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Direct position determination (DPD) of noncircular (NC) sources for multiple nested arrays (NA) is researched in this study. For
noncircular sources, the dimension reduction method is used to decrease the computing complexity and remove the noncircular
phase. Furthermore, nested array and noncircular sources extend spatial degree of freedom. Due to inferior stability and noise
susceptibility of original algorithm, we propose SNR weighted subspace data fusion (W-SDF) algorithm. Each observation station
places a nested array, spatial smoothing technology, and sum and di�erence co-array are used to deal with the nested array.
Simulation results show that under nested array and noncircular sources, the proposed W-SDF algorithm has decreased the
complexity of the algorithm and improved the location accuracy, degree of freedom, and resolution.

1. Introduction

In modern wireless location system, the focus of research is
fast and accurate signal location [1]. �e traditional posi-
tioning technology system is mostly a two-step estimation
mode such as the correlation measurement, time di�erence
of arrival (TDOA), frequency di�erence of arrival (FDOA),
and energy gain.�erefore, location information is extracted
from the signal data radiated by the target [2]. �en, the
position parameters of the target are obtained from the
above observations. �e two-step positioning method has
the characteristics of decentralization and does not need to
transmit all signal data to the same central station for
processing [3]. �erefore, it has low requirements for
communication transmission bandwidth and calculation,
which is convenient for engineering implementation [4].
From the positioning principle, the two-step positioning
method is di�cult to obtain the asymptotically optimal
estimation accuracy, because it has experienced many
processing links [5]. In addition, the two-step positioning is
easy to lose the correlation of multiple stations, and the lost

information is di�cult to make up in the second-step po-
sitioning link [6]. In order to avoid the above problems, the
direct position determination method is proposed. �e core
idea is to directly obtain the position information of the
target from the original sampling signal without estimating
the intermediate observation value. �is principle avoids the
problem of data association [7–10]. �erefore, direct posi-
tioning method has higher estimation accuracy and reso-
lution [11–14].

Nowadays, there have been few reports about sparse
array for direct determination position. In 2010, professor
P. Pal proposed the nested array structure [15]. �e nested
array can greatly increase the degree of freedom of the array
than the uniform linear array (ULA) [16–21]. In 2011,
professor P. Pal proposed the coprime array structure, which
is basically the same as the nested array structure. �e
obtained array degree of freedom is less than the nested
array, but more sparse than the nested array [22]. J. Galy
used the noncircular features of sources to increase the
performance of DOA estimation. J. Galy proposed the
MUSIC algorithm for noncircular sources, which pioneered
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the application of noncircular sources in spatial spectrum
estimation [23]. Yin applied the noncircular features of
sources to direct positioning field with a moving array. 'e
noncircular signal improves spatial degree of freedom and
increases the positioning accuracy [24]. Zhang et al. applied
the noncircular characteristics of sources to direct posi-
tioning with a moving coprime array [25]. At present,
noncircular signal is rarely applied in direct positioning with
multiple nested arrays [26–29]. 'erefore, it is very im-
portant to study the noncircular sources for direct posi-
tioning with multiple nested arrays.

In this study, we use the noncircular sources charac-
teristic to expand the spatial degree of freedom. 'e di-
mension method is used to decrease the computing
complexity. In this study, the nested array is introduced into
direct positioning. 'erefore, array aperture is extended and
the spatial smoothing method is adopted. Because the tra-
ditional SDF method is easily affected by noise and has
inferior stability, the weighted SDF method is proposed [8].
'erefore, we can obtain high positioning accuracy.

'e main contributions are as follows:

(1) We apply noncircular sources and the dimensionality
reduction method to the direct location with non-
circular sources to reduce the computational com-
plexity and remove the phase of noncircular sources.

(2) We place a nested array on each observation station
and use spatial smoothing technology and sum and
difference co-array to deal with the nested array to
expand the array aperture.

(3) We assign a weight to each station to improve the
positioning accuracy because the SDF algorithm is
vulnerable to noise and poor stability. 'erefore,
SNR weighted SDF loss function is set up.

'e composition is as below. In Section 2, we expound
on a direct position determination model, a common two-
level nested array, and some notions about noncircular
sources. In the next section, we depict spatial smoothing
technology and SNR weighted SDF algorithm. In Section 4,
we analyze the performance about theW-SDF algorithm and
expound on its advantages from degree of freedom, com-
puting complexity, and positioning accuracy. In Section 5,
we emulate the weighted SDF algorithm and compare the
performance of proposed algorithm with that of other al-
gorithms. 'e last section summarizes this study.

Notations. (•)H, (•)T, and (•)∗ mean conjugate transpose,
transpose, and conjugate. 'e symbol ⊗ and vec(•) mean
the Kronecker product and matrix vectorization. In means
an n × n unit matrix and E(•) means the mathematical
expectation.

2. Preliminaries

In this section, we expound on a common two-level nested
array and some notions about noncircular sources. 'en, we
describe multiple nested arrays combination direct posi-
tioning model.

2.1. Two-Level NestedArrayModel. In Figure 1, the ordinary
two-level nested array has H � 6 array elements, the dense
uniform linear array (ULA) has M � 3 array elements, and
the sparse array has N � 3 array elements. Uniform linear
array element interval is d1 � d, and sparse linear array
element interval is d2 � 4d, where d � λ/2, and λ expresses
as signal wavelength. Figure 2 shows the positive sum co-
array (a), the negative sum co-array (b), and difference co-
array (c). Successive fictitious elements are placing from
− 11d to 11d.

2.2. Direct Position Determination Model. Direct position
determination scenario is shown in Figure 3. Q independent
narrow-band noncircular sources are in far-field X-Y plane.
Multiple sources are pq � [xq, yq]T(q � 1, 2, . . . Q). L nested
arrays with H � M + N array elements are placing at L

stations ul � [xul, yul]
T(l � 1, 2, . . . , L).

'e output signal of the lth(l � 1, 2, . . . , L) array at the
kth(k � 1, 2, 3 . . . K) sampling snapshot time can be indi-
cated as follows [9]:

rl(k) � 

Q

q�1
al pq fl,q(k) + nl(k), (1)

where fl,q(k) means the source waveform, nl(k) means the
noise vector for the lth station, and al(pq) means the ori-
entation vector. 'is is all depending on the arrival direction
orientation of the signal θl(pq) [9]:

θl pq  � arctan
xul(1) − pq(1)

yul(2) − pq(2)
,

al pq  � 1, e
− j2πdsinθl pq( 

, . . . , e
− j2π(H− 1)dsinθl pq( 

 
T

.

(2)

Equation (1) can be indicated as follows [9]:

rl(k) � Al(p)f l(k) + nl(k), (3)

where

Al(p) � al p1( , al p2( , . . . , al pQ  ,

f l(k) � fl,1(k), fl,2(k), . . . , fl,Q(k) 
T
,

p � pT1 , pT2 , . . . , pTQ 
T
,

nl(k) � nl,1(k),nl,2(k), . . . ,nl,H(k) 
T
.

(4)

2.3. Noncircular Sources Model. 'e sources studied in this
study are noncircular sources. Reference [29] shows that any
digital modulated signal f(t) in the complex plane ex-
pression is obtained as follows:

f(t) � σe
− jφ

�����
1 + k

2



f1(t) + j

�����
1 − k

2



fQ(t) , (5)

where φ is rotation phase, k(0≤ k≤ 1) controls signal am-
plitude, signal power E |f(t)2|  � σ2, f1(t) and fQ(t) are
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unit codirectional component and unit orthogonal com-
ponent, satisfying E |f1(t)|2  � 1, E |fQ(t)|2  � 1, and
E f1(t)fQ(t)  � 0. When k � 0, the sources are called
circular sources; when k≠ 0, the sources are called non-
circular sources.

In order to measure the degree of noncircular for
sources, literature [26–28] give the definition of noncircular
sources:

E f l(k)fHl (k)  � ρe
jφ

E f l(k)fT
l (k) , (6)

where φ denotes the noncircular phase, and ρ denotes the
noncircular rate of the value in 0–1. In particular, when
ρ � 1, the signal was called strictly noncircular sources.

According to reference [27], noncircular sources can be
indicated as follows:

f(t) � Φf0(t), (7)

where

Φ �

e
− jφ1 0 . . . 0

0 e
− jφ2 . . . .

. . . .

0 . 0 e
− jφQ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (8)

where f0(t) means the real part of the signal.
According to equation (7), equation (4) can be indicated

as follows:

rl(k) � Al(p)Φf0l (k) + nl(k), (9)

where

f0l (k) � f
(0)
l,1 (k), f

(0)
l,2 (k), . . . , f

(0)
l,Q (k) 

T
. (10)

3. The Proposed W-SDF Algorithm

In this section, we elaborate steps of weighted SDF algo-
rithm, the process of spatial smoothing technology, and SNR
weighting process.

3.1. Covariance Vectorization Signal. On the basis of the
features of noncircular sources, we make use of dimension
reduction method to decrease computational complexity
and remove noncircular phase. We combine the SDF al-
gorithm for direct position determination to obtain spectral
peak search function.

We use features of noncircular sources to expand the
received signal vector as follows [9]:

zl(k) �
r1(k)

r∗1(k)
  �

Al(p)f l(k)

A∗l (p)f∗l (k)
  +

nl(k)

n∗l (k)
 . (11)

It can be obtained from equation (7):

f∗l (k) � Φ∗f(0)
l (k) � Φ∗Φ− 1f l(k) � Φ∗( 

2f l(k). (12)

'en, equation (11) can be indicated as follows:

inner ULA outer ULA

0 d 2d 3d 7d 11d

Figure 1: Two-level nested array.
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Figure 2: Difference co-array and sum co-array.
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zl(k) �
Al(p)

A∗l (p)Φ∗Φ∗
 f l(k) +

nl(k)

n∗l (k)
 

� Cl(p)f l(k) +
nl(k)

n∗l (k)
 ,

(13)

where

% Cl(p) �
Al(p)

Al(p)Φ∗Φ∗
  � cl p1( , cl p2( , . . . cl pQ  ,

(14)

where

cl pq  �
al(p)

al(p)e
j2φq

 . (15)

'e covariance matrix is as follows:

Rl �
1
K



K

k�1
Zl(k)ZH

l (k)

� 

q

i�1
σ2l,qcl pq cH

l pq  + σ2nI,

(16)

where σ2l,q means the power of the qth radiate source and σ2n
means noise power. For making use of features of nested
array, we make the covariance matrix vector as follows [28]:

zl � vec Rl( 

� vec 
D

i

σ2l,qcl pq cH
l pq  + σ2nI

� Hl(p)μ + σ2nI,

(17)

where μ is the signal power vector and

Hl(p) � c∗l p1( ⊗ cl p1( , c
∗
l p2( ⊗ cl p2( , . . . , c∗l pQ 

⊗ cl pQ ,

I � vec IH( ,

(18)

where

c∗l pq ⊗ cl pq   �
al pq 

a∗l pq ej2φq

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦

∗

⊗
al pq 

a∗l pq e
j2φq

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦

�

a∗l pq ⊗ al pq 

a∗l pq ⊗ a∗l pq e
j2φq

al pq ⊗ al pq e
− j2φq

al pq ⊗ a∗l pq 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

p1

p2

p3

p4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(19)

where p1 � a∗l (pq)⊗ al(pq), p2 � a∗l (pq)⊗ a∗l (pq)ej2φq,
p3 � al(pq)⊗ al(pq)e− j2φq , and p4 � al(pq)⊗ a∗l (pq). In

Figure 4, the successive array elements of difference co-array
are in range of [− (M1 − 1)d, (M1 − 1)d], where
M1 � MN + N, M � 4, N � 4. DIFF I and DIFF II represent
difference co-array.'e successive array elements of sum co-
array are in range of [− (M2 − 1)d, 0] and [0, (M2 − 1)d],
where M2 � MN + M + N. SUM I and SUM II represent
sum co-array.

After the elements are sorted and duplicated according
to the phase, the two vectors can be regarded as a direction
vector of continuous difference co-array DCA:

cd pq  � e
− j2πUddsinθl pq( /λ

, (20)

where Ud � 〈− R1, R1〉, R1 � MN + N − 1.
'e equivalent received signal of DCA can be obtained as

follows:

bd � Hdγ + σ2nu, (21)

where Hd � cd(p1) cd(p2) . . . cd(pQ)  is direction ma-
trix of DCA. γ is equivalent incident signal vector. u is vector
with only themiddleR1 + 1 elements of 1 and other elements
of u are 0.

'e elements are sorted and removed according to
phase. After repetition, the direction vectors can be indicated
as follows, respectively:

c−
s pq  � e

− j2πU−
s dsinθl pq( /λ

e
j2φq,

c+
s pq  � e

− j2πUddsinθl pq( /λ
e

− j2φq,

(22)

where U−
s � 〈− R3, R2〉, R2 � 0, and R3 � MN + M + N − 1.

'e equivalent received sources of SCA I and the
equivalent received sources of SCA II can be obtained as
follows:

b−
s � H−

s γ,

b+
s � H+

s γ,
(23)

where H−
s � c−

s (p1) c−
s (p2) . . . c−

s (pQ)  is directional
matrix of SCA I and H+

s � c+
s (p1) c+

s (p2) . . . c+
s (pQ)  is

directional matrix of SCA II.

3.2. Spatial Smoothing Technology. Different from the tra-
ditional spatial smoothing of the full array, this section
carries out the strategy of backward spatial smoothing for
the continuous difference co-array DCA and the negative
and positive semiaxis continuous sum co-array SCA I and
SCA II respectively.

In Figure 4, for successive difference co-array DCA, we
divide DCA into R1 + 1 equivalent subarrays, which has R1 +

1 elements each. 'e corresponding received signal can be
indicated as follows [9]:

bdi � HdΨ
i− 1γ + σ2nui, (24)

where bdi means ith(i � 1, 2, . . . , R1 + 1) subarray, ui means
the vector that the ith element value is 1, and the other
element values are all 0 [9]. Hd � [cd(p1),
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cd(p2), . . . , cd(pq)] means the orientation matrix of SS-
DCA, and its qth orientation vector can be indicated as
follows [9]:

cd pq  � 1, e
− jπ sinθl pq( 

, e
− j2π sinθl pq( 

, . . . , e
− jR1π sinθl pq( 

 
T

,

(25)

Ψ � diag e
jπ sinθl p1( ), e

jπ sinθl p2( ), . . . , e
jπ sinθl pQ( ) .

(26)

'e received sources of R1 + 1 subarrays are connected
together, and equation (26) shows received sources matrix
after spatial smoothing Bd ∈ C(R1+1)×(R1+1):

Bd � bd1, bd2, . . . , bd R1+1( ) 

� Hd γ,Ψγ, . . . ,ΨR1γ  + σ2nIR1+1

� Hd
S + σ2nIR1+1,

(27)

where S � [γ,Ψγ, . . . ,ΨR1γ], and Bd means the received
sources of the first smooth subarray SS-DCA. Element lo-
cation range of SS-DCA is 〈0, R1〉.

For successive sum co-array, they are divided into R1 + 1
subarray. 'e number of elements of each subarray is
R3 − R2 − R1 + 1. After divided, the ith(i � 1, 2, . . . , R1 + 1)

received sources of the SCA I and received sources of SCA II
are as follows [9]:

b−
si � H−

s Ψ
i− 1γ,

b+
si � H+

s Ψ
i− 1γ,

(28)

where H−
s � [ c−

s (p1), c−
s (p2), . . . , c−

s (pq)], the array elements
location range of SS-SCA I is 〈− (R3 − R1), 0〉, and the
corresponding qth orientation vector can be indicated as
follows:

c−
s pq  � e

j R3− R1( )π sin θl pq( 
e

j2φq , . . . , e
jπ sin θl pq( 

e
j2φq , e

j2φq 
T

,

(29)

where H+
s � [ c+

s (p1), c+
s (p2), . . . , c+

s (pq)], the array elements
location range of SS-SCA II is 〈R1, R3〉, and the corre-
sponding qth orientation vector can be indicated as follows:

c+
s pq  � e

− jR1π sin θl pq( 
e

− j2φq , e
− j R1+1( )π sin θl pq( 

e
− j2φq , . . . , e

− jR3π sin θl pq( 
e

− j2φq 
T

. (30)

'e received sources matrix of SS-SCA I and the received
sources matrix of SS-SCA II are indicated as follows:

B−
s � b−

s1, b
−
s2, . . . , b−

s R1+1( )  � H−
s
S,

B+
s � b+

s1, b
+
s2, . . . , b+

s R1+1( )  � H+
s
S.

(31)

'e received signal consists ofB−
s ,Bd,B+

s , as shown in the
following equation:

B �

B−
s

Bd

B+
s

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

H−

s

Hd

H+

s

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
S +

O R3− R1+1( )× R1+1( )

σ2nIR1+1

O R3− R1+1( )× R1+1( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� HS + U,

(32)

where H � c(p1) c(p2) . . . c(pq)  is direction matrix of
SDCA, and SDCA denotes fictitious array after spatial
smoothing and corresponding qth orientation vector can be
indicated as follows:

c(p) �

c−
s

cd

c+
s

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (33)

As shown in Figure 5, a longer fictitious array is set up.
'ere are 28 array elements after spatial smoothing, where
M � 4, N � 4.

DIFFI

SUM I

SUMII

DIFFII

-23d

DCA 

19d-19d

-28d-33d-38d

23d 28d 33d 38d

-19d 19d

SCA I SCA II

0

0

0

0

Virtual Sensors
Holes

Figure 4: Array graph of sum and difference co-array.
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Firstly, the estimated value of the covariance matrix of
the smoothed SDCA received signal is calculated as
follows:

RY �
1

R1 + 1
YYH

. (34)

'e noise subspace En
l can be obtained by eigenvalue

decomposition RY. (En
l )Hc(pq) � 0, so cost function of

noncircular sources is as follows:

fNC− S DF(p,φ) � argmax
1


L
l�1 c(p,φ)

HEn
l En

l( 
H

c(p,φ)
.

(35)

'is study makes use of dimension reduction method to
decrease the computational complexity and eliminate the
noncircular phase. 'e qth direction is shown in the fol-
lowing equation:

c pq,φq  �

e
j R3− R1( )π sin θl pq( 

e
j2φq

.

.

e
jπ sin θl pq( 

e
j2φq

− − − − − − − − − −

1

e
− jπ sin θl pq( 

.

.

e
− jR1π sin θl pq( 

− − − − − − − − − −

e
− jR1π sin θl pq( 

e
− j2φq

.

.

.

e
− jR3π sin θl pq( 

e
− j2φq
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� Θ pq ϕ φq .
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Finally, we can obtain separation matrix
ϕ(φq) � ej2φq 1 e− j2φq 

T
. We set up e � 0 1 0 

T to
decrease searching dimension. So, it can eliminate noncir-
cular phase. Θ(pq) is another separation matrix.

'erefore, we can set up the cost function of RD-SDF
algorithm as follows:

fRD− SDF(p) � argmax
L

l�1
eH ΘH

(p)En
l En

l( 
HΘ(p) 

− 1
e. (37)

Because SDF only makes use of noise subspace, it is
sensitive to external factors, such as few snapshots or low
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Figure 5: Nested array framework graph after spatial smoothing.

6 Mathematical Problems in Engineering



signal-to-noise ratio. 'erefore, we assign a weight to each
observation station to improve positioning accuracy and set
up the following cost function:

fW− S DF(p) � argmax
L

l�1
wle

H ΘH
(p)En

l E
n
l( 

HΘ(p) 
− 1

e,

(38)

where wl means the weight of the lth station.

3.3. 8e Proposed SNRWeighted SDF. In view of the energy
allocation principle on account of the water injection theory,
the routes with good quality are distributed more power and
the routes with poor quality are distributed less power.
According to this principle, we can acquire the maximum
route capacity. Due to inferior stability and noise suscep-
tibility of ordinary algorithm, we propose SNR weighted
method. For the sake of cutting down the total error, we
devise a weight that increases as the error decreases.

Assuming that the noise is irrelevant and the sources and
noise are mutually independent. 'erefore, the covariance
matrix can be reconstructed, and covariance matrix can be
indicated as follows:

Rl �
1
K



K

k�1


Q

q�1
g2l,qWqbl(p)bH

l (p) + σ2nIV×V
⎛⎝ ⎞⎠, (39)

where IV×V is unit matrix ofV × V, whereV � MN + N.'e
power of different emitter sources in the same array or

different arrays in the same emitter source is decided by the
sources power Wq and unknown parameters gl,q.

Received sources covariance matrix are separated into
two sections [8]:

Rl � Rs + Rn � Al(p)diag Wl,1, . . . , Wl,Q  AH
l (p)

+ σ2nIV×V.
(40)

'erefore, the eigenvalue can be indicated as follows [8]:

λl,i �
σ2yi

+ σ2n, 1≤ i≤Q,

σ2n, Q + 1≤ i≤V,

⎧⎪⎨

⎪⎩
(41)

where σ2yi
, 1≤ i≤Q are Q eigenvalues of Rs, and we use them

represent the power of the received sources. According to
equation (41), the estimated noise power can be obtained for
the lth observation station as follows:

σ2nl �
1

V − Q


V

i�Q+1
λl,i. (42)

According to (42), we can get the power of the lth station
as below

Wl � 

Q

i�1
λl,i − σ2nl . (43)

'e received signal with large signal-to-noise ratio will
engender smaller position error. So, we should distribute larger
weight to the location. 'e cost function is set up as follows:

fSW− SDF(p) � argmax
L

l�1

Wl

σ2nl

eH ΘH
(p)aH

j (p)En
l En

l( 
H

(p)ajΘ(p)
− 1e . (44)

'rough searching the Q minimum values of equation
(44), we can get the estimated location.

3.4.8e Steps of theW-SDFAlgorithm. We make a list of the
following 5 steps about W-SDF algorithm. Figure 6 shows
the flowchart of the algorithm.

Step 1. Establish a direct positioning scene model.

Step 2. For the nested array, we use the spatial
smoothing method and the sum difference array
method to get a larger array aperture.

Step 3. Calculate the covariance matrix and get the
noise subspace.

Step 4. Generate the weighting coefficient wl and use
the dimension reduction method to set up the loss
function fSW− SDF(p).

Step 5. Obtain the value of spectral peak through
spectral peak search, which is the corresponding co-
ordinate (xq, yq).

4. Performance Analysis

In this section, the available DOF and the complexities of the
W-SDF, SDF, Capon, and W-Capon algorithms are ana-
lyzed. Finally, we elaborate the advantages of W-SDF
algorithm.

4.1. Achievable DOFs. We define that M means the number
of dense uniform subarray, N means the number of sparse
subarray, and H means the whole number of array elements.
After spatial smoothing, the DOF of W-SDF algorithm is
MN + 2M + N. DOF of proposed algorithm for circular
sources with uniform linear subarray is H, DOF of proposed
algorithm for noncircular sources with uniform linear sub-
array is 2H, and DOF for circular sources with nested array is
MN + N. It is obviously that the DOF has increased a lot.

4.2. Complexity Analysis. We define that H means numbers
of array element, Q means numbers of source, L means
numbers of observation station, and K means numbers of
snapshots. 'e X orientation is separated into Lx equivalent
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portions, and Y orientation is separated into Ly equivalent
portions [10]. Noncircular phase is separated into Lφ
equivalent portions. 'e computer configuration is Intel(R)
Core i7-10700F, and CPU frequency is 2.90GHz.

'e computing complexity for DPD mainly includes
four portions: the complexity of covariance matrix is
O(4H2LK), the computing complexity of covariance after
spatial smoothing is O[F2VL], where F � MN + M + 2N,
V � MN + N. 'e eigenvalue decomposition of the co-
variance matrix is O[F3L], and the computing complexity of
spatial spectral peak searching value after SNR weighting is
O[LLxLy(3F2 + 9F + F2(F − Q) + 39]. Table 1 lists the
computing complexity of the W-SDF, SDF, Capon, and
W-Capon algorithms and running time of these algorithms.

'e W-SDF algorithm of computational complexity
without dimension reduction is O[4M2LK + F2VL+

F3L + LLxLyLφ(F2 + F + F2(F − Q))].
'eW-SDF algorithm of computational complexity with

dimension reduction is O[4M2LK + F2VL + F3L+

LLxLy(3F2+ 9F + F2(F − Q) + 39)].
It is obviously that the computational complexity is

lessened after dimension reduction.
It can be seen from Figure 7 that W-SDF has the same

computational complexity as the SDF algorithm andW-Capon
has the same complexity as the Capon algorithm. W-SDF has
lower computational complexity compared withW-Capon and
Capon algorithm.

4.3. Advantages. We expound on the advantages about the
proposed method from degree of freedom, computing
complexity, and positioning accuracy.

(1) 'e proposed method makes use of noncircular
sources and nested array features to expand aperture.
'e degree of freedom has been greatly improved.

(2) We make use of dimension reduction method to
decrease computational complexity of algorithms for
noncircular sources. 'e computing complexity is
obviously lessened.

(3) We integrate the weighting method into SDF and
obtain high accuracy. We make use of noncircular
sources and nested arrays and get higher positioning
accuracy.

5. Simulation Results

In this section, we emulate the proposed method and get the
pattern of spatial spectrum and scatter diagram. We emulate
the RMSE results of the proposed method under different
parameters.

5.1. Estimated Results Concerning Proposed Method.
Multiple nested arrays are located at multiple targets
P1 � [300m, 300m], P2 � [500m, 500m], and P3 �

[800m, 800m]. 'e noncircular phase is (π/6, π/4, π/3). 'e
observation stations are U1 � [− 2000m, − 100m], U2 � [−

1000m, − 100m], U3 � [0m, − 100m], U4 � [1000m, − 100m],
and U5 � [2000m, − 100m]. Figure 8 shows pattern of spatial
spectrum and Figure 9 shows scatter diagram of three
targets. 'e real location and estimated location are shown
in Figure 8.'e proposedW-SDF algorithm can locate three
source targets accurately.

'e location estimation performance is analyzed through
computing Monte Carlo (MC) simulation times. 'e root
mean squares error (RMSE) can be indicated as follows [9]:

RMSE �
1
Q



Q

q�1

��������������������������������

1
MC



MC

mc�1
xq,mc − xq 

2
+ yq,mc − yq 

2
 




,

(45)

where MC means the number of Monte Carlo experiment
times, Q means the number of targets, (xq, yq) means the
true location of the qth target source, and (xq,mc, yq,mc)

means the estimated position for the qth target in the mcth

experiment. We set Monte Carlo simulation times as 500.

5.2. Performance of W-SDF and SDF Algorithms under Dif-
ferent Sources and Arrays. Multiple targets are
P1 � [300m, 300m], P2 � [500m, 500m], and
P3 � [800m, 800m]. 'e number of snapshots is 300. 'e
number of nested array element is (M, N) � (3, 3). Figure 10
shows the performance of SDF algorithm and W-SDF al-
gorithm under noncircular sources with different arrays.
Figure 10 also shows that the performance of SDF algorithm
and W-SDF algorithm for different sources under uniform
linear array. 'e performance of weighted SDF algorithm is
superior to SDF algorithm. 'e performance of SDF and
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covariance 

matrix

Get the noise 
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Set up the loss 
function 
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Figure 6: Algorithm flowchart.
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W-SDF algorithms for noncircular sources is superior to that
of circular sources. 'e performance of SDF and W-SDF
algorithms for nested array is superior to that of uniform
linear array.

5.3. Performance of Different Algorithms for Noncircular
Sources. 'e number of snapshots is 300. Multiple targets
are P1 � [300m, 300m], P2 � [500m, 500m], and
P3 � [800m, 800m]. 'e number of nested array element is

(M, N) � (3, 3). Figure 11 shows the performance of
W-SDF, SDF, W-Capon, Capon, and W-PM and PM al-
gorithms under nested arrays and noncircular sources.
Under noncircular sources and nested array, the perfor-
mance of the W-SDF algorithm is superior to W-Capon and

Table 1: Computing complexity and working time.

Different algorithms Computing complexity Working time (s)
SDF O[4M2LK + F2VL + F3L + LLxLy(3F2 + 9F + F2(F − Q) + 39)] 145.378111
W-SDF O[4M2LK + F2VL + F3L + LLxLy(3F2 + 9F + F2(F − Q) + 39)] 146.294961
Capon O[4M2LK + F2VL + LLxLy(3F2 + 9F + F3 + 39)] 1360.93077
W-Capon O[4M2LK + F2VL + LLxLy(3F2 + 9F + F3 + 39)] 1369.73693
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W-PM algorithms. 'e performance of W-SDF algorithm is
superior to SDF, Capon, and PM algorithm.

5.4. Performance of W-SDF and SDF Algorithms with Incre-
ment of Array Element Numbers. Multiple targets are
P1 � [300m, 300m], P2 � [500m, 500m], and
P3 � [800m, 800m]. 'e number of snapshots is 300. Fig-
ure 12 shows the performance of W-SDF and SDF under
nested array (M, N) � (5, 5), (6, 6), (10, 10). With the

number of array elements increment, the performance of SDF
andW-SDF for nested array and noncircular sources is better.

5.5.PerformanceofW-SDFandSDFAlgorithmswithDifferent
Snapshot Numbers. Figure 13 shows the performance of
SDF and W-SDF algorithms under different number of
snapshots. Multiple targets are P1 � [300m, 300m],
P2 � [500m, 500m], and P3 � [800m, 800m]. 'e SNR is set
as 15 dB. 'e nested array element number is
(M, N) � (3, 3). With the increment of snapshot number, it
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is clearly to see that the performance for nested arrays and
noncircular sources is better.

5.6. Resolution about Source Spacing with Different Arrays.
Figure 14 shows resolution about the distance between two
sources. SNR is set as 5 dB. Positions are set as
p1 � [300m, 300m] and p2 � [Δdm, 300m], where Δd
changes from 10m to 180m. It can be seen that the reso-
lution of weighted SDF algorithm is better than that of SDF
algorithm with noncircular sources, and the resolution of
algorithm under nested array is better than that under
uniform array.

6. Conclusion

'is article studies SNR weighted SDF algorithm on account
of noncircular sources and nested arrays for direct position
determination. For noncircular sources, the dimension re-
duction method is used to decrease the computing com-
plexity and remove the noncircular phase. For SDF
algorithm vulnerable to noise and inferior stability, we use
SNR weighted SDF algorithm to improve location accuracy.
For the aperture limited, we introduce nested arrays to
expand array aperture. We use spatial smoothing technology
and use sum and difference co-array to deal with the nested
array. Simulation results show that the proposed method
decreases the complexity of the algorithm and improves the
location accuracy, degree of freedom, and resolution. In the
future, we can study an optimal station position. 'ree-level
nested arrays and other sparse arrays for the direct posi-
tioning are also needed researched in the future.
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