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Convective flow is a self-sustained flow with the effect of the temperature gradient. The density is nonuniform due to the variation
in temperature. The effect of the magnetic flux plays a major role in convective flow. The process of heat transfer is accompanied by
a mass transfer process, for instance, condensation, evaporation, and chemical process. Combination of water as base fluid and
three types of nanoparticles named as copper, titanium dioxide, and aluminum oxide is taken into account. Due to the ap-
plications of the heat and mass transfer combined effects in different fields, the main aim of this paper is to do a comprehensive
analysis of heat and mass transfer of MHD natural convection flow of water-based nano-particles in the presence of ramped
conditions with Caputo-Fabrizio fractional time derivative. The exact fractional solutions of temperature, concentration, and
velocity have been investigated by means of integral transform. The classical calculus is assumed as the instant rate of change of the
output when the input level changes. Therefore, it is not able to include the previous state of the system called the memory effect.
But, in the fractional calculus (FC), the rate of change is affected by all points of the considered interval to incorporate the previous
history/memory effects of any system. Due to this reason, we applied the modern definition of fractional derivative. Here, the
order of the fractional derivatives will be treated as an index of memory. The influence of physical parameters and flow is analyzed
graphically via computational software (MATHCAD-15). Our results suggest that the incremental value of the M is observed for a
decrease in the velocity field, which reflects to control resistive force.

1. Introduction

Convective flow is a self-sustained flow that transfers heat
energy into or out of the body by actual movement of fluids
particles that move energy with its mass. Thermal radiation
and the effect of magnetic flux play an important role in
convective flow. The different industrial problems and fluid
flow in the porous medium have achieved consideration in
recent years. In the literature, different theories are made to

see the phenomenon of heat and mass transfer analysis.
Radiation, convection, and conduction are three modes of
heat transfer. Convection can be defined as heat transfer by
the substance motion which may be air or water. It plays a
central role in creating the weather clause on the plant.
Nanoliquids are used to enhance the thermo-physical
properties and the performance of conventional fluids in
cooling and heating methods such as decrease the power of
nuclear reactors, reduce temperature in vehicles radiators,
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controlled heat in different computer progressions, and
handling thermal flows. In pharmaceutical industry, diag-
noses and treatment of cancer are based on nanoliquid
operators which comprise of different radiations. These
noteworthy physical attributes of nanofluids and their im-
plications are fascinating scientists and researchers. The
term nanofluid is referred to the addition of some solid
nanoparticles in regular fluid, sometimes known as base
fluid. This idea was first introduced by Choi [1]. Nano-sized
particles are used to raise the thermal conductivity of tra-
ditional fluids such as water and mineral oils. The creation of
nanometer-sized particles involves carbides, carbon nano-
tubes, and metals. Nanocompounds have substantial ap-
plications in several procedures such as drugs delivery, water
purification, bio diesel invention, and creation of carbon
nanotubes, according to Sarli et al. [2]. Masuda et al. [3]
presented higher thermo physical properties in nanofluids
due to some nanosized particles, undoubtedly, huge dif-
ference in the structure of nanoparticles because it has
different shape and size. Das et al. [4] studied that for
different temperature range between 200C to 500 C, the
thermal conductivities of TiO, and Al,O; water-base fluids
increased at most four times.

The study of mass and thermal flows of incompress-
ible, viscous nanofluids is highly significant because of
essential applications of such flows in engineering,
chemistry, and physics. Imposition of external magnetic
field and placement of cavities filled with fluid and porous
medium affect the flow of electrically insulated fluid in
bearings, pumps, MHD motors, and generators. Such
cavities can be portioned as horizontal and vertical cav-
ities. Hamad et al. [5] observed the characteristics of fluid
flow containing nanometer-sized particles over a vertical
plate in the presence of the external magnetical field. The
impacts of magnetic strength on some nanofluid flow are
investigated by Das and Jana [6]. Turkyilmazoglu [7]
discussed the mass with heat transmission of exact in-
vestigation of MHD flow of some fluids having nano-
meter-sized particles. The movement of nanofluid on a
porous surface placement in a revolving system is ex-
amined by Sheikholeslami and Ganji [8]. Husanan et al.
[9] presented the unsteady movement of nanofluids
nested in a porous medium in the existence of an elec-
tromagnetic field. In [10-12], researchers studied and
discussed the influence of exothermically and radiating
heat for some microlevel fluid flow. Khan et al. [13]
studied Casson-type nanofluid movement in the occur-
rence of thermo-radiation and heat consumption. In
[14-18], some identical studies can be investigated.
Ahmed and Dutta [19] first time floated the idea of ef-
fective velocity and temperature with ramped wall con-
ditions at a similar time for mass transmission of
Newtonian unsteady fluid flow transient through im-
pulsively affecting long vertical plate. Generally, ramped
velocity has a great advantage in the medical field espe-
cially diagnosed, and treatment for heart, blood, and
cancer diseases is discussed and studied in [20-22]. Schetz
[23], Hayday [24], and Malhotra et al. [25] are investigated
nonuniform and time-dependent temperatures with

Mathematical Problems in Engineering

ramped conditions. Kundu [26] highlighted important
operability time-dependent conditions for temperature
and also suggested five different forms of heating. Keolyar
et al. [27] observed controlled heat conditions on unstable
MHD radiated movement of some fluids with nano-
particle mixtures passing through a flat surface plate.
Some researchers have discussed noteworthy facts of heat
emission and mass transfer and elaborated under dis-
similar physical phenomena in [28-30].

The technique of fractional calculus has been used to
formulate mathematical modeling in various technological
development, engineering applications, and industrial sci-
ences. Different valuable work has been discussed for
modeling fluid dynamics, signal processing, viscoelasticity,
electrochemistry, and biological structure through fractional
time derivatives [31-33]. This fractional differential operator
found useful conclusions for experts to treat cancer cells with
a suitable amount of heat source and have compared the
results to see the memory effect of temperature function. As
compared to classical models, the memory effect is much
stronger in fractional derivatives [34-39]. Over the last thirty
years, fractional derivative/calculus (FDs/FC) has captivated
numerous researchers after recognition of the fact that in
comparison to the classical derivatives, FDs are more reliable
operators to model real-world physical phenomena. In
dynamical problems, fractional-order model/modeling is
receiving rapid popularity nowadays. The mathematical
modeling of many physical and engineering models based
on the idea of FC exhibits highly precise and accurate ex-
perimental results as compared to the models based on
conventional calculus. For example, the fractional results of
rate and differential type fluids have a great resemblance
with the results obtained experimentally. For nonsingular
kernel convective flow with ramped conditions, the tem-
perature is studied by Riaz et al. [40]. Furthermore, the same
author Riaz et al. [41] highlighted the heat effect on MHD
Maxwell fluid by using local and nonlocal operators. Some
other associated references dealing with fractional differ-
ential operators, MHD Maxwell fluid movement, heat
emission, or fractional second-grade fluid are given in
[42-54].

Recently, Talha Anwar et al. [55] studied MHD-free
convective flow of water base nanofluids having three types
of nanoparticles named copper, titanium dioxide, and
aluminum oxide [56], with the classical approach. They have
not analyzed the behavior of fractional derivatives. The
intent of this manuscript is to explore the exact and closed-
form solution of MHD-free convective flow of water base
nanofluids with the Caputo-Fabrizio fractional operator
with simultaneous use of ramped heating with ramped
velocity. Laplace integral transformation is used to gain the
solutions of velocity, temperature, and concentration under
the impact of ramped conditions. In Section 2, the di-
mensionless governing equations are developed. In Section
3, a noninteger order derivative with Laplace integral
transform is used to find the required solution of the
concentration, temperature, and velocity field. In Section 4,
the effect of physical parameters is analyzed graphically. The
concluding observation is listed at the end.
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2. Mathematical Model

Let us assume that incompressible unsteady-free convective
MHD fluid movement through a vertical plate is nested in a
porous material with ramped temperature and energy
transmission of a nanofluid. Both the fluid and plate have
temperature T, concentration C, at initial time 7 = 0. At
7> 0, motion is started in the plate with velocity U, /7, also
temperature raised to T + (T, —T,)1/7, in the long
vertical plate for 0 <7< 7,. But, later on, the plate main-
tained constant temperature T, concentration C,, and
moving with uniform velocity U, for 7 > 7,,. Suppose that the

Ou(y,1) Tk

lunf ayz k*

fluid flow is unidirectional and one dimensional with x-axis
is assumed along the vertical plate, y-axis is considered in
perpendicular direction to the plate, and plate is placed at
y = 0 but nanofluid movement to be constrained for y > 0.
Figure 1 provided the geometrical and physical interpre-
tation of the considered model. Also, nanofluid is contained
water as a base fluid and Cu, TiO, and Al,O; as nano-
particles. In the light of all aforementioned assumptions, the
principal governing equations for a nanofluid can be
expressed subject to the Boussinesq’s approximation are
given as [19, 46, 55]

u(y, 1)+ g(pPr)us (T (3, 7) — To,)

+ 9 (PBe)as (C(3:7) = Coy) = 0, 1Bt (3, 7),

(1
oT (y, 1) 16(7,TiO aZT(y, T)
(PCo)ua— = K+ 3¢ 57~ AT+ QT
oC(y, 1) _ 9’C(y1)
or ot
The corresponding initial and boundary conditions are
stated as
u(y,0)=0,T(y,0)=T,,C(»,0)=Cy, y=0. (2)
M(O,T) =f1 (T)’T(O)T) =f2(T))C(O)T) :Cw' (3)
UOL, 0<1<Ty);
fl (‘[) = < TO
Uy T> T,
! T (4)
T+ (Ty—To)— 0<T<T);
f2 (‘[) = < TO
| T > 7T,
u(}/)T)—>0>T()/>T)—>OO’C(yaT) (5)

— 00asy — 00.

The expressions for different properties of nanofluids
then conventional fluids are density, specific heat capacity,
coefficient of thermal expansion, electrical conductivity,

thermal diffusion coefficient and dynamic viscosity are

denoted by p,r, (pCplups (PB)us> Ong> Dyyy and p, ¢ re-
spectively and defined as
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FIGURE 1: Geometrical presentation of the stated problem.

Pnf 3(/) (U - 1) Unf
> 1 - > = 1 >
Mﬂf ¢)25 pﬂf pw( ¢+¢ ) U”f 0w< + ( +2) (/5(0—1) o,
() °
P PInf (pﬁ)nf
C,) .=(pC 1-¢+ Dy =1 =@)Dy, (pB),s = ( )w(l— + .
(PCp)us =(p p)w< 7 PCp)w> g = (1=9Dp (pB)uy = (pPul 1= ¢+ § 5
Also, the effective role of thermal conductivity for Subscripts used in the above equations are w, nf, and np
nanoparticles is discussed as which are represented as base fluid, nanofluid, and nano-

particles, respectively. For nondimensionalization, we

Ky _Kup+ 2K, - Z(Kw ~ Ky )¢ 7) considered the following set of new variables:

Ky Ky, +2K, —(K, - K )¢

_UO % Ué *_ET*zT_TOO G =g(Tw_Too)(UﬁT)w

=— YT =—T,U = r
( Uy 4 Uy Uy Tw - Too U(s)
. C-C Cc-C 16 T
C* = OO,szg( )(Uﬁc)w M— wﬁozw)N 0y (8)
C,-Cy U, pU? 3k, k,

After employing the dimensionless quantities and re-
moving the star notation, the following partial differential
equations in the dimensionless form are derived as

2
1Bui(;; v 7T4a b;(;;’ 2 +m,G,T((, 1)+ n,G,,T(({, 1) — msMu({, 1) - n4u(1i T), (9)
oT (1) (ms+ N\ T(1) Q
or _( 7P, ) 7m0 (o)
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with stated conditions in the dimensionless form are
u({,0)=0,T({,0)=0,C({,0)=0,{>0,
7, 0<7<l,
u(0,7) = A(7), T(0,7) = A(7), (0,7) = 1 where A (7) :{ . . (13)
> T >

u((,7) — 0, T({,7) — 0,C({, 1) — 0as{ — oo.

3. Solution of the Problem

3.1. Exact Solution of Heat Profile. Applying the definition
provided in equation (15) for CF on (6) and plugging
equations (8), (9), and (10) yield
7+ N, \ T (1) Q
sty =2 14
L N)TIED Lo, as)
where “FD? is called Caputo-Fabrizio fractional operator
[37], and its inverse defined is as follows:

_ 1 Rt -p)\of (1)
- —@Lexl)( >

DT (L) = (

CF e
0T l=p ) o (15)

O<p<l,

_sZf ) - f(,0)

CF g
LED (D 1-g)s+p

(16)
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p

P
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2

p

2

p

(e—(\/ (th/P‘”Yz*/\) > p <e—(\/ (bzP/P*"?z‘*')l) >
EoN [ —) —_—

where g is a fractional parameter. The above equation be-
comes after employing the Laplace transformation

L
M_<ﬁ( P )+A>T((,p)=0, (17)

ol Ql-a)p+a
where
7P, . Qp,
ﬁ_n5+N,’ S s+ N, (18)

By using suitable conditions, the (17) has the solution in
the form of

(19)

= T_r((’P) _e_PTr({’P)~



After applying inverse Laplace transformation on the
above equation, we get the solution

T((,1)=T,({,1)-T,({,15)G (1) (20)

. e—(\/(/\+u/p/1+ep)
T,((,1)=L T >

(wy + 2)

_(w(1+/\)+p)

JL
+— e €
€Jo JoJo

G(7,) represent a standard Heaviside function with

B o« by +A _1
—a2™ Y = ,e=—  (22)

T,=7—-1,b, = - p p
2 2

It is noticed that when &« — 1, the results derived by CF
in (14) for ramped wall temperature distribution are the
same as those obtained by Talha Anwar et al. [55], which
proves the validity of the derived results with the published
literature.

3.2. Exact Solution of Mass Profile. Applying the definition
provided in equation (15) for CF on equation (3) and
plugging equations (3), (9), and (10) yield

1—¢>#C@J)

s ) e (23)

CFDfC(ar):<

c

The above equation becomes after employing the Laplace
transformation

’CWp) p
o (I-a)p+a

)6((, p)=0. (24)

By using the equation, the (11) has the solution in the
form

é((’ P) :<Il)>ef\/ (bP/(I*“)P+“)- (25)

Employing inverse Laplace transformation, the exact
solution for concentration is written as

o SV (bpl (1-@)p+a) >

C(,7t)=L"
¢, 1) ( ,

(26)
2b J'OO sin (¢//1 — a)()e(,u/l,mxz)dx

:1_; 0 X(b+X2)
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where

[Pfe e erse(55 oy reiwe Yoz o
erse( 55 o 0w Yazdac

3.3. Exact Solution of Velocity Profile. Applying CF fractional
time derivative operator as mentioned in equation (15) on
(5) gives

*u((, 1)

(2

n DUl 1) = +mG,T((,7)

(27)
+nG,,C((,7) —wu({, 7).

We employ Laplace transformation on the above
equation and equations (8), (9), and (10) which gives

d’u((, p) ( np )_
ac (l—tx)p+“+w 6P (28)
=-mG,T({,7) - nG,,C((, 1),
where
L W S . S
q_ﬂ4,w_Mﬂ4+K,m—n4,n—ﬂ4. (29)

The result of the homogeneous part of velocity (28) is
U (§, p) = ¢yt Nmplprmre cZe_{\/W, (30)

and the particular solution is written as
mG (1 _ e_P/pZ)e_( Vo plpti+A
(baplp + 12+ 2) = (11 p/p + 11, + )

f’le (1/p)e*{ Vb p/pti,
(biplp +1,) = (i plp + 1y + w)

10, ({p) =
(31)

So, the required solution of (28) has the following form:
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P2\, bapl priytA —{~/b,plp+n,
u(l,p) = c @ VIPIPHtw o o o= ENmplptitw me(l ¢ /p )e ' - nG,, (1/p)e p/pn . (32)
(boplp+ 1y +A) = (mplp+my+w)  (bip/p+m,) = (np/p+ 1, +w)
To find constants ¢, and ¢, by using corresponding
conditions, the solution is written as
ﬁ((,P) :(1 -e > —(\/r,lp/p+;12+w mG (1 —e p) (P + ’72) [ef(\/mp/pmﬁw _ e—(\/bzp/pmzﬂ\
v’ P (bsp+by)
(33)
nG,, (P + ’72) [e—(\/mp/p+n2+w _ e—(\/blp/pmz ])
p(bsp - bs)
where Equation (33) can be written in a more precise form as
7 o« b B
bl p L gL R
by = b, -y, + A —w,b, = (A - w)r, bs (34)
= b, — 1 —w, bg = wn,.
u((,p) =@ p)-e o, p)+ [CD(C p)—e PO p)-T(( p)]
G _ _
% (85 )@ (L p) = P8 (L )@ (L p) = 8(C PT(, p)] (35)
3
+ [u(c P) =T P+ 19 ¢, plet, ) - 9(G PICE .
After applying inverse Laplace transformation on the
above equation, we get the solution
u((, 1) =0, 1) - @({7)G (1) + ]
T’YIGrY[4
T [Y((, 1) =Y ({,19)G (1) = (8 % T)(7)] (36)
3

+—[M(( 1)~ C((,7)] + o mné (¢ *p) (1) = (¢ x O) ()],
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It is detected that when « — 1 and Gm = 0, the frac-
tionalized model CF in equation (3) for ramped wall velocity
profile is converted into integer order model as calculated by
Talha Anwar et al. [55]. Also, we achieved the same results as
Seth et al. [29] for ramped wall temperature with ¢ = 0 and
Gm = 0. Moreover, we derived similar solutions as obtained by
Chandran et al. [28] when porosity parameter 1/K — 0,
Gm = 0, and magnetic parameter M — 0. This authenticates
the current acquired results with the published literature.

4. Results and Discussion

In order to achieve the goal of having a comprehensive
understanding of the physical mechanism of current
problem completely, a parametric analysis is performed, and
computed solutions are revealed with the assistance of
graphs. In this section, the influence of many pertinent
parameters such as ¢, Gr, M, K, Gm, Nr, Sc, and fractional
parameter « an obtained solution of water base nano-
particles with ramped conditions subject to the application
of different fractional operators CF is studied by using
MARHCAD-15 software.

It is observed that temperature, concentration, and
velocity profile are controlled by the fractional parameter
a. Figures 2 and 3 illustrate for different time levels the
effect of fractional parameter a and Sc on concentration.
For small and large values of time f and using different
values of fractional parameter a, it is observed from
Figure 2 that the behavior of concentration is increasing
for a small time and decreasing for a large time. Also,
Figure 3 illustrates the behavior of concentration for Sc at
two different values of time, and it is observed that
concentration is decreasing as the value of Sc is increasing.
Figure 4 displays the temperature decreasing for a small
time and increasing for a large time, using various values
of the fractional parameter a. It is detected that increasing
the values of radiation parameter Nr elevates the tem-
perature distribution for a small and large time in

Figure 5. The impact of nanoparticle solid volume fraction
¢ is analyzed on temperature distribution for varying
times in Figure 6. A raise in the solid volume fraction
parameter elevates the temperature contour. Indeed, an
increase in the value of ¢ increased fluid density and cause
to increase in the thickness of the boundary layer which
helps to improve the thermal conductivity and surface
heat transfer rate is also increased.

Figure 7 displays the graphs of nanofluid velocity for
different values of Gr with various values of fractional pa-
rameter «. It is noticed that the velocity profile is elevated
corresponding to rising values of Gr. It is observed that the
velocity and Gr have direct relation. Generally, Gr deals with
buoyancy and viscous forces, and the strength of the viscous
force is decreased due to a raise in Gr. Consequently,
nanofluid velocity is elevated when it is close to an oscillating
plate, and then, the nanofluid flow is apart from the plate,
forces become delicate, and gradually, the motion of fluid
approaches zero. In Figure 8, four different graphs are drawn
for dissimilar values of Gm and numerous values of the
fractional parameter «. The mass Grashof number is the ratio
of mass buoyancy force to viscous force, which causes free
convection. It is noted that the fluid velocity is increasing if
we increase the value of G,,,.

In Figure 9, the graphs of nanofluid velocity for different
values of Sc are displayed, with various values of fractional
parameter «. It is observed that the velocity profile is de-
creased corresponding to increasing values of Sc. In Figure 10,
it is analyzed that velocity is elevated for different values of K
using various values of fractional parameter a. So, Figure 10
shows the relationship between dimensionless velocity and
permeability parameter K which highlights the fact that
nanofluid velocity is accelerated correspondingly to increase
the values of K for CF fractional operator varying fractional
parameter «.

In Figure 11, it is analyzed that four different graphs are
traced for fixed time, but different values of M and various
values of fractional parameter a via CF the velocity is
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decreased. In Figure 12, the impact of fractional parameter is
investigated on nanofluid velocity at two different levels of
time. For small and large values of time ¢ and using different
values of fractional parameter «, it is observed that the
behavior of velocity is decreasing for a small time and in-
creasing for greater values of the time. This rapid decay in
velocity is due to an increase in momentum boundary layer
for increasing a. It is inspected that temperature and velocity

profile is controlled by a time-fractional parameter. It is
observed that the variation of fractional parameter « on the
nanofluids velocity profile and comparison between the CF
factional model with an ordinary model is discussed in
Figure 13. The velocity profile is reduced by increasing the
value of the fractional parameter a. In Figure 14, it is noticed
that when « — 1, the CF fractional model becomes an
ordinary model.
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5. Conclusion

The comprehensive analysis of the time fractional derivative
with heat and mass transfer to evaluate the physical effects of
application of simultaneous ramped wall velocity and
ramped wall temperature condition on unsteady, MHD
convection flow of some nanofluids. In addition, heat in-
jection/consumption and heat radiative flux are also in-
culcated in the model. However, in this work, exact and
closed-form solutions are derived by employing the Laplace
transformation. For physical significance, the graphs of
various system parameters are demonstrated. The following
major findings of this study are given as follows:

(i) The temperature profile increases due to enlarge-
ment in volume fraction ¢ and by increasing the
value of N, also noted that decay in concentration
profile by enhancing the values of S,.

(if) Nanofluid velocity is a decreasing function of
magnetic parameter M.

(iii) It is observed that the effect of « for small and large
time on temperature, concentration, and velocity
profile is quite opposite.

(iv) For the greater value of K, velocity profile is ele-
vated for varying fractional parameter « for frac-
tional operator applied on nanofluid velocity also
noted that decay in velocity for growing values of
the S,.

(v) Velocity profile enhances by increasing the values
of Gr and Gm for a fixed time and different values
of a.

(vi) CF time-fractional operator converges to ordinary
model when o« — 1.
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(vii) In the future, we solved this fractionalized problem
through a numerical approach with different
techniques. Also, we solved this viscous model via
other conditions.

Nomenclature

Vi Fluid velocity vector

J: Current density

B: Total magnetic field

r: Darcy resistant vector

p: Fluid density

t: Time

g Force of gravity

B: Thermal expansion coefficient
Kz Thermal conductivity of fluid

y,:  Viscous dissipation term
Gr:  Grashot number

M:  Magnetic parameter

Nr:  Radiation parameter

Pr:  Prandtl number

K:  Permeability parameter
C,:  Specific heat capacitance
Q,:  Thermal radiation flux
Q: Heat injection/consumption constant
k*:  Porosity term

E: Electric field

By: Imposed magnetic field

to: Characteristic time

¢: Nanoparticle volume fraction

k.:  Coefficient of rosseland adsorption
u: Dimensionless velocity

Qp:  Heat injection/consumption parameter
&:  Laplace transform operator
Z~': Laplace transform operator.
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