,

gα′ � 2(b − 1)aα

n

i�1
−

α 1 − e
− λzi /α1−e−λzi

 
a− 1

× 1 − e
− λzi 1 − 1 − e

− λzi αe−λzi−2
 

1 − α 1 − e
−λzi /α1−e−λzi

 
a ,

gλ′ � 2(b − 1)a 
n

i�1
−

α 1 − e
− λzi /α1−e−λzi

 
a− 1

× αzie
− λzi 1 − α 1 − e

− λzi log(α)  αe−λzi−1

1 − α 1 − e
−λzi /α1−e−λzi

 
a .

(21)

Partial derivatives of the log-likelihood function with
respect to a, b, α, λ and equating them to zero are given:

zl

zα
�

1
α log α

+ yα′ + mα′, (22)

zl

za
�
2n

a
+ ya
′ + ma
′, (23)

zl

zb
�
2n

b
+ yb
′ + mb
′, (24)

zl

zλ
�
2n

λ
− 2

n

i�1
zi + yλ′ + mλ′ + 

n

i

zie
− zi

1 − e
−λzi

. (25)

)e parameter estimates for a, b, α, λ are obtained by
equating equations (22)–(25) to zero and solving the system
of nonlinear equations.

Under H1, the SIC and MIC are defined, respectively, as

SIC(k) � −2
k

i�1
log f zi,

λ
∗
, α∗, a

∗
, b
∗

   − 2 
n

i�k+1
log f zi,

λ
∗∗

, α∗∗, a
∗∗

, b
∗∗

   + 8 log(n) ,

MIC(k) � −2
k

i�1
log f zi,

λ
∗
, α∗, a

∗
, b
∗

   − 2 
n

i�k+1
log f zi,

λ
∗∗

, α∗∗, a
∗∗

, b
∗∗

   + 8 +
2k

n
− 1 

2
⎡⎣ ⎤⎦log(n),

(26)

where α∗, λ
∗
, a∗, and b

∗
are the MLEs of α, λ, a, and b, re-

spectively, fitted to the first segment of data and
α∗∗, λ

∗∗
, a∗∗, and b

∗∗
are the MLEs of α, λ, a, and b, re-

spectively, fitted to the second segment of data.

3. Simulation

In this section, simulations are carried out to assess the test’s
power in two scenarios: when there is a change point and

when there is not. First, we conduct the simulation for SIC
and MIC when there is change point.

3.1. Simulation Study: When =ere Is Change Point. In this
section, change point problem of the scale and the shape
parameters of the EGGAPE distribution were studied. To be
able to calculate the statistic SIC(n),MIC(n), SIC(k), and
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MIC(k), the bbmle package developed in [22] was used to fit
a dataset with EGGAPE distribution since the first deriva-
tives of the log(f(zi; a, b, α, λ)), log(f(zi; a∗, b∗, α∗, λ∗)),
and log( a∗∗, b∗∗, α∗∗, λ∗∗)

We conduct simulations 1000 times under the
EGGAPE(a, b, α, λ) with different values of the shape pa-
rameter a, b, α and the scale parameter λ. )e test statistic Tn

and Sn are calculated and compared to the critical values
corresponding to the significant level 0.05.

After rejecting, the null hypothesis, the powers of SIC
and MIC with different sample sizes n � 100, 200, 300, 400,
and different change locations are shown in Tables 1–4. )e
EGGAPE parameters are changing as a∗ � 0.9, a∗∗ � 1.2,
b∗ � 0.8, b∗∗ � 0.9, α∗ � 0.2, α∗∗ � 0.4, and λ∗ � 0.5,

λ∗∗ � 0.8.
)e purpose of the simulation power test is in order to

verify the accuracy of detecting the change point at different
locations. As indicated in Tables 1–4, the power increases as
the change point location moves to the middle of the data. It
can be observed that the MIC has high powers to detect the
change point compared to SIC.

Compared to the power of the traditional SIC, MIC
has a higher value for the EGGAPE distribution, as shown
in Figures 1. It is clear that MIC has a higher power when
the change point location k is in the middle of the dataset.
)is is because of the penalty term in MIC (2k/n − 1)2

which is different from the traditional value of 1 in SIC.
If the location of the change point is found at the start of

the data and the end of the data, as k⟶ 1 or k⟶ n and
n⟶∞,

2k

n
− 1 

2

⟶ 1. (27)

)is is very close to SIC. However, when the change
point is in the middle of the dataset, as k⟶ n/2,

2k

2
− 1 

2

⟶ 0. (28)

)en, this quadratic term (2k/2 − 1)2 will be canceled.
When the change point is exactly the middle term
(2k/2 − 1)2 � 0 and the penalty term of MIC will be log n

smaller than that of SIC. It is easier to reject the null hy-
pothesis and detect a change in the data when the infor-
mation criterion gets smaller.

)e main difference between SIC and MIC is that MIC
has a higher power than SIC to detect the change when the
changes happen in the middle of the dataset, as displayed in
Figures 1 and 2.

)e following conclusions can be made with respect to
the simulation study when there is change point:

(i) As change point location approaches middle of data,
the power of the test increases

(ii) When the difference between parameters increases,
the power of the test increases

(iii) As sample size increases, the power of the test also
increases

(iv) Since theMIC has a higher power than the SIC, then
we use the MIC in the application of the real data in
detecting a change points

3.2. Simulation Study: When =ere Is No Change Point.
In this section, we conduct a simulation study to investigate
the power of the test when there is no change point in the
parameters of the distribution. EGGAPE parameters are not
changing as a∗ � 0.9, a∗∗ � 0.9, b∗ � 0.8, b∗∗ � 0.8,
α∗ � 0.2, α∗∗ � 0.2, and λ∗ � 0.5, λ∗∗ � 0.5.

We conduct simulations 1000 times under
EGGAPE(a, b, α, λ) with different values of the shape pa-
rameter a, b, α and the scale parameter λ. )e results for both
the SIC and the MIC are given in Tables 5 and 6 when n �

100 and n � 200, respectively.
)e plots of the figures when there is no change point are

given in Figures 3 and 4.
)e following conclusions can be made with respect to

the simulation study when there is no change point. For a
sample size of n � 100 and n � 200,

(i) )e power of the tests are low for both SIC and MIC
(ii) Comparing the power of the test, when there is

change point and when there is no change point, the
power of the test is higher when there is change
point, signifying that the test correctly identifies
change point.

4. Application to COVID-19 Data

In this section, we introduced application to COVID-19 data
for Italy, UK, andMexico. More studies analyzed COVID-19
data [17, 23–30].

4.1. Italy COVID-19 Data. )is section explains the change
point analysis of COVID-19 death rates data in Italy for a

Table 1: Power comparison between SIC and MIC as n� 100.

Criteria k� 5 k� 10 k� 20 k� 50 k� 70 k� 80 k� 90
SIC 0.086 0.216 0.468 0.703 0.530 0.332 0.081
MIC 0.238 0.497 0.817 0.974 0.920 0.734 0.353

Table 2: Power comparison between SIC and MIC as n� 200.

Criteria k� 5 k� 10 k� 40 k� 100 k� 150 k� 170 k� 190
SIC 0.052 0.175 0.866 0.979 0.858 0.543 0.038
MIC 0.229 0.497 0.986 1.000 0.997 0.923 0.286

Table 3: Power comparison between SIC and MIC as n� 300.

Criteria k� 5 k� 70 k� 100 k� 150 k� 170 k� 250 k� 280
SIC 0.056 0.995 1.000 1.000 1.000 0.885 0.211
MIC 0.214 1.000 1.000 1.000 1.000 0.996 0.695
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59-day period from February 2 to April 25, 2020. https://
COVID-19.who.int/ was the source of the data. Table 7 gives
the data.

A time-series plot of the dataset is displayed in Figure 5.
)e mortality rate is calculated as

MortalityRate �
deaths

Population
× 106. (29)

All the parameters are considered changeable.
To identify a change point in the dataset of the Italy

Mortality rates, we apply the test statistics defined in
Equation (10). )e results are displayed in Table 8.

From Table 8, H0 is rejected and conclude that the
change point exists at MIC (40) which equals the mortality
rate of 5.073 and reflects the date of 2020-04-06. Based on the
binary segmentation method, the dataset was separated into

Table 4: Power comparison between SIC and MIC as n� 400.

Criteria k� 10 k� 50 k� 100 k� 150 k� 200 k� 280 k� 300 k� 380
SIC 0.133 0.958 1.000 1.000 1.000 1.000 1.000 0.162
MIC 0.434 0.998 1.000 1.000 1.000 1.000 1.000 0.647
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Figure 1: Power comparison forMIC and SIC with change point at
different locations, n � 100.
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Figure 2: Power comparison forMIC and SIC with change point at
different locations, n � 200.

Table 5: Power comparison between SIC and MIC as n� 100.

Criteria k� 5 k� 10 k� 20 k� 50 k� 70 k� 80 k� 90
SIC 0.003 0.002 0.000 0.000 0.002 0.002 0.003
MIC 0.022 0.030 0.037 0.053 0.048 0.033 0.019

Table 6: Power comparison between SIC and MIC as n� 200.

Criteria k� 5 k� 10 k� 40 k� 100 k� 150 k� 170 k� 190
SIC 0.001 0.001 0.000 0.001 0.000 0.001 0.000
MIC 0.014 0.022 0.036 0.055 0.028 0.025 0.009
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0.00
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 o

f t
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Figure 3: Power comparison for MIC and SIC with change point at
different locations, n � 100.
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two parts. )e first part is (1 : 40) and the second part (41 :
59). )e second change point is successfully identified at
k � 33 which reflects the mortality rate at 2020-03-30. Next
we conduct the same procedure, and a change point is lo-
cated at k � 3 corresponding to 2020-02-29. However, no
further change points were located. Next, we analyze the

0.00

0.02

0.04

Po
w

er
 o

f t
he

 te
st

50 7525
Change Point Location (k)

SIC
MIC

Figure 4: Power comparison for MIC and SIC with change point at different locations, n � 200.

Table 7: Italy data.

4.571 7.201 3.606 8.479 11.410 8.961 10.919 10.908 6.503 18.474
11.010 17.337 16.561 13.226 15.137 8.697 15.787 13.333 11.822 14.242
11.273 14.330 16.046 8.646 8.905 8.906 7.407 7.445 7.214 6.194
4.640 5.542 5.073 4.416 4.859 4.408 4.639 3.148 4.040 4.253
4.011 3.564 3.827 3.134 2.780 2.881 3.341 2.686 2.814 2.508
2.450 1.518 11.950 10.282 11.775 10.644 10.138 9.037 12.396
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Figure 5: Time-series plot for Italy COVID-19 mortality rate.
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Figure 6: Change points location for Italy COVID-19 mortality
rate.

Table 8: MIC test statistics for change point detection.

MIC(n) Min MIC(k) k

345.459 293.769 40
233.435 220.676 33
191.251 189.117 3
62.020 53.921 52

Mathematical Problems in Engineering 7



second segment (41 : 59) below. )us, the change point
occurs at 2020-04-18 located at k � 52. Next, we conduct the
same procedure and no further change points were located.

Figure 6 represents the change points’ location for Italy
COVID-19 mortality rate. )e possible reason for change
point of Italy COVID-19 mortality data is displayed in
Table 9.

)e change points segmented the span into three seg-
ments. )e first segment was between 29-02-2020 to 30-03-
2020 characterized by high mortality rates. )e second
segment between 30-03-2020 to 06-04-2020 is characterized
by a decline of mortality rates, and finally, the third segment

between 06-04-2020 to 18-04-2020 is characterized by a
further decline in mortality rates.

4.2. Change Point Analysis for UK Data. )is section de-
scribes the change point analysis of COVID-19 mortality
rates data from the United Kingdom for a period of 76 days,
from March 12 to July 15, 2020. https://COVID-19.who.int/
was the source of the data. )e data are presented in
Table 10.

A time-series plot of the dataset is displayed in Figure 7.
)e mortality rate is calculated as

MortalityRate �
deaths

Population
× 106. (30)

All the parameters are considered changeable.
To identify the change point in the dataset of the UK

mortality rates, we apply the test statistics defined in
Equation (10). )e results are displayed in Table 11.

Table 9: Change point of Italy COVID-19 mortality rate data.

Change point location Date Possible reason
3 29-02-2020 Rapid spread of COVID-19 in Northern Italy
33 30-03-2020 Decline in number of new cases and deaths
40 06-04-2020 Extension of lock down until 13 april
52 18-04-2020 Extension of lock down until 5 may

Table 10: UK COVID-19 mortality rates’ data.

0.0587 0.0863 0.1165 0.1247 0.1277 0.1303 0.1652 0.2079 0.2395 0.2751
0.2845 0.2992 0.3188 0.3317 0.3446 0.3553 0.3622 0.3926 0.3926 0.4110
0.4633 0.4690 0.4954 0.5139 0.5696 0.5837 0.6197 0.6365 0.7096 0.7193
0.7444 0.8590 1.0438 1.0602 1.1305 1.1468 1.1533 1.2260 1.2707 1.3423
1.4149 1.5709 1.6017 1.6083 1.6324 1.6998 1.8164 1.8392 1.8721 1.9844
2.1360 2.3987 2.4153 2.5225 2.7087 2.7946 3.3609 3.3715 3.7840 3.9042
4.1969 4.3451 4.4627 4.6477 5.3664 5.4500 5.7522 6.4241 7.0657 7.4456
8.2307 9.6315 10.1870 11.1429 11.2019 11.4584
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Figure 7: Time-series plot for UK COVID-19 mortality rate.

Table 11: MIC test statistics for change point detection.

MIC(n) Min MIC(k) k

653.818 582.643 80
472.091 425.897 12
110.106 88.224 94
46.483 39.355 113

k = 12 k = 80 k = 94 k = 113
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Figure 8: Change points’ location for UK COVID-19 mortality
rate.
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A visual display of the change point locations in the
dataset is displayed in Figure 8.

)e possible causes of the change point in the UK
COVID-19 mortality rate data are given in Table 12.

4.3. Change Point Analysis for Mexico Data. )is section
explains the change point analysis of COVID-19 death rates
for Mexico for a period of 108 days that is from 4 March to
19 June 2020. https://COVID-19.who.int/ was the data
source. )e data are given in Table 13.

A time-series plot of the dataset is displayed in Figure 9.
)e mortality rate is calculated as

MortalityRate �
deaths

Population
× 106. (31)

Table 12: Change point of UK COVID-19 mortality rate data.

Change point location Date Possible reason
12 23-03-2020 Increase in number of cases and hospitalized patients
80 30-05-2020 Decline in number of new deaths
94 13-06-2020 Reinforcement of lock down measures
113 02-07-2020 Compulsory wearing of masks

Table 13: Mexico COVID-19 mortality rates’ data.

8.826 6.105 10.383 7.267 13.220 6.015 10.855 6.122 10.685 5.242 7.630
14.604 7.903 6.327 9.391 14.962 4.730 3.215 16.498 11.665 9.284 12.878
6.656 3.440 5.854 8.813 10.043 7.260 5.985 4.424 4.344 5.143 9.935
7.840 9.550 6.968 6.370 3.537 3.286 10.158 8.108 6.697 7.151 6.560
2.988 3.336 6.814 8.325 7.854 8.551 3.228 3.499 3.751 7.486 6.625
6.140 4.909 4.661 1.867 2.838 5.392 12.042 8.696 6.412 3.395 1.815
3.327 5.406 6.182 4.949 4.089 3.359 2.070 3.298 5.317 5.442 4.557
4.292 2.500 6.535 4.648 4.697 4.120 3.922 3.219 1.402 2.438 3.257
3.632 3.233 3.027 2.352 1.205 2.077 3.778 3.218 2.926 2.601 2.065
1.041 1.800 3.029 2.058 2.326 2.506 1.923
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Figure 9: Time-series plot for Mexico COVID-19 mortality rate.

Table 14: MIC test statistics for change point detection.

MIC(n) Min MIC(k) k

550.198 509.681 64
548.053 342.571 23
543.487 139.192 15
167.263 145.139 86

k = 15 k = 23 k = 64 k = 86
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Figure 10: Change points’ location for Mexico COVID-19 mor-
tality rate.

Table 15: Change point of Mexico COVID-19 mortality rate data.

Change point
location Date Possible reason

15 18-03-
2020 Surge in number of cases

23 26-03-
2020

Decline in number of new cases
and deaths

64 06-05-
2020 Rise in number of deaths

86 28-05-
2020 Compulsory wearing of masks
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To detect the change point in the dataset of the Mexico
Mortality rates, we apply the test statistics defined in
Equation (10). )e results are displayed in Table 14.

A visual display of the change point locations in the
dataset is displayed in Figure 10.

)e possible causes of the change point in the Mexico
COVID-19 mortality rate data are given in Table 15.

5. Conclusions

Although the EGGAPE distribution is a more flexible dis-
tribution that may describe data with monotonic and
nonmonotonic hazard shapes, few or no studies of the
change point problem for such a distribution have been
done. For this study, we present a change point detection
method for a four parameter EGGAPE distribution based on
the information approach specifically modified information
criterion (MIC). All the parameters are considered
changeable. )e benefit of using MIC-based test is in order
to avoid the complications of deriving the complicated as-
ymptotic distributions of test statistic of likelihood ratio test
and cumulative sum tests. In addition, we have applied the
binary segmentation to detect multiple change points and
their locations. In the simulation study for the power of the
test, two scenarios were considered: a simulation study when
there was a change point and a simulation study when there
was no change point. When there was a change point, the
power of the test was high, and when there was no change
point, the power of the test was so small. )e testing pro-
cedure is applied to three real datasets related to COVID-19
mortality rates in Italy, the United Kingdom, and Mexico.
Multiple change points were successfully identified and their
location identified. In this study, we have only considered a
case where all the parameters are changing, for future work,
study can be done when at least one of the parameters is not
changing.
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