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For the finite horizon inventory mechanism with a known price increase and backordering, based on minimizing the inventory
cost, we establish two mixed integer optimization models. By buyer’s cost analysis, we present the closed-form solutions to the
models, and by comparing the minimum cost of the two strategies, we provide an optimal ordering policy to the buyer. Numerical
examples are presented to illustrate the validity of the model, and sensitivity analysis on major parameters is also made to show
some insights to the inventory model.

1. Introduction

Generally, the prices of grain crops such as wheat, corn, and
soybeans are low during the first few months after harvest,
and the prices will increase thereafter till the next harvest
season, and so on. In view of the situation, the buyer should
decide the ordering policy so that his inventory cost is as low
as possible. .is problem can also be stated as that a supplier
announces an impending price increase in the future, and
the buyer should decide whether to purchase additional
stock before the price increase. Further, since wheat, corn,
and soybeans are harvested once a year, the buyer’s in-
ventory planning time is generally one year. In this paper, we
consider the inventory problem with backordering in a finite
horizon in which the seller announces the price will increase
permanently and the buyer can have a special order before it
happens.

.e inventory model with known price increase has been
frequently discussed in the literature. Possibly, the first work
performed in this field was done by Naddor [1] and Brown
[2]. .ey assumed that the price of goods would increase in
the future and a buyer would have an opportunity to make a
special order forehand. Taylor and Bradley [3] extended the
model and obtained the optimal ordering strategies for

situations where the price increase does not coincide within
the end of an EOQ cycle. Erel [4] investigated the effects of
continuous changes of the purchasing price and holding cost
on the optimal order quantity and annual cost. Tersine [5]
proposed an economic production quantity model under an
announced price increase. Shah [6] developed a discrete-
time stochastic inventory model for perishable items when
the vendor announces a price increase at some future time.
Huang et al. [7] considered an infinite horizon deterministic
inventory model with an announced price increase which
assumes that the special order is an integral multiple of the
new EOQ quantity. Abad [8] considered a supply chain
model in which the producer considers temporary reduction
and increase in unit purchasing cost separately and the buyer
places a special order in both situations. Chung et al. [9]
investigated the buyer’s selling policy in response to the
future price increase for deteriorating items when the buyer
can make a special order before the price increase happens.
Ouyang et al. [10] explored the possible effects of price
increases on a retailer’s replenishment policy when the
special order quantity is limited and the rate of deterioration
of the goods is assumed to be constant. Wang et al. [11, 12]
considered an inventory mechanism with a nondetermin-
istic short-term price discount.
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For the basic EOQ model with backordering of demand
during stockout periods, Ghosh [13] presented an infinite
horizon deterministic inventory model that handles in-
ventory shortages under an announced price increase.
Sharma [14] developed a production inventory model with
partial backordering in which the suppliers can increase or
temporarily decrease the prices and the buyers can make a
special order. A comprehensive survey on this was made by
Pentico and Drake [15]. Taleizadeh et al. [16] considered an
EOQ problem with backordering under partial delayed
payment.

For the finite horizon deterministic inventory model,
Lev and Soyster [17] considered the inventory model on
determining the optimal ordering policies based on known
information about imminent price increase without short-
ages. Arcelus, Pakkala, and Srinivasan [18] showed the
potential differences between the profit-maximizing and the
cost-minimizing solutions to the deterministic finite horizon
inventory problem, and Arcelus et al. [19] considered the
inventory model over a finite horizon under one-time cost
changes. Lev and Weiss [20] considered the extensive in-
ventory models with cost changes for a finite horizon and an
infinite horizon.

Furthermore, for the basic EOQ model that considers
both price changes and backordering, Taleizadeh and
Pentico et al. [21] extended classic economic order quantity
(EOQ) model with partial backordering in an infinite ho-
rizon, in which the supplier announces the price will in-
crease permanently and the retailer can have a special order
before it happens. Taleizadeh et al. [22] extended the situ-
ation in [21] to probabilistic replenishment intervals further.
Taleizadeh et al. [23] considered the rate of demand in the
model was assumed proportional to the unit purchasing cost
and partial backordering was allowed as a fixed parameter.
However, the length of the inventory system operating time
is infinite in these articles.

.is paper considers the inventory model with back-
ordering in finite horizon, in which a permanent price in-
crease will take place at or before buyer’s next scheduled
ordering time, and the buyer may have a special order before
that. For this set, to maximize the buyer’s inventory profit,
the buyer should make a tradeoff between enjoying the
benefit of the low ordering price and bearing the increase of
inventory holding cost lead by the special order. On the basis
of the inventory cost analysis, we establish an optimization
inventory model based on minimizing the inventory cost
and derive a closed-form solution to the model. Some nu-
merical experiments are made to illustrate the validity of the
model.

.e remainder of the paper is organized as follows.
Section 2 presents the assumptions of our model and no-
tations used in the subsequent analysis. Section 3 considers
an inventory model with backordering and without price
increase in a finite planning horizon and give the optimal
solution which will be used in solving the proposed model.
In Section 4, we derive a global optimal solution for our
concerned inventory models. We derive a solving algorithm
and thus provide an optimal replenishment policy to the
buyer in Section 5. Numerical experiments on sensitivity

analysis are given in Section 6 to show the validity of the
models. .e conclusions and some extensions are given in
the last section.

2. Notations, Assumptions, and
Problem Formulation

First, we present the notations and assumptions used in this
paper (Table 1).

.e followings are the assumptions imposed on the
concerned inventory model.

Assumption 1. For the inventory system, we assume that

(1) .e time horizon is finite;
(2) .e leading time for each order is zero;
(3) Shortage and backordered are allowed except for the

last replenishment cycle;
(4) .e fixed ordering cost and the unit backordering

cost for regular order are, respectively, the same as
those for special order;

(5) .e selling price does not change;
(6) .e increase of purchasing price occurs at or before

the retailer’s next ordering time, which means that
there is no opportunity for a regular replenishment
before the price increase;

(7) When price increases, it will last to the end of the
inventory mechanism;

(8) .e stock level is zero at the beginning and end of the
inventory system.

Without loss of generality, we assume that the holding
cost per item per unit time is proportional with the pur-
chasing cost. .en in the following, we take
h � h0 + 0.4(c − c0)/c0.

From the assumptions on the concerned models, we
know that the planning horizon consists of two stages [0, t0]

and (t0, T], where the ordering price c0 in the first stage is
strictly less than c(> c0) in the second stage. When the
supplier announces the increase of the purchasing price at t0,
there are two possible strategies by the buyer: the buyer
places a special order under the current lower price before it
increases to cut the cost, or the buyer does not place a special
order if the remaining stock level at t0 is too high or small
price increase.

Strategy 1. A special order is not placed at t0.
If the buyer does not place a special order at t0, he will

use a “new” inventory mechanism with backordering in a
finite horizon based on the increased price after the current
price cycles end.

Strategy 2. A special order is placed at t0.
If the buyer adopts this strategy, he will use a “new”

inventory mechanism with backordering in a finite horizon
based on the increased price after special order cycle ends
too.
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Since we suppose the unit selling price does not change
and the stock level is zero at the beginning and the end of
the inventory system, so the method we used is computing
the difference of the minimal total costs under two strat-
egies and choosing a strategy with the least cost to save
more costs.

In order to make the solution process of solving this
problem clearer, we will first provide a solution method for
an inventory model with backordering in finite horizon
without price increase in Section 3 then exploit these
conclusions for giving a solution method to the problem in
Section 4.

3. Solution Method for Inventory Model with
Backordering in a Finite Horizon

In this section, wemainly consider the inventory mechanism
with backordering in a finite horizon of lengthT and without
purchasing price variation. Also, for the need discussed in
the next section, we assume that the initial stock is q, and the
stock is zero at the end of the inventory mechanism. See
Figures 1 and 2.

For this setting, suppose that k orders are placed in the
[t0, T] with order sizes Q1, Q2, · · · , Qk, and the maximum
shortage levels at replenishment cycles are B1, B2, · · · , Bk,
respectively. Since the demand rate is invariant, shortage is
fully backordered, and the stock is zero at the end of the
inventory mechanism (i.e.Bk � 0), so

Q1 + Q2 + · · · + Qk � λT − q. (1)

From the knowledge of inventory management [24], we
can obtain the total operating cost over the planning horizonT
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To minimize the buyer’s operating cost, we only need to
determine the optimal order times k, the sizes
Qi(i � 1, . . . , k), and the maximum shortage levels
Bi(i � 1, . . . , k − 1), which can be formulated as the fol-
lowing optimization problem:

Table 1: Notation.

Parameters Descriptions
λ Demand rate
A Fixed order cost
c0 Regular purchasing price
c Purchasing price after increase
h0 Regular holding cost per item per unit time
h Holding cost per item per unit time under increased price
w Backorder cost per unit item per unit time
T Planning horizon of the inventory system
t0 .e time when purchasing price changes
q0 Remaining stock at time t0
Q0 Order size before t0
B0 Maximum shortage level for a normal order at the current price before t0
Decision variables
Qs Special order size
Q Order size after t0 when the special order is not placed
Q′ Order size after special order
Bs Maximum shortage level for a special order at the current price
B Maximum shortage level for an order at the new price after t0 when the special order is not placed
B′ Maximum shortage level for an order at the new price when a special order is placed
Other variables
F Inventory cost over interval [t0, T] without special order
Fs Inventory cost over interval [t0, T] with special order

-B

q

o T t

Q

Q-B

Figure 1: Ordering policy for q≥ 0.
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min
k,Qi,Bi

F k, Q1, . . . , Qk, B1, . . . , Bk−1( 

s.t. Q1 + Q2 + · · · + Qk � λT − q,

Qi ≥ 0, i � 1, . . . , k,

Bi ≥ 0, i � 1, . . . , k − 1,

k is a positive integer.

(3)

.is is a nonlinear mixed integer optimization problem.
For this problem, we have the following conclusion.

Theorem 1. For an inventory model with backordering in
finite horizon, i.e., inventory model (3), all the optimal max-
imum shortage levels are the same except the last one, and all
the optimal ordering sizes are the same except the first one, i.e.,

Q2 � · · · � Qk ≜Q,

B1 � · · · � Bk−1 ≜B,

Q1 � Q − B − q.

(4)

Furthermore, the optimal ordering size, maximum
shortage level, and the optimal order time are, respectively,

Q �
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kw +(k − 1)h
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(5)

and the minimum inventory cost within the horizon [0, T] is

F � c(λT − q) + kA +
whλT

2

2[kw +(k − 1)h]
. (6)

Proof. For completeness, we include the proof of the lemma
in Appendix A.

We will exploit the conclusion of .eorem 1 repeatedly
in the remainder of this paper. For convenience, the optimal

ordering policy given in .eorem 1 for the inventory
mechanism with backordering in the finite horizon and
without purchasing price variation is denoted by “BEOQ” in
the subsequent sections. □

4. Solution Method for Inventory Model with a
Known Price Increase and Backordering in
Finite Horizon

For this inventory system, there are two ordering strategies
according to whether a special order is placed or not at t0, as
shown in Figures 3 and 4. If the buyer places a special order
at t0, the special order cycle will end at t2, and the inventory
cycles based on the current lower price end at t1 if the buyer
does not place a special order. It is easy to calculate that
t1 � t0 + q0 + B0/λ, t2 � t0 + q0 + Qs + Bs/λ. For conve-
nience, we denote T0 � T − t0, T1 � T − t1, and T2 � T − t2.

Since shortages are allowed, two possible scenarios may
occur at t0: the price increase for the item occurs when there
is still inventory or there is a shortage, that is:

Scenario 1: q0 ≥ 0, and Scenario 2: q0 < 0.
In the subsequent analysis, we will first discuss the

minimum inventory costs of the two strategies, then com-
pare the difference in the two minimum cost, and finally,
choose the optimal ordering strategy.

4.1. Strategy 1: A Special Order Is Not Placed at t0. For this
strategy, when the inventory cycles under the current price
end at t1, the buyer will continue using a new BEOQ order
policy till the end of the inventory system, so that the in-
ventory cost over the interval [t0, T] consists of inventory
cost over two intervals [t0, t1) and [t1, T].

Scenario 1. q0 ≥ 0
Under this scenario, the price increases when there is no

shortage, and the remaining stock q0 at t0 will be postponed
to the second stage. By the knowledge of inventory control,
we can calculate that the inventory cost during [t0, t1) is

f1 �
h0

2λ
q
2
0 +

w

2λ
B
2
0. (7)

Since the stock level is −B0 at t1, the inventory system
will run a new “BEOQ” order policy during the horizon
[t1, T] under the new price c, and the stock level is −B0 and

-B

q
0 T t

Q

Q-B

Figure 2: Ordering policy for q< 0.
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zero at the beginning and end of the planning horizon,
respectively; see Figures 3 and 4.

For this scenario, when the special order is not placed at
t0, we denote the inventory cost during this period from t0 to
the end by F, which is a function of order quantity
Q1, . . . , Qn and maximum shortage level B1, . . . , Bn−1 for an
order after t0. Using an approach similar to that used and
according to formula (2) in Section 3, then
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(8)

So the ordering policy during the horizon [t1, T] of the
concerned model can be formulated as the following opti-
mization model:

min
n,Qi,Bi

g n, Q1, . . . , Qn, B1, . . . , Bn−1( ,

s.t. Q1 + Q2 + · · · + Qn � λT1 + B0,

Qi ≥ 0, i � 1, . . . , n,

Bi ≥ 0, i � 1, . . . , n − 1,

n is a positive integer.

(9)

According to formulas (5) and (6) of .eorem 1 in
Section 3, we know that all the optimal ordering sizes are the
same except the first one, all the optimal maximum shortage

levels are the same, and the optimal ordering size, maximum
shortage level, and the optimal order time over the interval
[t1, T], respectively, are
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and the minimum inventory cost during the interval [t1, T)

is

g1 � c λT1 + B0(  + n1A +
whλT

2
1

2 n1w + n1 − 1( h 
, (12)

or

g2 � c λT1 + B0(  + n2A +
whλT

2
1

2 n2w + n2 − 1( h 
. (13)

If g1 ≤g2, then the optimal ordering times and the
minimum inventory cost during the interval [t1, T) are n∗ �

n1 and g1, respectively; otherwise, they are n∗ � n2 and g2.
Denote the minimum inventory cost during horizon [t1, T)

by

g
∗
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In summary, under strategy 1, if the remaining inventory
stock at t0 is nonnegative, the minimum inventory cost over
the horizon [t0, T] is

Qs + q0

Q0
Qs

Q

t0 t1

T1

T t

T0

t2

q0

-B0
-Bs

Q′

o

stages with a special order
stages without special order

Figure 3: Ordering policy for q0 ≥ 0.
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Figure 4: Ordering policy for q0 < 0.
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Scenario 2. q0 < 0.
Under this scenario, the stock position at t0 is exhausted;

therefore the inventory cost during [t0, t1) needs to subtract
holding costs (see Figure 4), so that the inventory cost during
[t0, t1) is
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Yet, if there is a shortage at t0, again using an approach
similar to that used in Section 3, the minimum inventory
cost during the interval [t1, T) can still be expressed as g∗;
thus the minimum inventory cost over the horizon [t0, T] is
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Obviously, both f1 and f2 are constants and inde-
pendent of decision variables; therefore, minimizing in-
ventory cost during the period [t0, T] is equivalent to
minimizing the buyer’s inventory cost over the interval
[t1, T].

Based on the discussion above, we can obtain the fol-
lowing two candidate optimal ordering policies in the ho-
rizon [t1, T] under strategy 1.

Policy π1: n∗ � n1, Q∗1 � wλT1/(n1w + (n1 − 1)h) +B0,
Q∗ � (w + h)λT1/(n1w + (n1 − 1)h),
B∗ � hλT1/(n1w + (n1 − 1)h),

which applies to the case that g1 ≤g2.

For this order policy, the minimum inventory cost in
horizon [t1, T] is g∗ � g1.

Policy π2: n∗ � n1, Q∗1 � wλT1/(n1w + (n1 − 1)h) +B0,
Q∗ � (w + h)λT1/(n1w + (n1 − 1)h),
B∗ � hλT1/(n1w + (n1 − 1)h),

which applies to the case that g1 <g2.
For this order policy, g∗ � g2.

4.2. Strategy 2: A Special Order Is Placed at t0. By the in-
ventory management theory, if we place a one-time special
order at the current price before the price increases for both
scenarios of q0 ≥ 0 and q0 < 0, the inventory cost in the
special replenishment cycle can be expressed as

fs � c0Qs + A +
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2λ
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2
+

w
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2
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Since the special order is exhausted at t2 (see Figures 3
and 4), the next order will be placed at t2; hence, the in-
ventory system will run a new BEOQ inventory mechanism
during the period [t2, T], and the shortage is Bs at t2.

Suppose that the order sizes Q1′, . . . , Qm
′ and the maximal

shortage levels B1′, . . . , Bm−1′ are made after the special order;
again using a similar discussion in Section 3, we can obtain
the inventory cost in horizon [t2, T]
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Accordingly, the total inventory cost during the period
[t0, T] is
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.us, the problem of determining an optimal ordering
policy of strategy 2 can be formulated as the following
optimization problem:
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min
m,Qs,Bs,Qi

′,Bi
′
Fs m, Qs, Bs, Q1′, . . . , Qm

′, B1′, . . . , Bm−1′( 

s.t.Qs + Q1′ + Q2′ + · · · + Qm
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′ ≥ 0, i � 1, . . . , m,
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′ ≥ 0, i � 1, . . . , m − 1,

m is a positive integer.

(21)

For problem (21), we have the following conclusion.

Theorem 2. For inventory model (21) with q0 ≥ 0 or q0 < 0,
assume m is fixed; after the special order, all optimal maximum
shortage levels are the same, and the optimal ordering sizes are
the same. Furthermore, the optimal special ordering size is
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the ordering size after special order is
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and the maximal shortage level is
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where α � h0T0 + c0 − c, β � q0h0 + λ(c0 − c), δ � (λT0
−q0)wh/ (w + h)β.

Proof. See Appendix B.
From the proof of .eorem 2, if α≥ 0 and β≤ 0, or

α≥ 0, β> 0 andm< δ hold, then
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Now, we consider the optimal ordering time under
condition (58) or (59).

For the function Fs given by (25),

F
′′
s(m) �

w
2
hλ(w + h)α2

mh0(w + h) + wh 
3 > 0, (28)

so that Fs(m) is a convex function in m, and its minimum
can be obtained at the stationary point of the function Fs,
which yields

m �
1
h0

���������
wλh

2A(w + h)



α −

��������
2Awh

λ(w + h)



⎛⎝ ⎞⎠. (29)

Denote c �
���������������
(2Awh/λ(w + h))


and

m1 � ⌊m⌋, m2 � ⌈m⌉. Taking the fact m is a positive integer
into consideration, we know that the optimal ordering time
is m � m1 when Fs(m1)≥Fs(m2); otherwise it is m � m2.

Based on the above discussion, and if α≤ c, the optimal
ordering time is m∗ � 0. We obtain the following three
candidate optimal order policies in horizon [t0, T] under
strategy 2.

Policy π3:

m
∗

� m1, Q
∗
s � λT0 − q0 −

m1λ(w + h)α
m1h0(w + h) + wh

, (30)

Q′ ∗ �
λ(w + h)α

m1h0(w + h) + wh
, B′
∗

�
λhα

m1h0(w + h) + wh
. (31)

It applies to

α> c, β≤ 0,

Fs m1( ≤Fs m2( ,
(32)

or α> c, β> 0, m2 < δ andFs m1( ≤Fs m2( , (33)

or α> c, β> 0, m1 < δ ≤m2. (34)

For policy π3, the minimum inventory cost over the
interval [t0, T] is F∗s � Fs(m1).

Policy π4:

m
∗

� m2, Q
∗
s � λT0 − q0 −

m2λ(w + h)α
m2h0(w + h) + wh

, (35)

Q′
∗

�
λ(w + h)α

m2h0(w + h) + wh
, B′
∗

�
λhα

m2h0(w + h) + wh
, (36)

which applies to

α> c, β≤ 0, andFs m1( >Fs m2( , (37)

or
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or α> c, β> 0, m2 < δ andFs m1( >Fs m2( . (38)

For this policy, the minimum inventory cost over the
interval [t0, T] is F∗s � Fs(m2).

Policy π5:

m
∗

� 0, Q
∗
s � λT1 − q0, Q′

∗
� B′
∗

� 0, (39)

i.e., no order is made after the special order; the minimum
inventory cost over the interval horizon [t0, T] is

F
∗
s � c0λT0 − c0q0 + A +

h0λT
2
0

2
. (40)

According to the analysis above, the difference of the
minimal total costs under two strategies is G∗ � F∗ − F∗s .
Certainly, placing a special order or not is determined by the
sign of G∗. If G∗ ≥ 0, then the buyer placing a special order
can save costs than not placing special orders, and the
candidate optimal policy is π3, π4, or π5 after the special
order.

On the contrary, if G∗ < 0, the buyer will not place a
special order, and the candidate optimal policy is π1 or π2
after the regular order replenishment cycle.

Considering all the ordering policies discussed above, we
can present our algorithm for our problem in this paper.

5. Algorithm

.e algorithm flowchart for problem is shown in Figure 5.
See Appendix C.

To compute the remaining stock q0 at t0, we first give the
optimal order policy under the current price. For an in-
ventory mechanism, if there is not price change, this is an
inventory model with backordering in the finite horizon of
lengthT under the current price c0, and the stock level is zero
at the beginning and the end of the inventory system; based
on the conclusions (5) and (6) in .eorem 1, the optimal
ordering size Q0, maximum shortage level B0, and the op-
timal order times k under the current price are, respectively,

Q0 �
w + h0( λT

kw +(k − 1)h0
,

B0 �
h0λT

kw +(k − 1)h0
,

(41)

k � ⌊T

����������
wλh0

2A w + h0( 



+
h

w + h0
⌋ ≜ k1

or ⌈T

����������
wλh0

2A w + h0( 



+
h0

w + h0
⌉ ≜ k2.

(42)

According to these, we can compute that

q0 � ⌈
λt0

Q0
⌉Q0 − B0 − λt0. (43)

6. Computational Experiments and
Sensitivity Analysis

In this section, in order to show the applicability of the
presented models, we will perform some numerical exam-
ples and sensitivity analysis on major parameters. Based on
the algorithm above, if the basic parameters of the models
are given, we can obtain an optimal ordering policy. .e
results of computational experiments and sensitivity analysis
can be obtained by the Matlab procedures of algorithm
above, so we mainly list the important results and list the
simple solution process.

6.1. Computational Experiments

Example 1. Consider the inventory system with the following
parameters: λ � 500, A � 50, c0 � 10, c � 10.5, h0 � 4,

h � 4.2, w � 3, T � 12, t0 � 2.04.
Solution: For this inventory system, first, we calculate the

optimal regular order times, order size, the maximum
shortage level before t0, and the remaining stock at t0 before
the price increase does not take place according to formulas
(41)–(43) as follows:

k � 36, Q0 � 169.35, B0 � 96.77, q0 � 68.71. (44)

If we adopt strategy 1, then the candidate optimal policy
set is π1, π2 .

However, if we adopt strategy 2, since
α � 39.34> c � 0.5916, and β � 24.84> 0, m2 � 29
< (λT0 − q0)wh/(w + h)β � 346.02; based on .eorem 2 in
Section 4, the candidate optimal policy set is π3, π4 . .e
numerical results by algorithm are listed in Table 2.

From Table 2, we can see that F∗ � 54493, F∗s � 54525,
and thus G∗ � −32; hence the optimal ordering policy of
Example 1 is π1, and the optimal order times, optimal or-
dering sizes, and the optimal maximum shortage level over
the interval [t1,T] are, respectively,

m
∗

� 29, Q
∗
1 � 167.37, Q

∗
� 169.43, B

∗
� 98.83. (45)

In this way, the buyer’s inventory cost savings are 32.

Example 2. For the inventory system considered in Example
1, set t0 � 2.5 and other parameters remain unchanged.

For this inventory system, the optimal regular order
times, order size, and the maximum shortage level are the
same as in Example 1, and the remaining stock at t0 is
q0 � 8.06.

Similar to Example 1, since α � 39.34> c � 0.5916, and
β � −375.16< 0, if we apply strategy 2, the candidate optimal
policy set is π3, π4 . .e numerical results are listed in
Table 3, from which we can see that the cost of applying π3 is
minimal, so the optimal ordering policy of Example 2 is π3,
and the buyer’s inventory cost saving of placing a special
order compared to not placing special order is 16.
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Input
λ, A, c0, c, h0, h, ω, T, t0
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Y

Y

Y

Y

Y

N

N

N

N N N

N

N

N

N N N N

Y

Y

Y

Y

Y

Y Y

Y

If F (k1)≤– F (k2)

k = k1 k = k2

Compute
Q0, B0, q0, T0, T1, α, β, γ, δ

If α≤γ 

If β≤0 

If G*≥0 If G*≥0 If G*≥0 If G*≥0 

If β≤0 

If m2< δ If m2< δ 

If m1< δ If m1< δ 

If Fs (1)≤Fs (2) If Fs (1)≤Fs (2) 

If g1≤g2 If g1≤g2 

If q0≥0 

Compute
m1, m2, n1, n1, Fs (1), Fs (2), g1, g2

Compute f1

Compute
π5: m* = 0, Qs* = λT0-q0

Compute
π4: Qs*, Q'*, B'*, Compute

π3: Qs*, Q'*, B'*,

Compute
π1: Q1*, Q*, B*,

Compute
π2: Q1*, Q*, B*,

Compute f2

F* = f1+g1 F* = f1+g2 F* = f2+g1 F* = f2+g2

Fs* = Fs (2), G* = F*-Fs* Fs* = Fs (1), G* = F*-Fs* Fs* = Fs (2), G* = F*-Fs* Fs* = Fs (1), G* = F*-Fs*

m*=m2 m*=m1 m*=m1m*=m2n*=n1 n*=n2

Figure 5: Algorithm flowchart.

Table 2: Numerical results on Example 1.

Policy Qs m\n Q\Q′ B\B′ F\Fs

π1 — 29 169.43 98.83 54493
π2 — 30 163.67 95.47 54494
π3 69.44 28 172.92 100.87 54525
π4 66.87 29 167.05 97.45 54525
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Figure 6: .e changes of the q0 and G with the price growth rate.

Table 4: Numerical result on Example 3.

Policy Qs m\n Q\Q′ B\B′ F\Fs

π1 — 29 169.43 98.83 54457
π2 — 30 163.67 95.47 54458
π3 214.89 27 173.94 101.47 54368
π4 212.21 28 167.82 97.90 54366

Table 5: Impact of parameter q0 on the retailer’s ordering policy, c � 10.5.

t0 q0 π1 π2 π3 π4 G∗ Qs Optimal policy

2.00 −80.65 56333 56334 56241 56240 93 216.53 π4
2.05 63.71 54490 54492 54520 54519 −29 — π1
2.10 38.71 54480 54482 54492 54492 −12 — π1
2.15 13.71 54476 54476 54465 54465 10 123.60 or 121.06 π3 or π4
2.20 −11.29 54474 54475 54437 54438 36 148.21 π3
2.25 −36.29 54470 54472 54410 54412 60 172.83 π3
2.30 −61.29 54463 54464 54384 54383 80 197.44 π4
2.35 −86.29 54452 54453 54356 54356 96 224.73 or 222.06 π3 or π4
2.40 58.06 52609 52611 52635 52635 −26 — π1
2.45 33.06 52600 52602 52608 52608 −8 — π1
2.50 8.06 52596 52597 52580 52581 16 129.18 π3
2.55 −16.94 52595 52596 52553 52554 42 153.78 π3
2.60 −41.94 52590 52592 52527 52525 65 178.38 π4
2.65 −66.94 52582 52584 52500 52498 84 202.98 π4
2.70 −91.94 52570 52572 52472 52471 99 227.58 π4
2.75 52.42 50728 50730 50751 50750 −22 — π1
2.80 27.42 50720 50722 50723 50723 −3 — π1
2.85 2.42 50717 50719 50696 50696 11 134.76 or 132.03 π3 or π4
2.90 −22.58 50716 50717 50668 50670 48 159.34 π3
2.95 −47.58 50710 50712 50643 50641 69 183.93 π4
3.00 −72.58 50701 50703 50615 50614 87 208.51 π4
.e underlined values indicate the ordering cost under the optimal ordering strategy.

Table 3: Numerical result on Example 2.

Policy Qs m\n Q\Q′ B\B′ F\Fs

π1 — 28 169.43 98.83 52596
π2 — 29 163.67 95.47 52597
π3 129.18 27 170.84 99.656 52580
π4 126.55 28 164.84 96.15 52581
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Example 3. For the inventory system considered in Example
1, set t0 � 2.33 and other parameters remain unchanged.

For this example, the remaining stock at t0 is
q0 � −76.29.

Similar to Example 1, since α � 38.18> c � 0.5916, and
β � −555.16< 0, if a special order is placed, the candidate
optimal policy set is π3, π4 . .e numerical results are listed
in Table 4, from which we can see that the optimal ordering
policy is π4, and the buyer’s inventory cost saving of placing
a special order compared to not placing special order is 91.

In the numerical experiments, we see that the remaining
stock q0 at t0 significantly affects the buyer’s ordering policy.
Using the same data as those in Example 1, we study the
sensitivity analysis.

6.2. SensitivityAnalysis. To better understand the effect of q0
on the ordering policy, we conduct a sensitivity analysis of

the models by varying the parameter q0 while keeping the
other parameters fixed as same as in Example 1. .e nu-
merical results are presented in Table 5 and Figure 6.

Figure 6 exhibits that G≥ 0 when q0 ≤ 24 , the buyer
should place a special order at t0 for this scenario, and the
optimal special order quantity decreases with the increase of
q0. However, when q0 > 24, the buyer makes a special order
more cost-saving than not making a special order, and his
optimal replenishment policy is one of the candidate optimal
policy sets π1, π2.

In general, whether the buyer places a special order not
only relates to q0, but also relates to the extent of price
increase. In order to discuss this issue, we conduct a sen-
sitivity analysis of the model by varying the parameters c and
h while keeping the other parameters fixed as same as in
Example 1. .e numerical results are presented in Table 6
and Figure 7.

From Table 6 and Figure 7, it is not difficult to see that
when q0 is fixed, a special order is not required when the
price increase rate is small. When the price increases to a
certain level, placing a special replenishment is the buyer’s
optimal replenishment strategy. .e buyer placing a special
replenishment can save costs when the price increase rate is
more than 8.5%.

7. Conclusion and Extensions

.is study investigated the finite horizon inventory systemwith
backordering and a known price increase, which is observed in
common items like grain crops, wheat, corn, and soybeans, etc.
.e supplier allows the buyer to place a special order when the
price increases. .e objective of this study is to determine
whether or not to purchase additional stock and optimal
number of orders so that the inventory cost is minimum. For
this mechanism, based on the retailers cost analysis, the

Table 6: Impact of price increase ratio parameter on the retailer’s ordering policy, t0 � 2.04.

Δc/c0 (%) h π1 π2 π3 π4 G∗ Qs Optimal policy

1 4.04 52506 52505 52555 52554 −49 — π2
2 4.08 53003 53002 53049 53049 −47 — π2
3 4.12 53501 53499 53543 53542 −43 — π2
4 4.16 53996 53998 54035 53034 −38 — π1
5 4.20 54493 54494 54525 54525 −32 — π1
6 4.24 54990 54991 55015 55014 −24 — π1
7 4.28 55487 55488 55503 55502 −15 — π1
8 4.32 55983 55984 55989 55989 −6 —
9 4.36 56480 56482 56475 56474 6 117.24 π4
10 4.4 56977 56977 56958 56958 18 132.40 or 129.82 π3 or π4
11 4.44 57473 57474 57441 57441 32 144.98 or 142.39 π3 or π4
12 4.48 57970 57970 57922 57922 48 157.55 or 154.96 π3 or π4
13 4.52 58466 58466 58402 58402 64 170.12 or 167.53 π3 or π4
14 4.56 58963 58963 58881 58881 82 182.69 or 180.09 π3 or π4
15 4.60 59459 59459 59358 59358 101 195.25 or 192.65 π3 or π4
16 4.64 59995 59995 59834 59834 121 207.81 or 205.21 π3 or π4
17 4.68 60451 60451 60308 60309 143 220.36 π3
18 4.72 60948 60947 60782 60782 165 232.91 or 230.30 π3 or π4
19 4.76 61444 61443 61254 61254 189 245.452 or 242.85 π3 or π4
20 4.80 61940 61939 61724 61725 215 258.99 π3
.e underlined values indicate the ordering cost under the optimal ordering strategy.
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Figure 7: .e cost difference between the two strategies with the
price growth rate.
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problem is formulated as an optimization model and is solved
by optimal techniques. A global optimal solution for the model
was obtained through the algorithm given in the paper. From
numerical studies, we show that the results of the numerical
analysis are consistent with managerial implications and
economical common sense. It has been shown that if those
basic parameters of themodels are given, we can get an optimal
ordering policy, and under those basic parameters such as in
Example 1 being fixed, the optimal order policy changes with
the change of parameters q0 and Δc, and the special replen-
ishment size increases as q0 decreases and c increases.

.ese results in the paper are important to the real world.
.e prices of goods, for example, wheat or soybeans, will
increase after two or threemonths after harvest. Also when and
how much the price increases are generally due to the interval
between two normal orders. When buyers have known the
price changes, they need to adjust their ordering strategy. Our
model provides the decision-maker useful for this mechanism,
and the algorithm can provide an optimal replenishment and
stocking strategy to the buyers quickly. Numerical experiments
were also carried out to illustrate the validity of the models.
Sensitivity analysis has been performed in order to determine
the robustness of the models presented above.

To make the concerned model more practical, we may
introduce the shortages and partial backordering into the
model. Further, the time of price change may be stochastic.
.is will be considered in the future research.

Appendix

A. Proof of Theorem 1

.e proof of .eorem 1 is divided into two steps.
First, we discuss the optimal solution of problem (3)

when k is fixed. Since the constraints are linear, any optimal
solution is a KKT point which satisfies one of the following
systems. See [11, 25].

zf

zQ1
�

h

λ
Q1 + q(  − μ � 0,

zf

zQi

�
h

λ
Qi − Bi−1(  − μ � 0, i � 2, . . . , k,

zf

zBi

� −
h

λ
Qi+1 − Bi(  +

w

λ
Bi � 0, i � 1, . . . , k − 1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(46)

where

f � F k, Q1, . . . , Qk, B1, . . . , Bk−1(  − μ 
k

i�1
Qi − λT + q⎛⎝ ⎞⎠

(47)

is the Lagrange function, and μ≥ 0 is the Lagrange multiplier
corresponding to the equality constraint.

A straightforward computing of the system of equations
gives that

Q1 �
wλT

kw +(k − 1)h
− q,

Q2 � · · · � Qk �
(w + h)λT

kw +(k − 1)h
≜Q,

B1 � · · · � Bk−1 �
hλT

kw +(k − 1)h
≜B,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(48)

and thus, Q1 � Q − B − q.
Substitute the above solutions into formula (2); we

obtain the inventory cost over the planning horizon of
length T is

F � c(λT − q) + kA +
kh

2λ
(Q − B)

2
+

(k − 1)h

2λ
B
2

� c(λT − q) + kA +
whλT

2

2[kw +(k − 1)h]
.

(49)

Now, we consider the optimal ordering times k.
Since

F(k) � c(λT − q) + kA +
whλT

2

2[kw +(k − 1)h]
, (50)

by

F′′(k) � −
whλT

2
(w + h)

2

[kw +(k − 1)h]
< 0, (51)

we know that F(k) is concave in k, and its minimum value is
reached at the stationary point of the function F(k) which
gives

k � T

���������
wλh

2A(w + h)



+
h

w + h
. (52)

Considering k is an integer, we conclude that the optimal
ordering time is k1 � ⌊k⌋ or k2 � ⌈k⌉. In detail, if
F(k1)≤F(k2), then optimal ordering time is k1; otherwise, it
is k2. □

B. Proof of Theorem 2

Similarly to the proof of.eorem 1, under the condition that
m is fixed, we have

Q1′ � · · · � Qm
′ ≜Q′,

Bs � B1′ � · · · � Bm−1′ ≜B′,
(53)

Qs � λT0 − q0 −
mλ(w + h) h0T0 + c0 − c( 

mh0(w + h) + wh
, (54)

Q′ �
λ(w + h) h0T0 + c0 − c( 

mh0(w + h) + wh
, B′ �

λh h0T0 + c0 − c( 

mh0(w + h) + wh
.

(55)
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Considering the requirements that Qs, Q′, B′ ≥ 0, we
conclude that Qs, Q′, B′ given in (54)-(55) is a solution to
model (21) provided that h0T0 + c0 − c≥ 0 and

λT0 − q0(  mh0(w + h) + wh >mλ(w + h) h0T0 + c0 − c( ,

(56)

i.e., m(w + h)[q0h0 + λ(c0 − c)]< (λT0 − q0)wh. Obviously,
if q0h0 + λ(c0 − c)≤ 0, then (56) holds; otherwise,

m<
λT0 − q0( wh

(w + h) q0h0 + λ c0 − c(  
. (57)

For simplicity, we denote α � h0T0 + c0 − c, β � q0h0 +

λ(c0 − c), δ � (λT0 − q0)wh/(w + h)[q0h0 + λ(c0 − c)]. .en
Qs, Q′, B′ given by (54), (55) is a solution to problem (21)
provided that

α≥ 0 and β≤ 0, (58)

or α≥ 0, β> 0 andm< δ. (59)

Otherwise, the solution of problem (21) is

m � 0, Qs � λT0 − q0, Q′ � B′ � 0. (60)

.e desired result follows by combining the discussion
above.
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