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Most studies on common due date problems discuss the topic in the context of solving the minimum penalty value for the single-
machine or parallel machine scheduling environment. -is study extends the problem of the common due date to the dynamic
flow shop environment and proposes the enhanced heuristic algorithm to solve the minimum penalty value. -e enhanced
heuristic algorithm is characterized by designating mutant genomes of the child as the genomes located at the central location
before mutation. -e advantage is to integrate the successful experiences of the conventional common due date algorithm to
improve the efficiency of the proposed heuristic algorithm.-e performance of both algorithms is analyzed in terms of uniformly
distributed job numbers, processing time, early penalty, and late penalty. -e resulting outcomes indicate that the enhanced
heuristic algorithm outperforms the conventional CDDA and EDD proposed by previous studies in the average penalties.

1. Introduction

-e semiconductor manufacturing environment can be
regarded as one of the most complicated production pro-
cesses and usually operates hundreds of machines. More-
over, Liu et al. [1] stated that there are approximately 400
process operations in the process flow and the processing
cycle may last for several months. To gain a competitive edge
in semiconductor manufacturing, the enterprises intend to
shorten the cycle time, reduce the production costs, and
improve the quality by executing effective controls on the
production process. Mönch et al. [2] claimed that pro-
duction scheduling can be an appropriate approach to
solving the mentioned problems. Furthermore, a manager
would like to satisfy those chips that are in the processing list
at a predetermined time point. -at is, they are of a common

due date.-e objective can be to find the optimal schedule of
the jobs, which minimizes the total penalty based on the due
date and the earliness or tardiness of each job [3]. -e
earliness and tardiness objective functions are motivated by
the just-in-time (JIT) philosophy. Moreover, JIT is applied in
many back-end facilities due to the need to reduce holding
costs and meet internal and external due dates. -is leads to
production cycles being optimized so that companies pro-
duce products in an efficient manner from their
manufacturing facilities. For instance, service companies
would adopt the JIT scheduling concept to reduce inventory
costs and focus on the satisfaction of customers. In general,
the cost of being early can be considered as a holding cost for
finished goods, deterioration of perishable goods, and op-
portunity costs. -e cost of being tardy may be the back-
logging cost, which includes performance penalties, lost
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sales, and lost goodwill [4]. Lauff andWerner [5] argued that
although there are lots of studies investigating single-ma-
chine problems with earliness and tardiness penalties, a few
articles deal with parallel machine problems and only very
few ones treat shop scheduling problems with earliness and
tardiness penalties.

We can see that previous studies mostly discussed the
common due date of the single-machine or parallel machine
scheduling; thus, this study extends the common due date
problem to the dynamic flow shop scheduling environment.
Because the dynamic flow shop scheduling environment is
an NP-hard problem [6–9], we developed the enhanced
genetic algorithm. By the conventional genetic algorithm,
the specific shipping dates expected by different customers
are encoded to the maternal gene sequence, and thus the
children are generated through the genetic evolution of
crossover and mutation. As a result, the most elite child with
the solution of the minimum acceptable penalty value is
selected to be the common due date. In order to optimize the
number of evolutions and iterations, our proposed method
adds iteration optimizing factors to force the children to
mutate at each iteration and utilizes the evolved mutated
children for decoding the common due date schedule. After
comparing with the normally evolved children through the
traditional genetic algorithm, any child with the minimum
penalty value is selected to be the common due date for the
jobs reported to customers. In this article, we utilize Monte
Carlo simulation to generate numerical examples. -e re-
sults show that the average penalties obtained by our pro-
posed method are less than those obtained by the traditional
genetic algorithm with a 95% confidence interval in terms of
uniformly distributed job numbers, processing time, early
penalty, and late penalty.

-e remaining parts of this article can be organized as
follows. -e literature review is surveyed in Section 2.
Section 3 presents our proposed algorithm and Section 4
utilizes the illustrative case study and further conducts the
analysis based on the results. Finally, Section 5 concludes
this study and provides the future direction of the research.

2. Literature Review

Moore [10] proposed the algorithm considering computa-
tional efficiency for large problems and formulated for se-
quencing jobs through a single facility to minimize the
number of tardy jobs. Lawler [11] considered a sequence
minimizing the maximum of the incurred costs.-e cost can
be incurred by completing the job at time t. Panwakar et al.
[7] investigated the penalty function based on the due date
value and the earliness or the tardiness of each job in the
selected sequence. Ow and Morton [12] proposed their al-
gorithm tominimize total early and tardy costs by a given set
of jobs processed on a single machine. Two dispatch priority
rules are proposed and tested for this NP-complete problem.
Lee et al. [6] studied the case of job-dependent penalties
under a certain condition on the ratio of processing times
and weights. -ey developed dynamic programming algo-
rithms to solve the solutions. Błazewicz et al. [13] presented
the two-machine non-preemptive flow shop scheduling

problem with a total weighted late work criterion and a
common due date. -e late work performance measure
estimates the quality of the obtained solution with regard to
the duration of late parts of tasks, not taking into account the
quantity of this delay. Yang et al. [14] investigated the as-
signment of single-machinemultiple common due dates and
scheduling problems with consideration of position and
resource allocation-dependent processing time. -ey pro-
posed two algorithms that can be executed within polyno-
mial time. Wang and Wang [15] studied a single-machine
earliness-tardiness scheduling problem with due date as-
signment where the job processing time is dependent on its
starting time and resource allocation. Liu et al. [16] proposed
a new metaheuristic algorithm based on the architecture of
the iterated greedy algorithm with enhanced destruction,
construction, and new repair method to solve dynamic
scheduling in the permutation flow shop with the new order
arrival. Koulamas [17] considered the single-machine
common due date assignment problem with generalized
earliness and tardiness penalties and showed that the
problem can be solved optimally in the polynomial time by
dynamic programming. Li and Chen [9] addressed a single-
machine scheduling and common due date assignment
problem in which the actual processing time of a job is a
linearly increasing function of the total basic processing
times of already processed jobs. Sun et al. [18] studied the
problem of two-machine no-wait flow shop scheduling with
a learning effect and convex resource-dependent processing
times. -ey provided a bicriteria analysis where the first
criterion is to minimize the weighted sum of earliness,
tardiness, and flow allowance costs, and the second criterion
is to minimize the weighted sum of resource consumption
cost. Fu et al. [19] draw a decision on the common due date,
resource allocation, and the sequence of jobs by minimizing
total earliness, tardiness, common due date cost, and total
resource cost. Lu et al. [20] developed a hybrid multi-
objective grey wolf optimizer (HMOGWO) to solve the
multiobjective dynamic welding scheduling problem
(MODWSP). -eir model considers machines breakdown,
jobs with poor quality, and job release delay to fulfill the
needs of dynamic production. Zhou et al. [21] considered an
event-triggered dynamic scheduling problem in the cloud
manufacturing environment. -ey further utilized the case
study to demonstrate its model capability in task execution
time. Yan et al. [22] solved a real-time dynamic job-shop
scheduling problem in a robotic cell where multiple jobs
enter into the cell with unexpected arriving rates. -ey
formulate the problem as a sophisticated mixed-integer
programming (MIP) model and propose an exact iterative
algorithm. -e resulting outcomes validate the effectiveness
and efficiency of the strengthened MIP model and the it-
erative algorithm.

3. Methodology

-e common due date algorithm [4] indicates that the
advantage completion dates with the lowest total penalty
cost are all sets at the center of job numbers sequences.
-erefore, the proposed GAE designates the optimizing
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factors mutant genomes of the children as the centrally
located genomes of the offspring before mutation in the
dynamic flow shop scheduling. -is advantage intends to
integrate the successful experiences of the common due date
algorithm to improve the efficiency of GAE.

3.1. Notations and the Mathematical Model. -e notations
used in this article are given as follows: P, the total penalty
cost; Cj, the completion time of job j;CDDj, the common due
date of job j; EPj, the early penalty cost of job j; LPj, the late
penalty cost of job j;

-e objective function of our model is to minimize the
total penalty cost and can be formulated as follows:

Minimize P � 
n

j�1
CDDj − Cj  · EPj · Ej + Cj − CDDj  · LPj · Lj ,

where Ej + Lj � 1, Ej ∈ 0, 1{ }, Lj ∈ 0, 1{ }, ∀j � 1, . . . n.

(1)

In (1), we sum up the penalty of each job. Note that
Ej+ Lj � 1 means that the early penalty cost and late penalty
cost of job j cannot exist simultaneously. -e early penalty
cost of job j can be calculated by (CCDj − Cj) · EPj, and we
can obtain the late penalty cost of job j by
(Cj − CCDj) · LPj. In our solution procedure, we apply the
enhanced genetic algorithm, common due date algorithm,
and early due date rule to solve our model.

3.2. Enhanced Genetic Algorithm. -is study proposes the
enhanced genetic algorithm (refer to GAE) performed by the
following 9 steps:

Step 1. Population size: Set the job order number (n)
under the dynamic flow shop scheduling environment
as the number of population size.
Step 2. Parent selection: Take the work order with the
maximum delay penalty value as the last genome of the
maternal gene sequences and arrange the remaining
gene sequences randomly. After arrangement, if the last
delay penalty value appears the same and the work
order can be selected from multiple options, then the
last job is randomly arranged in priority and the
remaining jobs are randomly arranged.
Step 3. Rule of crossover: Arrange the parents in a
descending sequence based on the total penalty cost
from high to low. -e parents with the largest total
penalty value are crossed over with those with the
second largest value; the parents with the third max-
imum value are mated with those with the fourth
maximum value, and so on. -ey iteratively cross over
with each other until the same number of children is
generated.
Step 4. Crossover value (child): -e child from the
crossover is generated as follows: add up the parents of
every pair and calculate the mean value of the total
penalty, and then conduct unconditional rounding up.
If the roundup value is repeated, assign the next
unrepeated order to replace the value. For example, the
mean value of the parents 1 and 2 is 3.5; thus, the

children will be rounded up in value 4. -is roundup
value is the offspring of this crossover. Stop the pro-
cedure when all children are completely generated.
Step 5. Mutation probability of children: Set the
mutation probability as 1/n (for instance, if there are
four generations of children, set the mutation
probability as 1/n � 1/4 � 0.25). -e children with the
lowest total penalty cost before mutation are selected
for mutation.
Step 6. Selection of the centrally located genomes of the
children before mutation: -e GAE designates the
mutant genomes of the children as the centrally located
genomes of the offspring before its mutation. For ex-
ample, the genome at the central location of children 1
before mutation is 5 and the genome at the central
location of children 2 after mutation is random value 1.
Step 7. Application of the backward-forward heuristic:
Find out the minimum total penalty value of this job
order scheduling by applying the backward-forward
heuristic [4]. In the backward phase, the initial job
sequence is developed. -e sequential job assignments
start from the last position and proceed backward
toward the first position. -e assignments are com-
pleted when the first position is assigned to a job.
Perform the forward pass on the job sequence found in
the backward phase that is the "best" sequence at this
stage. -e forward pass progresses from the job in
position 1 toward the job in position N. Let k define the
lag between two jobs that are exchanged in the se-
quence. For example, jobs occupying positions 1 and 3
have lag k equal to 2.
Step 8. Select the minimum total penalty value obtained
at Step 7, and its scheduling is the optimal solution for
the common due date problem.
Step 9. Termination rule: repeat Step 1 to Step 8 and
continue crossover for N/2 times. If one observes no
improvement in regard to the currently attempted
optimal solution, then stop GAE algorithm. -e lowest
total penalty cost during the crossover is considered the
optimal solution.
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3.3. 5e Encoding and Decoding of the GAE. In Figure 1(a),
given n jobs, an order is encoded by a permutation of in-
tegers between 1 and m our GAE. In Figure 1(b), the genetic
evolution of crossover rules can be seen in Step 3 and Step 4.
In Figure 1(c), when the optimum sequence is found, we first
decode it back to a route where the sequence is represented
and the job n is processed on machines. -en, we decode a
route back to a schedule as Gantt chart. We can derive the
specific completion time Cj according to equation (1) with
the minimum penalty value. -e resulting outcomes can be
generated as the common due date for the jobs, which can be
provided for customers.

4. Parameter Design and Case Study

4.1. Numerical Results

4.1.1. Parameter Design. Based on [4], Table 1 shows three
scenarios with its parameter setup. We assume all param-
eters following the uniform distribution on a specific in-
terval. For instance, in scenario 1, the processing time of
machine 1 has a uniform distribution on the interval [6, 23].

4.2. 5e GAE Algorithm Procedure. In scenario 1, from the
simulated results of the uniform distribution shown in
Table 1, we can obtain the simulated datasets of the dynamic
flow shop scheduling shown in Table 2. To clearly explain
our proposed algorithm, we detail the solution procedure of
the simulation result of scenario 1 as follows.

Step 1. Simulate the population size under scenario 1, as
shown in Table 3.
Step 2. Take job order 1 with the maximum delay
penalty value as the last genome of the initial pop-
ulation genetic sequences and arrange the remaining
genetic sequences randomly.
Step 3. Arrange the parents in a descending sequence
based on the total penalty cost from high to low. -e
member with the largest total penalty value is crossed
over with that with the second largest value (i.e.,
parents 1 and 2), and the member with the third
maximum value is crossed over with that with the
fourth largest value (i.e., parents 3 and 4), and so on.
Step 4. Generate children from the crossover. Add up
the parents of every pair and calculate themean value of
the total penalty, and then conduct unconditional
rounding up.-is roundup value is the crossover of the
child in this iteration. Stop the procedure until all
children are completely produced, as shown in Table 3.
Step 5. Set the mutation probability of child as 1/n: For
instance, for scenario 1, if there are six generations of
offspring after mating, set the mutation probability as
1/n� 1/6� 0.1667). Next, from iteration 2, select the
children member 24 with the lowest total penalty cost
of $1344 before mutation as a candidate for mutation,
as shown in Table 4.
Step 6. Select 4 as the centrally located genome of the
children (member 24, 3-5-6-4-1-2) before mutation,

and the centrally located genome, 1, of the child
(member 26, 2-5-3-1-6-4) after mutation. -e total
penalty cost is reduced to $1313. So far, the GAE al-
gorithm shown in Table 4 completes the iterated ap-
plication of scenario 1 for the second time.
Step 9. Termination rule: after iterative crossover for 6/
2� 3 times in scenario 1, the simulation results indicate
during crossover that, among all the members, parent
member 6 is the one with the lowest total penalty
cost—the order processing sequence is 3-5-6-2-4-1, the
optimum solution is $1267, and the optimum delivery
date set by GAE is 112 days.

In scenario 2, from the simulated results in Tables 5 and
6, it is found that, during the crossover, among all the child
members, the children member 34 after mutation is the one
with the lowest total penalty cost, its order processing se-
quence is 5-1-6-7-2-4-3-8, the optimum solution is $418, and
the optimum shipping date set by GAE is 72 days. In scenario
3, from the simulated results in Tables 7 and 8, it is found
that, during crossover, among all the child members, the
children member 20 is the one with the lowest total penalty
cost, the order processing sequence is 5-3-4-1-2, the opti-
mum solution is $350, and the optimum delivery date set by
GAE is 84 days.

4.3. 5e Common Due Date Algorithm

4.3.1. 5e Common Due Date Algorithm Procedure. Sule [4]
proposed the general common due date algorithm (CDDA)
in the following steps:

Step 1. Select the early and late penalty values of all
unscheduled job orders and find out the minimum one.
Step 2. As for N job orders, arrange the one with the
maximum early penalty value in the first place for
production in priority and similarly arrange the one
with the minimum late penalty value in the last place
for production. Among the work orders with early
penalty values, those taking a long time for processing
are arranged forward, and among the work orders with
late penalty values, those taking a long time for pro-
cessing are arranged backward. For any work order
with the same early and late penalty cost, the ar-
rangement can be optional, either the earliest sched-
uling or the latest scheduling.
Step 3. Respectively, calculate the total penalty value for
the common due date of each job order according to the
scheduling determined in Step 2.
Step 4. Find out the minimum total penalty value of this
work order scheduling in the backward-forward heu-
ristic [4].
Step 5. Select the minimum total penalty value obtained
in Step 4, and its scheduling is the optimal solution for
the common due date.

4.3.2. 5e Numerical Results of the Common Due Date
Algorithm. -e initial scheduling of the specific shipping
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Parent1

Orders
Job numbers 1 2 3 4 5 6
Processing time of machine 1 23 19 15 20 17 21
Processing time of machine 2 9 12 10 8 11 10
Processing time of machine 3 15 20 26 17 22 19
Early penalty 7 5 6 9 6 8
Late penalty 10 13 15 11 12 14

(1).An order is encoded by
a permutation of integers

6 5 2 34 1

(a)

6 5 2 34 1Parent 1

4 2 5 36 1Parent 2

(1). (Parent1+Parent2) x 0.5

5 3.5 3.5 35 1Child 1

(2). Round up

5 4 4 35 1Child 1

Child 1

(3). Assign the next unrepeated order

6 4 1 35 2

(b)

(2). Decode it back to a schedule

Routes J5:M1→M2→M3
J6:M1→M2→M3
J4:M1→M2→M3
J1:M1→M2→M3
J3:M1→M2→M3
J2:M1→M2→M3

(1). Decode it back to a route

6 4 1 35 2Optimum sequence

(c)

Figure 1: -e encoding and decoding of the enhanced genetic algorithm. (a) Encoding. (b) Crossover. (c) Decoding.

Table 1: Parameter design for the dynamic flow shop scheduling.

Scenario 1 Scenario 2 Scenario 3
Job numbers [1, 6] [6, 15] [5, 10]
Processing time of machine 1 [6, 23] [6, 15] [6, 23]
Processing time of machine 2 [3, 12] [3, 8] [3, 10]
Processing time of machine 3 [3, 26] [3, 15] [3, 21]
Early penalty [5, 9] [1, 5] [2, 9]
Late penalty [10, 15] [5, 10] [5, 15]

Table 2: Simulation data of scenario 1.

Job numbers 1 2 3 4 5 6
Processing time of machine 1 23 19 15 20 17 21
Processing time of machine 2 9 12 10 8 11 10
Processing time of machine 3 15 20 26 17 22 19
Early penalty 7 5 6 9 6 8
Late penalty 10 13 15 11 12 14

Table 3: Calculation of crossover genetic sequence for children.

Parent 1 4 6 5 2 3 1
Parent 2 6 4 2 5 3 1
(Parent 1 + parent 2)× 0.5 5 5 3.5 3.5 3 1
Children sequence 5 5 41 4 3 1
Children sequence after roundup 5 62 4 1 3 2
1-e mean value of the parents 1 and 2 is 3.5; thus, the children will be rounded up in value 4. 2 Because children’s sequence 5 overlaps with the first genetic
sequence 5, they are assigned to 6.

Table 4: Iterations in scenario 1 after 30 generations.

Iteration Member Parent Penalty ($) Children Member Due date Penalty ($)
1 1 2 4-6-5-2-3-1 6-4-2-5-3-1 1859 1845 5-6-4-1-3-2 19 105 1805

3 4 5-4-2-3-6-1 3-5-4-6-2-1 1543 1345 4-5-2-6-1-3 20 109 1685
5 6 3-6-2-5-4-1 3-5-6-2-4-1 1319 1267∗ (optimal) 3-5-6-4-1-2 21 109 1344
— — — 2-5-6-3-4-1 22 118 1320

2 7 8 6-2-4-3-5-1 4-5-2-6-3-1 1603 1705 5-4-3-6-1-2 23 112 1496
9 10 3-4-5-6-2-1 3-6-4-2-5-1 1487 1467 3-5-6-4-1-2 24 109 1344
11 12 5-2-4-6-3-1 3-5-2-4-6-1 1441 1372 4-5-3-6-1-2 25 115 1619
— — — 2-5-3-1-6-4 26 114 1313

3 13 14 4-3-5-6-2-1 4-2-5-6-3-1 1763 1573 4-3-5-6-1-2 27 112 1568
15 16 2-6-4-3-5-1 5-2-4-3-6-1 1522 1421 4-5-6-3-1-2 28 115 1713
17 18 6-5-2-4-3-1 2-5-3-4-6-1 1419 1291 4-5-3-1-6-2 29 111 1505
— — — 3-2-6-1-4-5 30 105 1328
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dates for three scenarios in Table 9 is obtained. As for
scenario 2 in Table 10, the order processing sequence is 5-1-
2-4-7-6-8-3, the optimum solution is $440, and the optimum
delivery date set by CDDA is 77 days. By comparing the
performance of CDDA and GAE in three scenarios in Ta-
ble 11, the results indicate that the optimum solutions of
GAE is smaller than those of CDDA, and the penalty value
respectively is reduced 2.08%, 5%, and 47.29%.

4.3.3. Statistics and Informatics. -is section presents sta-
tistics and informatics of the numerical results by simulation
dataset (e.g., scenarios 1, 2, and 3) corresponding to the
average penalties and standard deviation of due dates be-
tween CDDA and GAE and the mean plot of penalties.
Table 12 shows that the average penalties are 1261.789
dollars for the CDDA method and 913.889 dollars for the
GAE method. Furthermore, the average penalties obtained
by the GAE method lead to a 28% reduction compared to
that obtained by the CDDA method.

4.4. 5e Most Compared Algorithms and 5eir Statistics.
-is article further applies the earliest due date (EDD) rule to
see our model performance. -e EDD rule is that jobs are
processed according to the due date, the earliest due date
first. We assume that the total processing time is set up to be
the due date once this article employs the EDD rule. In
addition, this article utilizes the Monte Carlo simulation
method to generate the validation data, the processing time,
early penalty, and late penalty, as shown in Tables 2, 5, 7. It
simulates 30 replications of datasets, including the pro-
cessing time of machines from 3 to 26, early penalty with a
range between 1 and 9 dollars, and a late penalty with a range
between 5 and 15 dollars. -e resulting outcomes derived by
GAE, CDDA, and EDD can be found in Tables 13–15. One
would know that analysis of variance (ANOVA) is a sta-
tistical technique to check if the means of two or more
groups are significantly different from each other. In this
article, we compare the performance of these three meth-
odologies using ANOVA. In scenario 1, the average penalty
derived by GAE model is $1328.77, by CDDA model is

Table 5: Simulation data of scenario 2.

Job numbers 1 2 3 4 5 6 7 8
Processing time of machine 1 6 13 7 12 8 10 9 11
Processing time of machine 2 4 3 6 5 8 7 8 3
Processing time of machine 3 14 12 6 3 9 10 11 15
Early penalty 1 2 5 2 1 4 3 5
Late penalty 10 8 7 9 7 5 6 5

Table 6: Iterations in scenario 2 after 39 generations.

Iteration Member Parent Penalty ($) Child Member Due date Penalty ($)

1

1 2 4-3-2-5-1-8-7-6 3-5-7-1-2-8-4-6 775 754 4-5-6-3-2-8-7-1 25 65 881
3 4 8-5-7-4-2-3-1-6 5-7-4-2-3-1-8-6 706 659 7-6-8-3-4-2-5-1 26 62 943
5 6 1-3-2-4-5-7-8-6 4-1-5-3-2-8-7-6 656 602 3-2-4-5-6-8-1-7 27 67 979
7 8 1-2-3-4-5-7-8-6 1-4-2-3-5-7-8-6 593 576 1-3-4-5-6-7-8-2 28 60 750
— — 5-1-8-7-2-3-4-6 29 77 459

2

9 10 6-7-5-4-3-2-1-8 2-6-7-5-4-3-1-8 864 662 4-7-6-5-8-3-1-2 30 74 819
11 12 7-5-4-2-1-3-6-8 3-1-2-7-6-4-5-8 639 634 5-3-4-6-7-8-1-2 31 65 1007
13 14 4-1-3-2-7-6-5-8 2-1-3-4-5-7-6-8 599 491 3-1-4-5-6-7-8-2 32 60 790
15 16 2-1-7-3-4-5-6-8 5-1-6-7-2-3-4-8 472 451 4-1-7-5-3-6-8-2 33 62 632
— — 5-1-6-7-2-4-3-8 34 72 418∗ (optimal)

3

17 18 6-3-1-2-5-4-7-8 5-4-3-2-1-7-6-8 656 655 6-4-2-3-5-7-8-1 35 67 919
19 20 1-6-7-5-4-3-2-8 2-5-3-1-6-7-4-8 590 577 2-6-5-3-7-8-4-1 36 66 809
21 22 7-2-1-3-4-6-5-8 1-5-6-7-4-3-2-8 545 545 4-5-6-7-8-1-2-3 37 73 863
23 24 7-6-1-2-3-4-5-8 2-1-6-7-5-4-3-8 437 435 5-4-6-7-8-1-2-3 38 73 859
— — 7-6-5-3-2-1-4-8 39 65 750

Table 7: Simulation data of scenario 3.

Job numbers 1 2 3 4 5
Processing time of machine 1 6 15 20 23 14
Processing time of machine 2 3 9 4 10 5
Processing time of machine 3 3 9 21 17 14
Early penalty 8 6 5 9 2
Late penalty 5 9 10 15 13
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Table 8: Iterations in scenario 3 after 30 generations.

Iteration Member Parent Penalty ($) Child Member Due date Penalty ($)

1

1 2 3-2-5-4-1 2-5-3-4-1 834 813 3-4-5-1-2 19 84 444
3 4 5-3-2-4-1 4-2-5-3-1 750 666 5-3-4-1-2 20 84 350∗ (optimal)

5 6 5-4-3-2-1 3-5-4-2-1 443 386 4-5-1-2-3 21 67 600
— — — 1-5-4-2-3 22 70 937

2

7 8 2-4-5-3-1 4-2-3-5-1 732 708 3-4-5-1-2 23 84 444
9 10 4-5-2-3-1 5-4-2-3-1 600 536 5-1-2-3-4 24 53 1226
11 12 4-3-5-2-1 3-5-4-2-1 526 386 4-5-1-2-3 25 67 600
— — — 4-5-3-2-1 26 85 498

3

13 14 2-3-5-4-1 4-1-3-5-2 831 773 3-2-4-5-1 27 85 653
15 16 2-4-5-3-1 3-2-4-5-1 732 653 3-4-5-1-2 28 84 444
17 18 5-2-4-3-1 3-4-5-2-1 614 462 4-3-5-1-2 29 85 508
— — — 2-5-4-1-3 30 79 593

Table 9: -e initial sequences obtained by following CDDA of scenarios 1, 2 and 3.

Scenario 1 and job number is 6 2-5-3-1-6-4
Scenario 2 and job number is 8 5-1-2-4-7-6-8-3
Scenario 3 and job number is 5 5-3-2-1-4

Table 10: Penalties over the range of due dates by following CDDA.

Scenario Job number Due date Penalty ($)

1

2 51 3851
5 73 2597
3 99 1583
1 114 1313
6 133 1294∗

4 150 1651

2

5 25 1967
1 39 1281
2 51 825
4 54 741
7 67 520
6 77 440∗
8 92 455
3 98 521

3

5 33 1845
3 59 873
2 68 685
1 71 664∗
4 105 868

Table 11: -e comparisons of the CDDA and GAE.

Scenario 1 Scenario 2 Scenario 3
CDDA GAE CDDA GAE CDDA GAE

Job numbers 6 8 5
Optimal sequences 2-5-3-1-6-4 3-5-6-2-4-1 5-1-2-4-7-6-8-3 5-1-6-7-2-4-3-8 5-3-2-1-4 5-3-4-1-2
Due date 133 112 77 72 71 84
Penalty ($) 1294∗ 1267 440 418∗ 664 350∗

−2.08%↓ −5.0%↓ −47.29%↓
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$1709.20, and by EDD model is $2835.93 in Table 13. Based
on the data, the statistic can be 61.97 and p value is less than
0.05. It means that a significant difference exists among the
three models. Moreover, we further apply Tukey’s honestly
significant difference (HSD) test to see all possible pairwise
comparisons while keeping the familywise error rate low.
-e resulting outcomes can be arranged in Table 16. Table 13
indicates that GAE outperforms the other two models in

penalties. Following the same procedure, our proposed
model results in improved penalties compared to those
obtained by CDDA and EDD models of scenarios 2 and 3 in
Tables 17 and 18. Obviously, our proposed solution pro-
cedure can be applied to solve the scheduling problem in an
efficient manner. -e manufacturing companies would
benefit substantially from the application of our proposed
model.

Table 12: Average and standard deviation of the penalties.

CDDA GAE

Average penalties over the range of due dates ($) 1261.789 913.889
Standard deviation over the range of due dates ($) 864.950 431.665

Table 13: -e 30 replications simulation results of scenario 1.

Runs

GAE algorithm Common due date algorithm EDD rule
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Optimum
sequence

Common due
date (days)

Penalty
($)

Optimum
sequence

Common due
date (days)

Penalty
($)

Optimum
sequence

Common due
date (days)

Penalty
($)

1 3-2-6-5-4-1 112 1254 5-1-2-3-6-4 117 1558 4-1-5-6-2-3 45 4560
2 2-3-5-6-1-4 118 1197 6-3-4-1-2-5 108 1650 4-1-5-6-2-3 67 3350
3 2-6-3-5-4-1 118 1358 5-4-1-3-2-6 111 1757 4-1-5-6-2-3 93 2362
4 5-3-6-2-1-4 115 1286 6-1-3-4-5-2 112 1716 4-1-5-6-2-3 112 1982
5 3-2-6-5-1-4 112 1249 1-2-5-6-3-4 115 1658 4-1-5-6-2-3 132 2022
6 3-2-6-4-1-5 107 1294 6-4-1-3-2-5 115 1905 4-1-5-6-2-3 158 2542
7 5-6-2-3-1-4 115 1390 6-1-5-4-3-2 111 1879 4-1-5-6-2-3 67 3350
8 2-3-5-6-4-1 118 1202 5-1-6-4-2-3 107 1862 4-1-5-6-2-3 45 4560
9 5-2-6-4-3-1 106 1452 6-2-3-1-4-5 113 1454 4-1-5-6-2-3 158 2542
10 3-6-2-5-4-1 112 1319 3-6-4-5-1-2 109 1502 4-1-5-6-2-3 132 2022
11 6-5-3-2-1-4 118 1442 5-1-6-3-4-2 116 1629 4-1-5-6-2-3 93 2362
12 6-2-5-3-4-1 120 1463 4-3-6-2-1-5 110 1585 4-1-5-6-2-3 45 4560
13 3-2-6-1-4-5 105 1328 6-5-3-1-4-2 113 1508 4-1-5-6-2-3 67 3350
14 2-3-6-4-5-1 113 1296 1-5-6-2-3-4 112 1712 4-1-5-6-2-3 158 2542
15 6-2-3-5-1-4 120 1434 6-4-1-5-2-3 114 2067 4-1-5-6-2-3 45 4560
16 5-2-1-6-3-4 109 1580 6-1-2-5-3-4 117 1852 4-1-5-6-2-3 112 1982
17 3-2-5-6-1-4 112 1187 5-4-2-6-3-1 107 1597 4-1-5-6-2-3 132 2022
18 2-3-5-4-1-6 116 1287 6-3-5-4-2-1 115 1466 4-1-5-6-2-3 67 3350
19 3-2-6-1-5-4 105 1330 6-2-1-3-5-4 114 1604 4-1-5-6-2-3 158 2542
20 2-5-3-6-4-1 118 1226 1-5-6-4-2-3 109 1820 4-1-5-6-2-3 93 2362
21 6-2-3-5-4-1 120 1439 2-6-4-3-1-5 113 1482 4-1-5-6-2-3 67 3350
22 2-5-3-1-6-4 114 1313 2-1-6-5-4-3 114 1659 4-1-5-6-2-3 132 2022
23 6-5-3-2-4-1 118 1447 6-4-5-1-2-3 106 2007 4-1-5-6-2-3 112 1982
24 2-6-3-5-1-4 118 1353 4-5-3-6-1-2 115 1619 4-1-5-6-2-3 45 4560
25 5-3-6-2-4-1 115 1291 4-5-1-2-3-6 111 2042 4-1-5-6-2-3 158 2542
26 2-3-5-4-6-1 116 1267 1-5-6-4-3-2 109 1774 4-1-5-6-2-3 112 1982
27 3-2-5-4-1-6 110 1277 1-6-5-4-2-3 112 1819 4-1-5-6-2-3 67 3350
28 5-6-2-3-4-1 115 1395 1-3-6-2-4-5 113 1511 4-1-5-6-2-3 132 2022
29 2-5-3-6-1-4 118 1221 6-1-2-3-4-5 121 1724 4-1-5-6-2-3 93 2362
30 3-2-6-4-5-1 107 1286 4-1-3-6-5-2 113 1858 4-1-5-6-2-3 112 1982

Avg. 1328.77($) Avg. 1709.20($) Avg. 2835.93($)
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Table 14: -e 30 replications simulation results of the scenario 2.

Runs

GAE algorithm Common due date algorithm EDD rule
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Optimum
sequence

Common due
date (days)

Penalty
($)

Optimum
sequence

Common due
date (days)

Penalty
($)

Optimum
sequence

Common due
date (days)

Penalty
($)

1 5-4-2-1-3-7-
6-8 79 465 3-4-1-7-6-2-

8-5 64 833 3-4-1-5-6-2-
7-8 19 1198

2 1-2-4-5-3-6-
7-8 73 459 3-4-8-1-5-7-

6-2 71 907 3-4-1-5-6-2-
7-8 27 926

3 2-4-1-5-3-8-
7-6 79 491 8-5-3-4-7-1-

2-6 66 889 3-4-1-5-6-2-
7-8 43 558

4 5-2-4-1-3-7-
8-6 74 461 4-8-3-5-6-7-

1-2 66 934 3-4-1-5-6-2-
7-8 52 450

5 2-1-4-5-3-6-
7-8 73 445 3-1-7-2-6-4-

8-5 66 684 3-4-1-5-6-2-
7-8 62 410

6 1-5-4-2-6-7-
8-3 77 491 7-2-3-6-1-4-

5-8 70 608 3-4-1-5-6-2-
7-8 74 470

7 4-1-7-5-2-3-
6-8 74 431 6-7-1-2-5-4-

3-8 73 538 3-4-1-5-6-2-
7-8 85 635

8 4-7-5-1-2-3-
8-6 81 507 6-8-3-7-4-5-

1-2 62 967 3-4-1-5-6-2-
7-8 100 860

9 1-5-4-2-7-6-
3-8 67 482 4-3-6-2-1-8-

5-7 72 894 3-4-1-5-6-2-
7-8 27 926

10 5-1-6-7-2-4-
3-8 72 418 7-8-5-3-4-6-

2-1 61 868 3-4-1-5-6-2-
7-8 74 470

11 4-7-5-2-1-3-
6-8 81 498 2-8-4-6-1-7-

5-3 77 774 3-4-1-5-6-2-
7-8 19 1198

12 4-1-7-2-5-3-
8-6 74 463 6-8-5-1-7-3-

2-4 76 777 3-4-1-5-6-2-
7-8 52 450

13 5-1-2-4-7-3-
8-6 67 430 7-6-5-8-3-4-

2-1 68 764 3-4-1-5-6-2-
7-8 43 558

14 1-2-4-5-7-6-
8-3 77 484 1-4-6-7-2-5-

8-3 68 647 3-4-1-5-6-2-
7-8 100 860

15 2-1-4-5-3-8-
7-6 77 464 7-1-5-3-2-4-

8-6 69 485 3-4-1-5-6-2-
7-8 19 1198

16 4-5-7-2-3-1-
6-8 80 544 5-7-3-8-6-2-

1-4 67 927 3-4-1-5-6-2-
7-8 85 635

17 1-7-4-2-5-3-
6-8 71 444 2-6-4-8-3-7-

5-1 70 834 3-4-1-5-6-2-
7-8 27 926

18 5-1-6-8-2-4-
3-7 76 466 4-2-1-6-7-5-

3-8 75 563 3-4-1-5-6-2-
7-8 74 470

19 2-4-5-1-3-7-
8-6 81 505 2-1-5-3-6-7-

8-4 67 626 3-4-1-5-6-2-
7-8 85 635

20 1-2-4-5-3-8-
7-6 77 478 8-3-2-4-1-5-

7-6 67 755 3-4-1-5-6-2-
7-8 19 1198

21 2-1-5-4-3-6-
8-7 73 477 8-2-3-7-5-6-

4-1 68 818 3-4-1-5-6-2-
7-8 52 450

22 4-5-7-1-2-3-
6-8 80 464 7-8-5-3-1-2-

4-6 72 723 3-4-1-5-6-2-
7-8 43 558

23 1-7-4-5-2-3-
8-6 70 445 4-1-6-5-7-3-

8-2 66 624 3-4-1-5-6-2-
7-8 62 410

24 5-1-2-4-3-7-
6-8 60 485 6-7-8-2-3-4-

5-1 71 816 3-4-1-5-6-2-
7-8 27 926

25 1-2-5-4-3-8-
6-7 75 474 1-4-7-3-6-8-

2-5 62 749 3-4-1-5-6-2-
7-8 43 558

26 2-1-5-4-3-7-
8-6 74 457 8-1-2-6-7-4-

3-5 76 570 3-4-1-5-6-2-
7-8 85 635

27 4-1-7-5-8-3-
6-2 77 522 3-1-4-8-6-5-

7-2 64 801 3-4-1-5-6-2-
7-8 27 926

28 1-5-2-4-7-6-
8-3 77 471 6-4-8-5-1-3-

2-7 74 765 3-4-1-5-6-2-
7-8 19 1198

29 2-4-1-5-3-7-
6-8 75 451 7-1-2-3-5-4-

6-8 69 457 3-4-1-5-6-2-
7-8 62 410

30 5-1-4-7-2-3-
6-8 66 429 5-8-3-4-7-6-

2-1 66 891 3-4-1-5-6-2-
7-8 74 470

Avg. 470.03($) Avg. 749.6($) Avg. 714.15($)
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Table 15: -e 30 replications simulation results of the scenario 3.

Runs

GAE algorithm Common due date algorithm EDD rule
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Optimum
sequence

Common due
date (days)

Penalty
($)

Optimum
sequence

Common due
date (days)

Penalty
($)

Optimum
sequence

Common due
date (days)

Penalty
($)

1 5-3-2-1-4 71 664 3-5-1-2-4 62 835 1-2-5-3-4 12 2864
2 3-5-4-2-1 84 386 4-1-5-3-2 67 745 1-2-5-3-4 39 1811
3 4-5-3-1-2 85 480 4-1-2-3-5 62 983 1-2-5-3-4 54 1451
4 3-4-5-1-2 84 444 2-5-4-3-1 79 668 1-2-5-3-4 80 1217
5 5-4-3-1-2 85 416 4-2-1-5-3 62 731 1-2-5-3-4 105 1367
6 5-3-4-2-1 84 368 2-4-5-3-1 79 732 1-2-5-3-4 39 1811
7 3-5-4-1-2 84 332 4-3-2-5-1 80 582 1-2-5-3-4 12 2864
8 4-5-3-2-1 85 498 1-5-4-3-2 70 1100 1-2-5-3-4 54 1451
9 4-3-5-2-1 85 526 1-2-4-3-5 71 1329 1-2-5-3-4 54 1451
10 5-3-4-1-2 84 350 3-4-5-1-2 84 444 1-2-5-3-4 12 2864
11 3-4-1-5-2 73 556 4-3-1-5-2 74 620 1-2-5-3-4 105 1367
12 4-3-5-1-2 85 508 3-5-2-1-4 68 703 1-2-5-3-4 105 1367
13 2-5-4-1-3 79 593 2-1-4-3-5 71 1173 1-2-5-3-4 39 1811
14 5-4-1-2-3 67 536 5-1-2-4-3 53 1186 1-2-5-3-4 54 1451
15 4-3-2-5-1 80 582 2-4-5-1-3 79 657 1-2-5-3-4 12 2864
16 2-3-4-5-1 85 704 4-1-5-2-3 67 706 1-2-5-3-4 105 1367
17 5-4-2-3-1 73 536 4-2-3-5-1 83 708 1-2-5-3-4 105 1367
18 3-5-2-1-4 68 703 2-4-1-5-3 68 769 1-2-5-3-4 12 2864
19 5-2-4-1-3 79 539 3-2-5-1-4 68 769 1-2-5-3-4 80 1217
20 3-1-5-4-2 90 614 3-1-4-2-5 76 759 1-2-5-3-4 12 2864
21 3-4-1-2-5 73 560 1-5-3-2-4 65 1157 1-2-5-3-4 80 1217
22 2-3-4-1-5 85 673 4-1-2-5-3 62 785 1-2-5-3-4 105 1367
23 5-4-2-1-3 73 476 3-2-4-5-1 85 653 1-2-5-3-4 39 1811
24 2-4-5-1-3 79 657 2-3-4-5-1 85 704 1-2-5-3-4 105 1367
25 5-2-3-1-4 77 703 4-5-3-2-1 85 498 1-2-5-3-4 54 1451
26 4-3-1-5-2 74 620 1-2-3-4-5 66 1476 1-2-5-3-4 12 2864
27 2-5-4-3-1 79 668 3-5-2-4-1 68 768 1-2-5-3-4 39 1811
28 4-5-1-2-3 67 600 2-3-5-1-4 74 796 1-2-5-3-4 105 1367
29 5-4-3-2-1 85 434 4-5-1-2-3 67 600 1-2-5-3-4 54 1451
30 3-5-1-4-2 90 592 5-1-4-2-3 70 757 1-2-5-3-4 12 2864

Avg. 543.93($) Avg. 813.1($) Avg. 1842($)

Table 16: Pairwise comparison results of scenario 1.

Group 1 Group 2 Mean difference P value Reject
CDDA EDD 1126.7333 0.001 True
CDDA GAE −380.4333 0.0223 True
EDD GAE −1570.1667 0.001 True

Table 17: Pairwise comparison results of scenario 2.

Group 1 Group 2 Mean difference P value Reject
CDDA EDD −30.5333 0.7729 False
CDDA GAE −279.5667 0.001 True
EDD GAE −249.0333 0.001 True

Table 18: Pairwise comparison results of scenario 3.

Group 1 Group 2 Mean difference P value Reject
CDDA EDD 1028.9000 0.001 True
CDDA GAE −269.1667 0.0316 True
EDD GAE −1298.0667 0.001 True
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5. Conclusion

By the simulation results derived in this study, we can see
that employing the modified genetic algorithm can improve
the optimum solution quality of common due date for the
minimum total penalty value in the dynamic flow shop
scheduling. Furthermore, the modified genetic algorithm
can solve the complicated problem of common due date in
the dynamic flow shop scheduling through amore simplified
method, as shown in Section 4.2. At last, through iterative
experiments, the modified genetic algorithm is proved to be
superior to the CDDA approach proposed by Suel [4]. -is
article considers the advantage of genetic algorithm to de-
sign the termination rule, crossover, and mutation to gen-
erate diversified children at the initial stage; thus, the
problems can be solved in a simple, timesaving manner.
Furthermore, our studies compare the performance of the
proposed GAE EDD and CDDA. -e resulting outcomes
show that our model outperforms CDDA and EDD. -e
manufacturing companies would implement our solution
procedure to gain the benefits.

One would note that during the process of obtaining the
optimal solution, the study determines that the expected
delivery date arising from permutation and combination of
delivery date must be set at the central location of combi-
nation, a significant characteristic to be adopted to the
enhanced genetic algorithm for solving the common due
date problem in the three-stage dynamic flow shop. -e
following three points are proposed for future researchers to
study. From the conclusion, it is known that the genetic
algorithm is suitable for large population sizes and job
orders. From the experiments, we find that, in the case of
small population size and job orders, the CDDA can be
directly used to avoid wasting too much calculating time and
cost. When designing a new genetic algorithm, attempt to
diversify the children after crossover. Furthermore, the
simple crossover would generate homogeneous children
without much variety. After several crossovers are iterated,
similar children are more likely to be generated, but no
optimum solution is provided. Hence, the variety or mu-
tation rate should be increased during the crossover process
to produce more diversified offspring. More combination
modes shall be added in terms of child mutation. -e ho-
mogeneous models may only be applicable in the case that
the job orders are in small number; when the work orders are
in large number, the children after mutation will easily
become identical with those generated through general
crossover; therefore, the importance of mutation cannot be
accentuated and the significance of mutation is lost.
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