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Detecting Alzheimer’s disease (AD) early on allows patients to take preventative measures before the onset of irreversible brain
damage, which is a critical factor in the treatment of Alzheimer’s patients. Most machine detection methods are constrained by
congenital observations, although computers have been utilized in several recent research studies to diagnose AD. In AD, the
hippocampus is usually the frst part of the brain to be afected. Structural magnetic resonance imaging (SMRI) can be used to
assist in diagnosing AD by measuring the hippocampus’s form and volume (MRI). Te information encoded by these attributes is
restricted and may be afected by segmentation problems.Tese traits are also extracted independently of the classifcation, which
could result in lower-than-desired classifcation accuracy. Researchers in this study used structural MRI data to develop a deep
learning framework for combined automatic hippocampus segmentation and AD categorization. Multi-task deep learning
(MTDL) is used to learn hippocampus segmentation simultaneously. Te hyperparameter optimization of the CNN model
(capsule network) for illness classifcation is then carried out using the deer hunting optimization (DHO) technique. ADNI-
standardized MRI datasets have been used to test the suggested method, and it is accurate. Suggested MTDL achieved 97.1%
accuracy and 93.5% of Dice coefcient, whereas the proposed MTDL model achieved an accuracy of 96% for binary classifcation
and 93% for multi-class classifcation.

1. Introduction

Alzheimer’s disease is a brain ailment that gradually impairs
thinking and memory abilities as well as the capacity to do
even the most basic tasks. An intracellular protein called
cAMP-response element binding protein (CREB) controls
the expression of key genes in dopaminergic neuron [1]. Te
shared form of dementia, AD, poses a signifcant test to
healthcare providers in the twenty-frst century. In the

United States, 5.5 million people who are 65 years and older
have AD, making it the sixth greatest mortality [2]. In 2018,
the total cost of controlling AD in the United States was $277
billion, with a signifcant impact on the broader economy
and a strain on the country’s healthcare system [3]. In the
absence of a treatment that has been proven to alter the
course of the disease, a considerable deal of work has been
put into developing procedures for early identifcation,
particularly in presymptomatic phases [3]. Advances in
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neuroimaging techniques, including MRI and PET, have
been utilized to discover AD-related structural and mo-
lecular biomarkers [4]. Brain imaging technology has pro-
gressed at an incredible rate, making it difcult to
incorporate enormous amounts of high-dimensional multi-
modal data. Computer-aided machine learning methodol-
ogies for integrative analysis have become increasingly
popular as a result. AD progression can be predicted using
well-known pattern analysis approaches such as LPBM,
logistic regression, and support vector machine (SVM) [5].

Preprocessing or architectural design is required to use
these machine learning techniques [6]. Dimensionality re-
duction is a common aspect in machine learning classif-
cation investigations, as is the extraction and selection of
features, as well as the selection of classifcation methods
based on features. Tese techniques necessitate a high level
of specialized knowledge and may take a long time to op-
timize through numerous phases. A problem has arisen in
the reproducibility of these methods [7, 8]. Neuroimaging
modalities can be used to pick AD-related features in the
feature selection process, brain glucose metabolism, and
amyloid buildup in research regions (ROIs), such as the
hippocampus, such as mean subcortical volumes, densities
of grey matter, and cortical thickness [9, 10].

It is becoming more and more common for large-scale
medical imaging analysis to use “on-the-fy” deep (or “on-
the-fy”) learning to generate features from raw neuro-
imaging data [11]. Deep learning techniques for AD di-
agnosis are based on short MRI datasets, which makes it
difcult for researchers to build deep CNN models with
a signifcant number of parameters that must be learned
[12, 13].

1.1.ProblemStatement. Hippocampal analysis methods now
in use have several faws. First, precise segmentation of the
hippocampus is required for both hippocampal volumetric
and shape analyses. Te hippocampus is difcult to correctly
segment because of its irregular shape and unclear boundary
in MRI. Handcrafted shapes may not be suitable for ex-
amination in the future, afecting categorization perfor-
mance in the diagnosis of illnesses. According to a third
study, the hippocampus alone may not be sufcient to
distinguish mild cognitive impairment (MCI) patients from
healthy controls. In the early stages of AD, both the
amygdala and the para-hippocampus are also afected by the
condition. As the last point, MRI images taken from the
hippocampal region can be very helpful in the diagnosis
of AD.

1.2. Contribution. Machine learning/deep learning algo-
rithms have been used to detect biomarkers and interpret
illness aetiology in recent years. Detecting AD can be done in
a variety of ways, including analyzing MRI images for
specifc areas of interest (ROIs). Te hippocampus is an
essential anatomical region in the pathogenesis of AD since
it is one of the frst brain ROIs to be impacted. A new deep
learning framework combining an MTDL model and an
MTDL model for simultaneous hippocampus segmentation

and illness organization using MRI data is suggested to
address the aforementioned issues listed in the problem
description.

2. Related Works

Faisal and Kwon’s goal [14] was to design a deep learning
system that could extract useful AD biomarkers from
physical MRI and classify brain pictures into AD, MCI, and
CN groups. In this study, researchers used ADNI datasets
available online to train CNNs on MRI brain pictures. It was
used to merge features from multiple into compact high-
level features by using our proposed process. Using the
proposed method, computation time is lowered because
there are fewer variables to deal with. Comparative evalu-
ations of our suggested convolution operation vs. the most
extensively used AD classifcation metrics, such as accuracy
and area under ROC curve (AUC), are performed.

Early detection of various phases of cognitive impair-
ment and AD utilizing neuroimaging and transfer learning
(TL) was the emphasis of Shanmugam et al. [15]. Images
from ADNI’s database with varied CN, early mild cognitive
impairment, moderate cognitive impairment, and late-MCI
as LMCI classifcations are classifed using transfer learning.
Tere are three pretrained networks utilized in this cate-
gorization that have been trained and evaluated on 6000
photos from the ADNI collection. Confusion matrices and
their properties are used to evaluate the classifcation pre-
sentation of the three networks. GoogLeNet, AlexNet, and
ResNet-18 all have an overall accuracy of 96.39%, 94.08%,
and 97.51%, respectively, in detecting Alzheimer’s disease.
Confusion matrix parameters were also used to examine the
pretrained networks’ performance within classes.

Tere are numerous techniques to utilize deep learning
classifcation to categorize Alzheimer’s disease, according to
Samhan et al. [16]. In large trials, adopting this method will
result in better patient care and lower costs. Python was used
in the development of the system, which is particularly
useful for doctors in the classifcation of AD. 70% of the
image was used to train the model, and 30% was used to
verify it. On a series of held-out tests, our trained model was
100% accurate.

As a potential tool for identifying people with AD-
related dementia, Tian et al. [17] investigated the retina,
specifcally the retinal vascular system. Adding a saliency
analysis on top of the high level of classifcation accuracy
helps make this pipeline easier to understand. Saliency study
shows that retinal images with small vessels provide more
information for Alzheimer’s disease diagnosis than images
with large vessels.

To classify this chronic condition as AD, Divya and
ShanthaSelvaKumari [18] employed several feature selection
strategies and distinct classifers. When the number of re-
cords with large dimensions is few, it is much easier to
classify those records. Tey yielded accuracy rates of
968.22%, 89.59%, and 90.40% after several attempts to pick
the best features. SVM with radial basis function kernel
yielded these higher accuracy rates. In the MCI/AD clas-
sifcation, a 2.7% improvement in the MMSE score was seen,
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but it had no impact on the NC/AD and NC/MCI
classifcations.

“Te wisdom of experts” can be harnessed by using An
et al.’s deep ensemble learning framework [19] to integrate
multi-source data. Training two sparse autoencoders for
feature learning at the voting layer helps to minimize the
connection between characteristics and diversify the base
classifers. Classifers are ranked using a deep belief network
that uses a nonlinear feature-weighted algorithm at the
stacking layer, which may violate conditional independence.
As a sort of meta-classifer, the neural network is employed.
To deal with a cost-sensitive issue, oversampling and
threshold shifting are employed at the optimization layer.
An ensemble of probabilistic predictions is combined with
a similarity computation to produce optimized forecasts.
Alzheimer’s illness is classifed using the new deep ensemble
learning framework. Our proposed framework outperforms
six well-known ensemble techniques, including the classic
stacking algorithm, in classifcation accuracy tests using
clinical data.

Densely linked convolutional neural networks with
connection-wise attention mechanisms were proposed by
Zhang et al. [20] to learn the properties of brain MR images
for AD classifcation. Pictures are preprocessed using
a dense CNN, which extracts multi-scale features, and
a connection-wise attention mechanism is utilized to in-
tegrate connections among features from diverse layers to
turn the MR images into more compact high-level features.
MRI’s spatial information can be captured by extending the
convolution operation to 3D. All of the previous layers’
features were combined with those from the 3D convolution
layer in various ways before being used to classify the data.
Based on baseline MRI scans of 968 ADNI database par-
ticipants, Te authors tested the technique to distinguish
between AD and healthy patients, MCI converters and
healthy subjects, and MCI using MCI scans.

2.1. Challenges in Brain MRI Segmentation

(i) Brain structural structures difer greatly among
individuals due to genetics, age, gender, and illness.
Using a single segmentation algorithm across all
phenotypic subgroups is problematic.

(ii) For example, it is difcult to deal with cytoarchi-
tectural changes such as the thickness of tissue, the
depth of the sulci, and smooth boundaries between
tissue types. Tis might lead to a muddled cate-
gorization of various tissue types. Even human
professionals have difculty with this.

(iii) Tese modalities have a low contrast of anatomical
structure, which leads to poor segmentation
performance.

(iv) Manual segmentation is tedious and subjective and
requires a deep understanding of brain anatomy to
perform. Tus, it is challenging to acquire sufcient
data for creating a segmentation model.

(v) In an ordinary image for segmentation, the noisy
backdrop makes it difcult to apply an appropriate

label to each pixel/voxel with learned
characteristics.

(vi) In addition to its tiny size and volume, the hip-
pocampus is one of the most important biomarkers
for AD because of its structural heterogeneity,
partial volume efects and low contrast, and low
signal-to-noise ratio.

3. Proposed Model

One of the ways to diagnose AD is represented in Figure 1.
Te MRI slices must be obtained initially. Preprocessing
removes irrelevant information from the data and reorients
them so that they can be interpreted more easily. Te
preprocessed data are segmented using deep learning to
retrieve the properties from the brain MRI. For example,
a classifer uses parameters like the patient’s body surface
area, the center of gravity, intensity, and standard deviation
to determine whether he or she is developing AD or not.

3.1. Dataset Description. MCI and early-onset Alzheimer’s
disease can be tracked using MRI, PET scans, and other
biomarkers as part of the Adverse Childhood Neuropsy-
chiatric Disorders Initiative (ADNI). Written informed
consent for the collection of imaging and genetic samples
was signed by the subjects at the time of enrolment and
approved by the Institutional Review Boards (IRBs) at each
participating location.

A total of 449 participants were randomly selected to
participate in the study. MMSE stands for Mini-Mental State
Examination, and CDR stands for Clinical Dementia Rating.
For 1.5 T MR imaging, we used images obtained by the
ADNI acquisition method [21]. Image acquisition pro-
cedures are explained in greater detail on the ADNI website.
Images are resized to the dimension of 11 cubic mm to ft on
a single sheet of paper. As a result of this treatment, their
skulls were scraped and their cerebellums were removed.
Te FMRIB Software Library (FSL) 5.0 from https://fsl.
fmrib.ox.ac.uk/ was utilized in this project and used
a template image with 12 degrees of freedom and a set of
evasion parameters to align all MR pictures.

ADNI participants’ demographic and clinical in-
formation is shown in Table 1 (mean standard deviation).
AD, mild cognitive impairment, and normal control are all
referred to as “AD,” “MCI,” and “NC,” respectively.

3.2. Preprocessing. Nonlinear gradients in a picture can
distort an image using a method called Gradwarp [22].
Gradient models have a diferent kind of nonlinearity. Te
geometrical features of an image can be tweaked to improve
its information. B1 nonuniformity is used to rectify image
color and intensity information because of mishandled radio
frequency transmission. N3 bias feld correction corrects the
distortion caused by dielectric efects during acquisition
[23]. Although N3 bias feld correction is used for 1.5 T
images to improve the nonuniform gradient in the image,
these efects are widespread in 3 Tmachines. Before the N3
correction, Gradwarp and B1 corrections have been applied.
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Image segmentation has been used in the literature to
improve classifcation accuracy [24, 25]. Tese images were
preprocessed with the use of the segmentation module of
statistical parametric mapping (SPM) available at http://
www.fiion/ion-ucl/spm. To map MRI scans onto tissue
probability maps, SPM uses these maps to extract the
mapped regions.TeMRI scan is segmented into three parts
using bias correction and normalization in this module. Te
output of mapping can be linked to the orientation of
a picture using a process called registration. Brain regis-
tration is all about minimizing the impact of external ele-
ments like the scalp on the segmented pictures of the
cerebral cortex that are generated.

3.3. SegmentationUsingMTDL for Joint hippocampus. In the
human brain, there is a small area known as the hippo-
campus in the medial temporal lobe. Te hippocampus
contains a disproportionately small number of voxels
compared to the rest of the brain, resulting in a very un-
balanced dataset. After preprocessing and registration, the
next step is to create 3D image patches with hippocampus-
specifc bounding cubes. Te 3D axes of the bounding cubes
are used to extract 3D patches from MR images. It is im-
portant to consider the size of the bounding cube when
determining how the hippocampus is segmented. A large
bounding cubemay also lead to the class imbalance problem,
increasing the computation time. Small bounding cubes can
impede the segmentation of the hippocampus. An empirical
study found that a voxel bounding cube of 64× 48× 64

voxels was the optimal size for the trade-of. Te patches
form the basis of our deep learningmodel for segmenting the
hippocampus and classifying illnesses.

Jointly learning hippocampus segmentation and an ill-
ness classifcation is a novel approach that difers from
standard methods in which these two tasks are performed
separately. To classify images and identify objects, re-
searchers frequently utilize CNNs. V-Net, a volumetric and
complete CNN for prostate segmentation in MRIs, has been
proposed. Tis is a multi-task deep CNN model for joint
hippocampus segmentation and illness classifcation in-
spired by the success of V-Net in prostate segmentation.

Residual functions are learned at convolutional stages using
a deep CNN, which aims to achieve fast convergence. “ResNet
Block 1” and “ResNet Block 2” are two residual blocks, each
consisting of 3D convolution, batch normalization (BN),
parametric rectifed linear unit (PReLU) activation, and
dropout layers, as illustrated in Figure 2. Te input is added to
the output of the second convolutional layer to learn a residual
function in ResNet Block 1. For each block, the input is added
to the outputs of both convolutional layers for a residual
function, which is learned in Block 2 of ResNet. Tere are
batches of MRI data that are used to train the kernels. Fast
inference is easier to achieve with small kernels since there are
fewer parameters to train. More complicated patterns and
greater expressiveness can be learned by larger kernels. Layers
of tiny kernels can be stacked to generate this appearance. For
all convolutions, the kernel size is fxed at 3× 3× 3. A nonlinear
PReLU activation is used to activate the learned flters, and
a feature map is then constructed for each one.

MRI Data acquisition Data preprocessing Segmentation

Training with Deep
learning architecture

Evaluation with test setAcceptable?Classifier

YES

NO

Figure 1: Te overall block diagram of AD diagnosis.

Table 1: Data description.

Diagnosis Age MMSE Education (year) Gender (M/F) CDR
AD 75.9± 6.8 23.2± 1.8 15.0± 3.0 48/49 0.8± 0.3
NC 75.9± 5.0 29.2± 1.0 15.6± 2.7 59/60 0± 0
MCI 75.2± 7.3 26.9± 1.8 15.7± 2.6 145/88 0.5± 0
MMSE, Mini-Mental State Examination; CDR, Clinical Dementia Rating.
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Downsampling is used to minimize the size of feature
maps and improve the receptive feld of features in the
following layers during the compression stage. Using con-
volution with kernels of size 2× 2× 2 and stride 2, it is
implemented. A volumetric segmentation mask is generated
by expanding the spatial support of the lower resolution
feature maps during the decompression step. Te 222 and
stride 2 kernels are used for the upsampling via deconvo-
lution. For the probabilistic segmentation of the hippo-
campus regions, the outputs are transformed to voxel-wise
softmax by applying a convolutional layer with a 111 kernel
and stride 1. As the last step, the probability output is
converted into a binary mask by setting the threshold to 0.

Optimizing the Dice loss function, which measures how
well our model can separate hippocampus voxels from the
background, is the goal for subject m’s hippocampal
segmentation:

L
m
s � 1 −

2
N
i�1piqi + ∈


N
i�1p

2
i + 

N
i�1q

2
i + ∈

. (1)

If the numerator is zero, a little number is denoted to
avoid the numerator from being zero. Tis is done by using
the segmentation prediction (pi) and the ground truth label
(qi). If the number of foregrounds and background voxels is
sufciently unbalanced, the Dice loss function can be uti-
lized. Fully linked layers are used as decompression com-
ponents to increase classifcation accuracy. Comparing the
predicted and actual labels for subject m, we utilize the
categorical cross-entropy loss.

L
m
C � − ymlogym + 1 − ym( log 1 − ym( ( . (2)

Te multitasking deep loss function segmentation loss
and classifcation loss are added together to create the CNN
model:

LM � a.Ls + (1 − a).LC �
1

M


M

m�1

· a.L
m
s − (1 − a). ymlogym + 1 − ym( log 1 − ym( (  .

(3)

Te total number of subjects is M; ym and ym are the
ground truth label and the anticipated label for subject m,
respectively. Losses in hippocampus segmentation and ill-
ness classifcation training are taken into account by
weighting the parameter a� [0, 1]. Classifcation is more
critical than segmentation in the early stages of training for
a multi-task deep CNN model. Initial warm-up emphasizes
segmentation by setting a value of 1 for a. After that, it goes
down to 0.5 for training in multi-tasking. Finally, a is set to
0 so that the classifcation process can take precedence. Te
Adam approach is utilized to jointly optimize the multi-task
network model, and a backpropagation algorithm is used to
calculate the network gradients.

After correcting the hippocampal segmentation fndings,
the hippocampal image patches are shown. Before and after
manual corrections, the mean, standard deviation, and range
of hippocampus volumes are shown for several groups of
participants. After adjustment, we can see that the mean and

Conv 3D 3*3*3

PReLU

BN

Conv 3D 3*3*3

Dropout

+

(a)

Conv 3D 3*3*3

PReLU

BN

Conv 3D 3*3*3

Dropout

PReLU

BN

Conv 3D 3*3*3

Dropout

+

+

(b)

Figure 2: Te network architecture of (a) ResNet Block 1 and (b) ResNet Block 2, consisting of 3D convolution, PReLU, BN, and dropout
layers.
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SD of hippocampus volume have decreased. For AD, MCI,
and NC patients, Figure 3 depicts the scatterplots [21, 22].

3.4. Classifcation. Sabour et al. [25] were able to overcome
the limitations of CNN by employing a higher-dimensional
vector known as a “capsule” to represent an entity rather
than an individual neuron.Te properties of a specifc entity
portrayed in an image are refected in the neuronal activity of
the active capsule. Tese features, including the likelihood
and a set of parameters such as albedo (color), hue (texture),
or deformation (deformation), are taught to a capsule for
each visual item. An entity’s attributes and the likelihood of
existence are represented in CapsNet’s input and output as
vectors with direction and norm. Te model is used to
improve forecasts of AD by predicting a high-level capsule’s
instantiation parameter over a conversion matrix by
employing similar levels of capsules. Te natural logarithm
base, e, is used to defne the spiral shape as a constant. To
evaluate it, one may use

P
→

s(x) � D
→

s × x′ × y′ × z′  + P
→

bs(x). (4)

It is used to save the best solutions and boost the position
of a separate search agent, for example, using P

→
s(x). Te

DHO presented here begins with a random sample of the
population. Te search agent might move closer or farther
away from the ideal search agent as it iterates. To ensure that
the shift from exploitation to exploration goes well and it is
in control, the DHO becomes a global optimizer when it has
a strong exploitation and exploration capacity.

3.4.1. DHO-Based Hyperparameter Tuning. A new meta-
heuristic DHO approach based on deer hunting was de-
veloped by a group of hunters for the tuning of
hyperparameters. Hunters employ a variety of strategies to
surround and approach the deer as closely as possible when
hunting it. Deer position and wind angle have to be taken
into account when using this technique. Another crucial
element of successful hunting is a sense of camaraderie
among the participants. Following their successor and
leader, their fnal goal is achieved. Te graphic below depicts
the model’s goal function:

f(x) � max (accuracy). (5)

When it comes to weight loss, the DHOmethod relies on
the deer’s unique abilities to elude hunters. A haphazard
gathering of hunting vectors catalyzes the process. It is
described using the following equation:

X � X1, X2, . . . , Xm 1< j≤m. (6)

Tere are two ways to express how much population (or
“weight”) a hunter has when optimizing his strategy. Next,
important elements like weight, position, and wind angle are
used. Because the entire search area is considered a circle, it
is possible to defne the wind angle as the circle’s diameter.

θj � 2πa, (7)

where a stands for the arbitrary value within the range= [0, 1]
and J stands for the current iteration. Te location propa-
gation for optimization with the leader position (Xl) and
succeeding position (Xs) is provided. Te placement of the
following weights is determined by the successor location,
whereas the primary location of the hunter is determined by
the leader location.

Xl is used to spread the message. Everyone tries to reach
the optimal location after establishing an optimal location.
To begin updating the location, we simulate the surrounding
behavior as shown below:

Xj+1 � Xl − Y.p. L × Xl − Xj



. (8)

Te current iteration’s location is designated as Xj,
whereas the location for the next iteration is designated as
Xj+1. Tis process is aided by the Z and K coefcient vectors.
If wind speed is taken into account, an arbitrary value of p
can be generated, and this number ranges from 0 to 2. Te Z
and K coefcient vectors can be estimated using the ex-
pressions below:

Z �
1
4
log j +

1
jmax

 b,

K � 2.c,

(9)

where jmax is the maximum iteration. In addition to the
range [0, 1], the value of the b variable ranges from − 1 to 1.
(X, Y) is the initial location of the hunter, which gets
upgraded based on the location of the prey. X b and Y b are
recalculated using the Z and K coefcient vectors. When the
value of p is less than 1, a position update procedure takes
place that allows the hunter to move in any direction without
regard to the angle. Transmission utilizies a slanted in-
clination. Search space is expected to expand as a result of
the angle location updation. Te angle of the hunter’s po-
sition is critical to the success of the hunting strategy. To put
this into action, consider

Xj+1 � Xl − p. cos(v) × Xl − Xj



. (10)

Te ideal position can be shown as B= (j+ 1), X (b j), and
p, where p signifes the arbitrary values. Te angle location is
opposite to the individual location, so the prey does not have
any sense of the hunter’s presence via the successor location.
Te vector K is shown within the encircling behavior in the
exploration. K values are frst considered to be less than 1 to
perform an arbitrary search. As a fnal point, a successor
location is used instead of the best possible location in the
location updating method. As a fnal step, a worldwide
search is conducted.

Xj+1 � Xs − Z.p K × Xs − Xj



. (11)

Site updates are carried out so that an ideal location can
be found (namely, termination condition). By optimizing
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the weight parameters of the pretrained CNN model, it is
efectively used to identify whether the patient is AD or
normal, and the multi-class classifcation of AD is also
performed.

4. Results and Discussion

To create the segmentation and classifcation model, a high-
level neural networks API with Tensorfow as the backend
was employed. Keras was used because of its ease of use and
ability to run on a GPU.

4.1. Evaluation Metrics. Our method’s segmentation and
classifcation performance is assessed using the challenge
evaluation measures such as accuracy (AC), Jaccard index
(JSI), and Dice coefcient (DSC) in segmentation analysis.
AC, specifcity (SP), and sensitivity (SE) are all part of the
classifcation’s evaluation process. Te criteria for evaluating
performance are laid forth as follows:

SE �
tp

tp + fn
,

SP �
tn

tn + fp
,

AC �
tp + tn

tp + fp + tn + fn
,

DSC �
2TP

(2TP + FP + FN)
,

JSI �
TP

FP + FN + TP
,

tprate �
tp

p
,

tnrate �
tn

p
,

(12)

Coronal Axial Sagittal Coronal Axial Sagittal 3D rendering Coronal Axial Sagittal 3D rendering

Subj1

Subj2

Subj3

(a) (b) (c)

Figure 3: Hippocampal image patches: (a) without patches segmentation labels, (b) patches overlaid with segmentation labels before
manual correction, and (c) segmentation tags added to the patches following manual adjustment. Subj1, Subj2, and Subj3 are three people
from each of the three diferent study groups which were chosen at random [21, 22].
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where tp, tn, fp, and fn denote the number of true positive,
true negative, false positive, and false negative.

4.2. Comparative Analysis for Proposed Segmentation
(MTDL). In this section, the proposed model is compared
with existing techniques such as fuzzy c-means (FCM),
adaptively regularized kernel FCM (ARKFCM), and fast and
robust FCM (FRFCM). Table 2 and Figure 4 provide the
experimental analysis for MTDL with existing models [26].

In Table 2, the analysis represents the validation results
for diferent segmentation techniques. In the frst method,
FCM achieved an accuracy of 84.8% and the next FRFCM
achieved an accuracy of 92.6%, and this accuracy perfor-
mance is better than FCM. ARKFCM reached the accuracy
percentage of 96.5%. Finally, the proposed MTDL reached
a better accuracy of 97.1% and achieved better performance
than other methods. In the analysis of DSC, FCM achieved
82.1%, FRFCM achieved 91%, ARKFCM achieved 92% and
the proposed model achieved 93.5%. Finally, JSI is high for
MTDL (i.e., 87.8%) compared to existing FCMmodels (69%
to 85%).

4.3. Comparative Analysis of Proposed Classifcation. Two
types of analysis such as binary classifcation (normal or AD)
and multi-class classifcation (AD/MCI/NC) are carried out,
where Table 3 and Figure 5 show the experimental analysis of
the proposed classifer with existing techniques. For better
performance, all techniques are implemented with DHO.

Table 3 represents the comparative analysis of binary
classifcation of diferent models such as RNN, recurrent
neural network, and CapsNet. Te classifer model of the
recursive neural network reached a sensitivity of 93.00% and
an accuracy of 90.00%. Te recurrent neural network model
reaches an accuracy of 91.00%. Finally, the CapsNet model
reaches the accuracy of 96.00%. In this comparative analysis,
the CapsNet model reached better accuracy and other
performance than the other two classifer models. Table 4
and Figure 6 present multi-class classifcation.

Table 4 represents the comparative analysis of multi-
class classifcation of diferent models such as RNN, re-
current neural network, and the pretrained model of CNN
(CapsNet). Te classifer model of the recursive neural
network reached a sensitivity of 93.00% and an accuracy of
89.00%. Te recurrent neural network model reaches an
accuracy of 84.00%. Finally, the CapsNet model reaches an
accuracy of 93.00%. In this comparative analysis, the Cap-
sNet model reached better accuracy and other performance
than the other two classifer models.

Table 5 and Figure 7 present the comparative analysis of
various pretrained models of CNN in terms of accuracy for
binary classifcation, and the proposed model shows better
accuracy in binary classifcation than multi-class classif-
cation, which is shown in Figure 8.

Table 5 represents the comparative analysis of accuracy
evaluation for binary classifcation using diferent classifer
models such as UNet, ResNet, VGG-16, EfcientNet,
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Figure 4: Graphical comparison of proposed segmentation with
existing FCM models.

Table 2: Comparative analysis for segmentation [26].

Method DSC JSI AC
FCM 82.1 66.6 84.8
FRFCM 91.1 72.4 92.6
ARKFCM 92.0 85.8 96.5
Proposed MTDL 93.5 87.8 97.1

Table 3: Binary classifcation for the proposed classifer with
existing techniques.

Classifer
model with DHO SE SP AC

Recursive neural network (RNN) 93.00 96.00 90.00
Recurrent neural network 93.00 96.00 91.00
Pretrained model of CNN (CapsNet) 97.00 98.00 96.00
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Figure 5: Graphical comparison of proposed classifer with
existing models.
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Figure 6: Graphical comparison of proposed classifer with existing models for multi-class classifcation.

Table 5: Accuracy evaluation for binary classifcation.

Classifcation network Accuracy
UNet 89.00
ResNet 87.00
VGG-16 81.11
EfcientNet 71.11
CapsNet 90.00
UNet-DHO 94.00
ResNet-DHO 95.33
VGG-16-DHO 95.50
EfcientNet-DHO 93.50
CapsNet-DHO 96.  
Bold value shows the highest accuracy.

Table 4: Multi-class classifcation for the proposed classifer with existing techniques.

Classifer
model with DHO SE SP AC

Recursive neural network (RNN) 89.00 90.00 88.00
Recurrent neural network 87.00 90.00 84.00
Pretrained model of CNN (CapsNet) 91.00 90.00 93.00
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CapsNet, UNet-DHO, ResNet-DHO, VGG-16-DHO,
EfcientNet-DHO, and CapsNet-DHOmodels. Initially, the
UNet model reached an accuracy of 89.00%. Te ResNet
model reached an accuracy of 87.00%. Te CapsNet model
reached an accuracy of 90.00%. But, when pretrained models
are implemented with DHO, it starts to show better accu-
racy. VGG-16-DHO model reached an accuracy of 95.50%.

Finally, the CapsNet-DHO model reaches the accuracy
of 96.00%. By this comparative analysis, the CapsNet-DHO
model reached a better accuracy than other classifer models.

5. Conclusion

Tis research study successfully developed and analyzed the
MRI data using a deep learning framework for combined
automatic hippocampus segmentation and AD categoriza-
tion. Multi-task deep learning (MTDL) is used to learn
hippocampus segmentation simultaneously. Te hyper-
parameter optimization of the CNN model (capsule net-
work) for illness classifcation is then carried out using the
deer hunting optimization (DHO) technique. ADNI-
standardized MRI datasets have been used to test the

suggested method, and it is accurate. Suggested MTDL
achieved 97.1% accuracy and 93.5% of Dice coefcient,
whereas the proposed MTDLmodel achieved an accuracy of
96% for binary classifcation and 93% for multi-class clas-
sifcation. Also, in accuracy evaluation for binary classif-
cation, the CapsNet-DHO reached a better accuracy
performance than other classifer models. Te proposed
MTDL reached a better accuracy of 97.1% and achieved
better performance than other methods. In the analysis of
DSC, FCM achieved 82.1%, FRFCM achieved 91%,
ARKFCM achieved 92%, and the proposed model achieved
93.5%. Finally, JSI is high for MTDL (i.e., 87.8%) compared
to existing FCM models (69% to 85%). Te model con-
sidered only one dataset for validation, and as a future work,
real-time data will be collected and used for verifcation
process. In addition, the efciency of the pretrainedmodel of
CNN will be validated, where the hybrid DL model will be
designed for identifcation of real-time collected AD images
[27].

Data Availability

Te data used to support the fndings of the study are in-
cluded within the article and are available from the corre-
sponding author upon request.
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