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+e present article discovers the new soliton wave solutions and their propagation in nonlinear low-pass electrical transmission
lines (NLETLs). Based on an innovative Exp-function method, multitype soliton solutions of nonlinear fractional evolution
equations of NLETLs are established. +e equation is reformulated to a fractional-order derivative by using the Jumarie operator.
Some new results are also presented graphically to understand the real physical importance of the studied model equation. +e
physical interpretation of waves is represented in the form of three-dimensional and contour graphs to visualize the underlying
dynamic behavior of these solutions for particular values of the parameters. Moreover, the attained outcomes are generally new for
the considered model equation, and the results show that the used method is efficient, direct, and concise which can be used in
more complex phenomena.

1. Introduction

Considerable attention from scientists and researchers
during the last two decades has highlighted that fractional
differential simulations provide a better understanding than
classical simulations to describe the complexities of physical
scenarios in this real world. Various real life phenomena
have been defined via the idea of fractional derivative such as
porous medium, viscoelastic materials, optical fiber com-
munication, fluid dynamics, signal processing, plasma
physics, propagation of waves, ocean wave, photonic,
electromagnetism, materials, chaotic systems, nanofiber
technology, nuclear physics, and many others.

Currently, the most essential directions in the field of
fractional calculus are to find the appropriate applications
for describing the fractional operators. For this purpose,
analytical and numerical techniques are used to produce the
highly precise exact and approximate results. Recently, many
authors have worked in this direction such as the efficient
nonstandard finite difference scheme for a class of fractional
chaotic systems [1]. A numerical technique has been used for
resolving the fractional Hamilton equation with the help of

Caputo fractional operator [2], mathematical modelling of
human liver with Caputo–Fabrizio fractional derivative [3],
and mathematical model for Zika virus transmission [4].
Investigation of different types of soliton solutions of
fractional differential equations (FDEs) can be identified
through different techniques and has been examined by
many authors [5–9]. Moreover, the application of fractional-
order differential equations has been clearly expressed by
studying the hyperchaotic behaviors of a nonautonomous
cardiac conduction system in both frames of integer and
fractional-order differential equations [10].

Consequently, several techniques and methods, for ex-
ample, the method of Painleve analysis [11], the method of
Riemann–Hilbert [12], the technique of exp
(-Φ(ξ))-expansion [13], the technique of generalized
Kudryashov [14], the technique of (G′/G, 1/G)-expansion
[15], the trial solution approach [16], the Exp-function
method [17], the modified simple equation method [18], and
the technique of sine-Gordon expansion [19] are developed.
He and Wu were the inventors of the Exp-function method
[20] that was effectively extended to FDEs [21]. +e Exp-
function method has been applied to several nonlinear FDEs
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[22–34]. Recently, many authors worked on the new results
of the fractional calculus [35]. Many well-known problems
have been resolved by using the fractional derivatives such as
p-Laplacian nonperiodic boundary value problem [36] and
conformable Laplace’s equation [37].

Transmission lines are utilized for the reason, such as
high speed computer information buses, computer, arrange
associations, trunk lines, steering calls between phone ex-
changing centers, dispersing cable tv signals, and interfacing
radio transmitters and recipients with their receiving wires.
+e analytical solutions help in understanding the quali-
tative and quantity of many nonlinear phenomena and
permit us to visualize the change mechanisms of various
advanced nonlinear phenomena such as multiplicity or the
absence of steady states below varied conditions, spatial
localization of transfer processes, existence of peaking re-
gimes, and lots of others.+e examination of NLETLs and its
soliton solution have spectacular applications in electronic
engineering, fluid dynamics, geophysics, optical fiber, laser
optics, and communication systems such as the television
cable lines that allocate signals and many others. Further-
more, for the transmission of the alternate current of radio
frequency signal, NLETLs are used as a special medium.+e
NLETLs are used to distribute the higher manner to specific

the nonlinear excitation under nonlinear media and adjust
the systems of recent structures. +e NLETLs play crucial
role in the investigation of propagation phenomena of
electrical solitons where they are traveling in nonlinear
media of dispersion within the form of voltage waves.

+e NLETLs are derived with the help of Kirchoff’s laws
that have been seen in the study by Abdoulkary [38]. In
preceding years, enormous research works have been done
on NLETLs. Many researchers have been obtaining nu-
merous kind of analytic solution with the help of different
methods like Jacobi elliptic method, auxiliary equation
method, tanh function method, Ricatti equation technique,
Kudryashov technique and modified version of Kudryashov
technique, the sine-Gorden method, and the extended form
of sine-Gorden equation [39–42].

In this paper, our main purpose is to establish, in the
fractional context, important results for NLETLs. For this
purpose, the Exp-function method is used to resolve the
nonlinear fractional evolution equation of NLETLs by using
the modified Riemann–Liouville (RL) derivative that was
proposed by Jumarie [43] for nonlinear fractional evolution
equation of NLETLs. +e modified RL derivative of order α
is defined as follows:

D
α
t f(t) �

1
Γ(1 − β)

d
dt

􏽚
t

0
(t − ξ)

− α
(f(ξ) − f(0))dξ, 0< α< 1,

f
n
(t)( 􏼁

(α− n)
, n≤ α< n + 1, n≥ 1.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1)

+e dynamical behavior for the presented model is
studied in the form of graphs. To the best of our knowledge,
the obtained results by using mathematical modelling and
analytical technique presented in this paper for nonlinear
fractional evolution equation of NLETLs are new, more
general, and comprise some valuable information.

+is paper is organized as follows. Section 2 contains the
methodology and general analysis of the Exp-function
method. Section 3 includes the numerical implementation of
the methods for solving the NLETLs. In Section 4, results
and discussion are given. Finally, conclusion is given in
Section 5.

2. Analysis of Method

Consider the general nonlinear FDEs as follows:

Q u, ux, ut, D
α
t , . . .( 􏼁 � 0,

0< α≤ 1.
(2)

In equation (2), u is an unknown function, Q represents
the polynomial, Dα

t represents the fractional derivative, and
several linear and nonlinear terms with higher-order de-
rivative are also included. +e fractional traveling wave
transformation is implemented for transforming equation
(2) into ODEs as represented in the following equation:

u(x, t) � u(η),

η � k
x
α

α
+ ω

t
α

α
,

(3)

where k is the width of soliton and ω represents the velocity.
Applying the transformation equation (2) reduces to the
following ODE:

R u, u′, u″, u
‴

. . .􏼒 􏼓 � 0, (4)

where the prime denotes the derivation with respect to η. If
possible, we can integrate (4) one or more times. Suppose the
soliton wave solution is

u(η) �
􏽐

s
m�−r am exp[mη]

􏽐
h
n�−g bn exp[nη]

, (5)

where r, s, g, and h are positive integers which are unknown
to be further determined and am and bn are unknown
constants. In equation (5), with the homogeneous balancing
principle, the values of r, s, g, and h will be determined.

3. Numerical Application

+e nonlinear fractional evolution equation that describes
the wave propagation in NLETLs is defined as follows [44]:
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D
2α
t u + βD

2α
t u

2
− dD

2α
t u

3
+ c

2βD
2α
x u

2
+

c
4

12
D

4α
x u

2
� 0. (6)

In equation (6), β, d, and c are the real constants and
u(x, t) characterizes to transmission line voltage. X signifies
the distance, and t symbolizes the slow time. For acquiring
the soliton solutions for NLETLs, the Exp-function method
will be applied to equation (6). For the conversion of
equation (6) into an ordinary differential equation (ODE),
we considered the fractional wave transformation as

u(x, t) � u(η)η � kx
α/α + ωt

α/α (7)

Substituting equation (3) in (6), we get

12 k
2
c
2

+ ω2
􏼐 􏼑u + 12βω2

u
2

− 12 dω2
u
3

+ c
4
k
4
u″ � 0. (8)

For simplicity, we set r � s � g � h � 1, and then
equation (5) is reduced to

u(η) �
a−1 exp[−η] + a0 + a1 exp[η]

b−1 exp[−η] + b0 + b1 exp[η]
. (9)

By substituting equation (9) in (8) and equating the
coefficients of exp(nη) to zero, we find

A1 � 12b
2
−1a0 + 24a−1 βa0 + b0( 􏼁b−1 + 12a

2
−1 βb0 − 3a0( 􏼁􏼐 􏼑ω2

+ c
2
b−1k

2
a0 k

2
c
2

+ 12􏼐 􏼑b−1 − b0a−1 k
2
c
2

− 24􏼐 􏼑􏼐 􏼑 � 0,

A2 �

12b
2
−1a1 + 24b1a−1 + 24a0b0 + 12β 2a−1a1 + a

2
0􏼐 􏼑􏼐 􏼑b−1

+12a−1 βa−1b1 + 2βa0b0 − 3a−1a1 − 3a
2
0 + b

2
0􏼐 􏼑

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠ω2

+ 4c
2
k
2

a1 k
2
c
2

+ 3􏼐 􏼑b
2
−1 +

−k
2
c
2
a−1 + 6a−1􏼐 􏼑b1−

a0b0 k
2
c
2

− 24􏼐 􏼑

4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
b−1 +

a−1b
2
0 k

2
c
2

+ 12􏼐 􏼑

4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
� 0,

A3 �

12βa
2
1 + 24b1a1􏼐 􏼑b−1 + 12b

2
1a−1 + 24a0b0 + 12β 2a−1a1 + a

2
0􏼐 􏼑􏼐 􏼑b1+

24a1 βa0b0 −
3
2
a−1a1 −

3
2
a
2
0 +

1
2
b
2
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⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
ω2

− 4c
2
k
2

a1b1 k
2
c
2

− 6􏼐 􏼑b−1 + −k
2
c
2
a−1 − 3a−1􏼐 􏼑b

2
1 −

a0b0 k
2
c
2

− 24􏼐 􏼑b1

4

−
a1b

2
0 k

2
c
2
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4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� 0,

A4 �

24b1a0 + 24a1 βa0 + b0( 􏼁( 􏼁b−1 + 24a−1 βa0 + b0( 􏼁b1 + 12a0b
2
0

+12β 2a−1a1 + a
2
0􏼐 􏼑b0 − 12a

3
0 − 72a0a−1a1

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠ω2

− 6c
2
k
2

k
2
c
2
a0 − 4a0􏼐 􏼑b1 −

a1b0 k
2
c
2

+ 8􏼐 􏼑

2
⎛⎝ ⎞⎠b−1 −

b0 a−1 k
2
c
2

+ 8􏼐 􏼑b1 + 4a0b0􏼐 􏼑

2
⎛⎝ ⎞⎠ � 0,

A5 � 12b
2
1a0 + 24a1 βa0 + b0( 􏼁b−1 + 12a

2
1 βb0 − 3a0( 􏼁􏼐 􏼑ω2

+ c
2
b1k

2
a0 k

2
c
2

+ 12􏼐 􏼑b−1 − b0a1 k
2
c
2

− 24􏼐 􏼑􏼐 􏼑 � 0,

A6 � 12a1 βa1b1 − a
2
1 + b

2
1􏼐 􏼑ω2

+ k
2
b
2
1c

2
􏼐 􏼑 � 0,

A7 � 12a−1 βa−1b−1 − a
2
−1 + b

2
−1􏼐 􏼑ω2

+ k
2
b
2
−1c

2
􏼐 􏼑 � 0.

(10)
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By resolving the system of equations, we attain these
results.

Case1

ω �
cb1k��������������

−βa1b1 + a
2
1 − b

2
1

􏽱 ,

a−1 � a−1,

a0 � 0,

a1 � a1,

b−1 �
b1a−1

a1
,

b0 � 0,

b1 � b1,

(11)

where a−1, a1, and b1 are free parameters.

u1(x, t) �
a−1 exp −Kx

α/α − cb1kt
α/α

��������������

−βa1b1 + a
2
1 − b

2
1

􏽱

􏼔 􏼕 + a1 exp Kx
α/α + cb1kt

α/α
��������������

−βa1b1 + a
2
1 − b

2
1

􏽱

􏼔 􏼕

b1a−1/a1 exp −Kx
α/α − cb1kt

α/α
��������������

−βa1b1 + a
2
1 − b

2
1

􏽱

􏼔 􏼕 + b1 exp Kx
α/α + cb1kt

α/α
��������������

−βa1b1 + a
2
1 − b

2
1

􏽱

􏼔 􏼕

. (12)

Case 2

ω �
cb0k��������������

−βa0b0 + a
2
0 − b

2
0

􏽱 ,

a−1 � a−1,

a0 � a0,

a1 � 0,

b−1 �
b0a−1

a0
,

b0 � b0,

b1 � 0,

(13)

where a−1, a0, and b0 are free parameters.

u2(x, t) �
a−1 exp −Kx

α/α − cb0kt
α/α

��������������

−βa0b0 + a
2
0 − b

2
0

􏽱

􏼔 􏼕 + a0

b0a−1/a0 exp −Kx
α/αcb0kt

α/α
��������������

−βa0b0 + a
2
0 − b

2
0

􏽱

􏼔 􏼕 + b0

. (14)
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Case 3

ω �
cb1k��������������

−βa1b1 + a
2
1 − b

2
1

􏽱 ,

a−1 �
a1b−1

b1
,

a0 � a0,

a1 � a1,

b−1 � b−1,

b0 �
b1a0

a1
,

b1 � b1,

(15)

where a1, a0, b−1, and b1 are free parameters.

u1(x, t) �
a1b−1/b1 exp −Kx

α/α − cb1kt
α/α

��������������

−βa1b1 + a
2
1 − b

2
1

􏽱

􏼔 􏼕 + a0 + a1 exp Kx
α/α + cb1kt

α/α
��������������

−βa1b1 + a
2
1 − b

2
1

􏽱

􏼔 􏼕

b−1 exp −Kx
α/α − cb1kt

α/α
��������������

−βa1b1 + a
2
1 − b

2
1

􏽱

􏼔 􏼕 + b1a0/a1 + b1 exp Kx
α/α + cb1kt

α/α
��������������

−βa1b1 + a
2
1 − b

2
1

􏽱

􏼔 􏼕

. (16)

Case 4

ω � −
cb1k��������������

−βa1b1 + a
2
1 − b

2
1

􏽱 ,

a−1 �
a1b−1

b1
,

a0 � a0,

a1 � a1,

b−1 � b−1,

b0 �
b1a0

a1
,

b1 � b1,

(17)

where a1, a0, and b1 are free parameters.

u4(x, t) �
a1b−1/b1 exp −Kx

α/α + cb1kt
α/α

��������������

−βa1b1 + a
2
1 − b

2
1

􏽱

􏼔 􏼕 + a0 + a1 exp Kx
α/α − cb1kt

α/α
��������������

−βa1b1 + a
2
1 − b

2
1

􏽱

􏼔 􏼕

b−1 exp −Kx
α/α + cb1kt

α/α
��������������

−βa1b1 + a
2
1 − b

2
1

􏽱

􏼔 􏼕 + b1a0/a1 + b1 exp Kx
α/α − cb1kt

α/α
��������������

−βa1b1 + a
2
1 − b

2
1

􏽱

􏼔 􏼕

. (18)
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Case 5

ω � −
cb1k��������������

−βa1b1 + a
2
1 − b

2
1

􏽱 ,

a−1 � a−1,

a0 � 0,

a1 � a1,

b−1 �
b1a−1

a1
,

b0 � 0,

b1 � b1,

(19)

where a−1, a1, and b1 are free parameters.

u5(x, t) �
a−1 exp −Kx

α/α + cb1kt
α/α

��������������

−βa1b1 + a
2
1 − b

2
1

􏽱

􏼔 􏼕 + a1 exp Kx
α/α − cb1kt

α/α
��������������

−βa1b1 + a
2
1 − b

2
1

􏽱

􏼔 􏼕

b1a−1/a1 exp −Kx
α/α + cb1kt

α/α
��������������

−βa1b1 + a
2
1 − b

2
1

􏽱

􏼔 􏼕 + b1 exp Kx
α/α − cb1kt

α/α
��������������

−βa1b1 + a
2
1 − b

2
1

􏽱

􏼔 􏼕

. (20)

Case 6

ω � −
cb0k��������������

−βa0b0 + a
2
0 − b

2
0

􏽱 ,

a−1 � a−1,

a0 � a0,

a1 � 0,

b−1 �
b0a−1

a0
,

b0 � b0,

b1 � 0,

(21)

where a−1, a0, and b0 are free parameters.

u6(x, t) �
a−1 exp −Kx

α/α + cb0kt
α/α

��������������

−βa0b0 + a
2
0 − b

2
0

􏽱

􏼔 􏼕 + a0

b0a−1/a0 exp −Kx
α/α + cb0kt

α/α
��������������

−βa0b0 + a
2
0 − b

2
0

􏽱

􏼔 􏼕 + b0

. (22)
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Figure 1: For u1(x, t), (a)–(c) with −0.5≤ x≤ 1, 0≤ t≤ 2 signifying the 3D plots (d),(e), and (f) with 0≤x≤ 1, 0≤ t≤ 0.5; 0≤x≤ 1, 0≤ t≤ 1;
and 0≤x≤ 1, −0.5≤ t≤ 0.5, respectively, show the contour graph for different values of α: (a) α� 0.5; (b) α� 0.7; (c) α� 1; (d) α� 0.5;
(e) α� 0.7; (f ) α� 1.
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Figure 2: For u2(x, t), (a)–(c) with −1≤x≤ 1, −5≤ t≤ 5 signifying the 3D plots (d), (e), and (f) with −0.1≤x≤ 0.1, −0.1≤ t≤ 0.5;
−0.1≤x≤ 0.1, −0.1≤ t≤ 0.5; and −1≤x≤ 1, −1≤ t≤ 1, respectively, show the contour graph for different values of α: (a) α� 0.5; (b) α� 0.7;
(c) α� 1; (d) α� 0.5; (e) α� 0.7; (f ) α� 1.
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Figure 3: For u3(x, t), (a)–(c) with −1≤x≤ 5, 0≤ t≤ 5 signifying the 3D plots (d), (e), and (f) with −2≤x≤ 2, −4≤ t≤ 4;
−4≤ x≤ 4, −4≤ t≤ 4; and −4≤x≤ 4, −4≤ t≤ 4, respectively, characterize the contour graph for different values of α: (a) α� 0.5; (b) α� 0.7;
(c) α� 1; (d) α� 0.5; (e) α� 0.7; (f ) α� 1.
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Figure 4: For u4(x, t), (a)–(c) with −1≤x≤ 5, 0≤ t≤ 5 characterizing the 3D plots, (d), (e), and (f ) with −2≤x≤ 2, −4≤ t≤ 4;
−3≤ x≤ 3, −2≤ t≤ 2; and −4≤x≤ 4, −4≤ t≤ 4, respectively, signify the contour graph for different values of α: (a) α� 0.5; (b) α� 0.7;
(c) α� 1; (d) α� 0.5; (e) α� 0.7; (f ) α� 1.
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Figure 5: For u5(x, t), (a)–(c) with −1≤x≤ 1, −5≤ t≤ 5 signifying the 3D plots (d), (e), and (f) with −0.1≤x≤ 0.2, −0.1≤ t≤ 3;
−0.1≤x≤ 0.2, −0.1≤ t≤ 3; and −0.1≤x≤ 2, −1≤ t≤ 3, respectively, indicate the contour graph for different values of α: (a) α� 0.5;
(b) α� 0.7; (c) α� 1; (d) α� 0.5; (e) α� 0.7; (f ) α� 1.
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Figure 6: For u6(x, t), (a)–(c) with −1≤x≤ 1, −5≤ t≤ 5 signifying the 3D plots (d), (e), and (f) with −0.1≤x≤ 2, −0.1≤ t≤ 5;
−0.1≤x≤ 2, 0.10≤ t≤ 5; and −0.1≤x≤ 2, −2≤ t≤ 5, respectively, show the contour graph for different values of α: (a) α� 0.5; (b) α� 0.7;
(c) α� 1; (d) α� 0.5; (e) α� 0.7; (f ) α� 1.
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Figure 7: For u7(x, t), (a)–(c) with −1≤x≤ 2, 0≤ t≤ 5 signifying the 3D plots (d), (e), and (f) indicate the contour graph for
10≤x≤ 15, −15≤ t≤ 15; 4≤x≤ 5, −10≤ t≤ 10; and 4≤ x≤ 6, −15≤ t≤ 15, respectively, for different values of α: (a) α� 0.5; (b) α� 0.7;
(c) α� 1; (d) α� 0.5; (e) α� 0.7; (f ) α� 1.
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Case 7.

ω � −

������������
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+ 12􏼐 􏼑
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72b−1k
4
c
4 ,

(23)

where a0 and b−1 are free parameters.

u7(x, t) �
a0

b−1 exp −Kx
α/α +

�������������
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2
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− 36ckt
α

􏽱
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4 exp Kx

α/α −

�������������

−3c
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􏽱

/6α􏼢 􏼣

.

(24)

4. Results and Discussion

+e erection of the soliton wave by determining nonlinear
fractional evolution equation has been studied using the
competent Exp-function method. We compare our acquired
results with the previously existing solutions in the literature
obtained by using different techniques. +e main concen-
tration of this work is to obtain new and more general
solutions of fractional order at different values of parame-
ters. In the literature, many different kinds of solutions have
been obtained by using different techniques like dark, bright,
trigonometric, hyperbolic, and rational type of solitary wave
solutions as given in [38, 42, 44].

Graphical data illustrate the physical behavior of solitons
at different values of parameters. Figures 1–7 show the
soliton solutions of NLETL equation of fractional order in
the form of 3D and contour plots at α � 0.4, α � 0.7, and
α � 1. Figure 1 signifies the physical behavior of u1(x, t) for
a−1 � 0.1, a1 � −0.01, b1 � −0.001, c � 1,β� 0.1, and k � 2.
Figure 2 signifies the plot of u2(x,t) at
a−1 � 0.1, a0 � −0.1, b0 � −0.001, c � 1,β� 0.1, andk � 2. Fig-
ure 3 demonstrates the plot for u3(x,t) for a−1 � 0.1, a0 �

0.1,a1 � 0.01,b−1 � 1.5, b1 � −0.001, c � 1, β� 0.1, andk � 2.
Figure 4 characterizes the physical behavior of u4(x,t) for
a−1 � 0.1, a0 � 0.1,a1 � 0.01, b−1 � 1.5, b1 � −0.001, c � 1,

β� 0.1, andk � 2. Figure 5 denotes the plot of u5(x,t) with
the parameter a−1 � 0.1, a1 � −0.01, b1 � −0.001, c � 1,β� 0.1,

and k � 2. Figure 6 signifies the plot of u6(x,t) for

a−1 � 0.1, a0 � −0.01, b0 � 0.001, c � 1,β� 0.1, andk � 2. Fig-
ure 7 indicates the plot of u7(x,t) at
a0 � 1×10−12, b0 � −0.00001, c � 1,β� 0.1, andk � 3.

We represented seven cases for different values of pa-
rameter using fractional derivative in this research work. It is
clear from this work that fractional derivative has very
important role in understanding the structure of the pre-
sented nonlinear evolution equation and also describes the
continuous behavior of the solution wave through out the
process. By comparing our results with the existing results,
we conclude that our obtained results using the Exp-func-
tion method are generally new which have not been pre-
sented in the previous existing work. +e complete
examination proves that the presented technique is more
consistent, competent, and dominant to examine different
kinds of nonlinear fractional evolution equations.

5. Conclusion

In conclusion, the main attempt is to find and analyse the
new soliton solutions of the fractional nonlinear fractional
evolution equation that explains the wave propagation in
nonlinear low-pass electrical transmission lines. +e inno-
vative Exp-function method with fractional traveling wave
transform was utilized to obtain the well-known soliton
solutions. Furthermore, from the graphical depiction, we
have observed that different values of the parameters provide
the different types of solutions for the low-pass electrical
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transmission lines. +e solutions obtained from this model
equation are applicable to various fields of science and
engineering. Accordingly, we come to the conclusion that
the presented model in this paper using the properties of
fractional calculus is more flexible and genuinely analyzes
real-world dynamical systems via the fractional-order dif-
ferential operators from which the associated complicated
dynamical behaviors of the problem can be revealed more
precisely than the integer-order ones. +us, it is well known
that solitons have a great importance in the telecommuni-
cation system where the results obtained will probably help
to carry information and increase the bit-rate of data. Also,
we can extend our work for resolving the more complex
biological and engineering problems using the properties
and suitable operator of fractional calculus.
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