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Wax deposition in field-scale crude oil pipelines poses a significant challenge to the oil and gas industry, leading to reduced flow
rates, increased pressure drops, and potential blockages. Understanding the mechanisms governing wax deposition is crucial for
developing effective mitigation strategies. This study investigates the impact of multiphase flow conditions, including water-in-oil
emulsion, wax precipitation kinetics, shear dispersion, and molecular diffusion, on wax deposition in field-scale crude oil pipelines.
A numerical model is developed that employs second-order semi-implicit temporal discretization schemes, such as Crank–Nicolson
and Adams–Bashforth methods, in conjunction with a bivariate spectral collocation scheme using Chebyshev–Gauss–Lobatto grid
points. The impact of various flow parameters, including Reynolds number (Re), mass Grashof number (Gr), Schmidt number (Sc),
and Weber number (We), on the flow variables, wall shear stress, and heat and mass fluxes are investigated. The numerical
simulations demonstrate that flow parameters significantly influence the flow behavior, wall shear stress, wall heat flux, and wall
mass flux in waxy crude oil pipelines. Specifically, the aggregation of wax crystals in the pipeline decreases by at most 2.5% with
increasing Reynolds number from 2.2361 to 3.1361. Conversely, it increases by at most 3.4% with increasing mass Grashof number
from 5 to 11 and by at most 4.8% with increasing Weber number from 1.0 to 2.5. Furthermore, the Nusselt number increases from
1.9907 to 4.9834 with increasing Reynolds number from 2.2361 to 5.2361 and from 1.9907 to 2.0225 with increasing mass Grashof
number from 5 to 20. It also increases from 1.9907 to 2.0434 with increasingWeber number from 1.0 to 2.5. The insights gained from
this study can be applied to optimize pipeline design, operational parameters, and wax deposition mitigation strategies, leading to
enhanced pipeline performance and reduced operational costs. The numerical model developed in this work serves as a valuable tool
for simulating and predicting wax deposition behavior under various operating conditions.

1. Introduction

Wax deposition in pipelines, caused by the solidification and
adhesion of paraffin molecules at temperatures below the wax
appearance temperature, leads to flow restrictions, reduced
throughput, and increased operational costs. Numerical stud-
ies of wax deposition in large-scale crude oil pipelines are
crucial for understanding and mitigating these challenges
[1]. These studies employ computational models and simula-
tions to analyze the complex interplay between fluid flow, heat
transfer, and mass transfer during wax deposition, helping
pipeline operators to optimize operations, design effective
wax control strategies, and plan maintenance schedules to
prevent excessive wax deposition and its associated problems.

Additionally, these studies facilitate the development of cost-
effective measures for wax removal and pipeline cleaning, and
they help in tackling complex engineering challenges, as evi-
denced by the work of Ali et al. [2] on the Carreau fluid model
in roll coating, Ali et al. [3] on Levenberg–Marquardt artificial
neural networks for reverse roll coating, and Ali et al. [4] on
perturbation-based solutions for non-Newtonian fluids in roll
coating.

The bivariate spectral collocation method (BSCM) is a
powerful numerical approach for solving partial differential
equations (PDEs) involving two independent variables [5]. It
combines the advantages of spectral methods, known for
their high accuracy and convergence rates, with the ability
to handle complex geometries and boundary conditions. In
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BSCM, the solution to the PDE is approximated using a set of
globally defined basis functions, typically Lagrange interpo-
lating polynomials, over a rectangular or nonrectangular
domain. The collocation points, where the solution is evalu-
ated, are chosen carefully to ensure optimal accuracy. BSCM
has been successfully applied to a wide range of problems in
fluid dynamics, heat transfer, and other scientific disciplines.

In recent years, various experimental and theoretical
studies have been conducted to model the formation and
deposition of solid wax crystals on the inner surface of crude
oil pipelines. These studies have received immense attention
due to their importance in understanding and mitigating
wax deposition challenges. For instance, Kim et al. [6] mod-
eled the consolidation of wax deposition for a progressive
cavity pump using computational fluid dynamics. Mrinal et al.
[7] investigated a transient 3D computational fluid dynamics
model of a progressive cavity pump.Waheed andMegahed [8]
studied the heat transfer mechanism of the non-Newtonian
micropolar slip fluid flow over a stretching sheet in the presence
of the melting heat transfer to heat generation or absorption in
the slip flow regime. Additionally, Singh et al. [9] conducted a
numerical study on the formation and aging of the wax deposit
by performing experiments using laboratory flow loops and
considering pipelines with externally cooled walls.

Other significant contributions to the understanding of
wax deposition in crude oil pipelines include: Stubsjoen’s
exploration of both numerical and analytical modeling of
paraffin wax in crude oil pipelines, as reported in Stubsjøen’s
[10] study; Fusi’s numerical study of waxy crude oil flow in a
laboratory test loop, as documented in Fusi’s [11] study; Banki
et al.’s investigation of the numerical modeling of wax depo-
sition in oil pipelines for the laminar flow regime based on the
enthalpy–porosity approach, as presented in Banki et al.’s [12]
study; Zhang et al.’s study on wax deposition and develop-
ment of a model to predict the temperature profile and loca-
tion of wax deposits based on the coupling process involving
heat and fluid, as detailed in Zhang et al.’s [13] study; Ying
et al.’s experiment to analyze the heat transfer of oil phase
change in the case of overhead pipeline shutdown, as described
in Ying et al.’s [14] study; and Magnini and Matar’s investi-
gation of the deposition of wax in crude oil pipelines through
interface-resolved numerical simulations, as documented in
Magnini andMatar’s [1] study. These studies have collectively
provided valuable insights into the complex phenomenon of
wax deposition in crude oil pipelines.

Previous research on wax deposition in crude oil pipe-
lines has largely focused on single-phase flow scenarios, lim-
iting the applicability of existing wax deposition models to
real-world multiphase flow scenarios encountered in the petro-
leum industry. These multiphase flows, including oil–water
two-phase and water–gas–oil three-phase flows, are becoming
increasingly prevalent due to the rising water content in oil-
bearing rocks and the presence of water-in-oil emulsions during
crude oil extraction. To address these research gaps, this study
focuses on developing numerical solutions for waxy crude oil
flow in pipelines with heat and mass transfer, aiming to extend
the applicability of wax deposition models to real-world oil

pipelines by incorporating the complexities of multiphase flow
scenarios.

The novelty of this research lies in the comprehensive
numerical investigation of wax deposition in oil–water two-
phase flow in the presence of water-in-oil emulsions, incor-
porating critical factors such as the porosity of the deposited
wax layer, the influence of surface tension-induced forces,
the effects of internal heat absorption or generation, the
kinetics of wax precipitation, the impact of energy flux due
to viscous dissipation, and mass flux due to molecular diffu-
sion and shear dispersion. This comprehensive approach
provides a deeper understanding of the complex wax depo-
sition phenomenon in a more realistic multiphase flow envi-
ronment. The remaining sections of the paper are structured
in the following manner: Section 2 presents the formulation
of the mathematical model for the flow of waxy crude oil in
pipeline systems; Section 3 presents the numerical techni-
ques used to solve the model equations; and Section 4 pre-
sents the study results and a comprehensive discussion of the
results. The results are validated in Section 5. Finally, the
summary and conclusions drawn from this study are out-
lined in Section 6.

2. Mathematical Formulation

In this study, we investigate the 2D unsteady flow of waxy
crude oil within a model of a pipeline with a semi-infinite
length, circular cross-section, and an inner radius denoted as
R, as depicted in Figure 1. The pipeline is inclined at an angle
denoted as φ with respect to the horizontal. We utilize a
cylindrical coordinate system denoted as ðr; θ; zÞ, where r
represents the radial distance measured from the pipeline’s
central axis, θ represents the circumferential direction, and z
indicates the axial direction. At the initial time t ≤ 0, waxy
crude oil at a uniform temperature T1 is introduced at the
pipeline inlet. The inner pipeline surface, assumed to be
smooth, impermeable, and rigid, is maintained at a constant
temperature Twall. The temperature Twall can either be higher
or lower than T1.

The interface between the discrete solid phase and the
continuous fluid phase is sharp. The outward-drawn unit
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FIGURE 1: Schematic diagram for the flow of waxy crude oil in the
pipeline.
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normal vector to this interface is given by bn¼ ~rϕoil=j ~rϕoilj.
The fluid phase comprises three pseudo-components: oil, wax,
and emulsions.

We employ the pseudo-single phase approach, which
treats the three-phase mixture of water, oil, and gel as a single
fluid system. The physical properties of this pseudo-fluid are
determined by averaging the relevant physical properties of
water, oil, and gel. This averaging is weighted according to
their respective volume fractions, as given in Yang et al.’s
[15], Zheng et al.’s [16], Al-Ahmad et al.’s [17], and Ochieng
et al.’s [18] studies:

ρf ¼ 1 − ϕwaterð Þρoil þ ϕwaterρwater; ð1Þ

ρmix ¼ 1 − ϕgel

À Á
ρf þ ϕgelρgel; ð2Þ

μf ¼ 1 − ϕwaterð Þμoil þ ϕwaterμwater; ð3Þ

μmix ¼ 1 − ϕgel

À Á
μf þ ϕgelμgel; ð4Þ

βTð Þf ¼ 1 − ϕwaterð Þ βTð Þoil þ ϕwater βTð Þwater; ð5Þ

βTð Þmix ¼ 1 − ϕgel

À Á
βTð Þf þ ϕgel βTð Þgel; ð6Þ

βCð Þf ¼ 1 − ϕwaterð Þ βCð Þoil þ ϕwater βCð Þwater; ð7Þ

βCð Þmix ¼ 1 − ϕgel

À Á
βCð Þf þ ϕgel βCð Þgel; ð8Þ

Cpð Þf ¼
1 − ϕwaterð Þρoil Cpð Þoil þ ϕwaterρwater Cpð Þwater

ρf
;

ð9Þ

Cpð Þmix ¼
1 − ϕgel

À Á
ρf Cpð Þf þ ϕgelρgel Cpð Þgel

ρmix
 ; ð10Þ

kf ¼
kwater þ 2koil þ 2ϕwater kwater − koilð Þ
kwater þ 2koil − ϕwater kwater − koilð Þ

� �
koil; ð11Þ

kmix ¼
kgel þ 2kf þ 2ϕgel kgel − kf

À Á
kgel þ 2kf − ϕgel kgel − kf

À Á" #
kf ; ð12Þ

where the subscriptmix denotes “mixture fluid” and f denotes
“fluid phase.”

The following assumptions are adopted in this study: no
gas is present in the pipeline, the flow is axisymmetric, molec-
ular diffusion and shear dispersion are the solemechanisms of
wax deposition, the fluid particles exhibit no slip at the inter-
face between the fluid and solid phases, and the thermophy-
sical properties are assumed to be constant with the exception
of the temperature—and concentration-dependent density
variation included in the body force term. Therefore, the
Boussinesq approximation is employed to model the flow
within the boundary layer.

Utilizing the assumptions outlined above, we obtain the
following dimensionless equations [18]:

Equation of continuity:

∂ r̄uð Þ
∂r̄

þ ∂ r̄vð Þ
∂z̄

¼ 0: ð13Þ

Equations of conservation of linear momentum:

∂u
∂t̄

þ u
∂u
∂r̄

þ v
∂u
∂z̄

¼ −
∂P
∂r̄

−
χ2

Re ⋅ Dað Þ uþ χ1
We

RK̄
∂ϕoil

∂r̄

þ χ2
Re

2
∂2u
∂r̄2

þ ∂2u
∂z̄2

þ ∂2v
∂r̄∂z̄

þ 2
r̄
∂u
∂r̄

−
2
r̄2
u

� �
þχ3

GrT
Re2

cos φð ÞΘþ χ4
GrC
Re2

cos φð Þϕ;
ð14Þ

∂v
∂t̄

þ u
∂v
∂r̄

þ v
∂v
∂z̄

¼ −
∂P
∂z̄

−
χ2

Re ⋅ Dað Þ v þ
χ1
We

RK̄
∂ϕoil

∂z̄

þ χ2
Re

∂2v
∂r̄2

þ 2
∂2v
∂z̄2

þ ∂2u
∂r̄∂z̄

þ 1
r̄
∂u
∂z̄

þ 1
r̄
∂v
∂r̄

� �
þχ3

GrT
Re2

sin φð ÞΘþ χ4
GrC
Re2

sin φð Þϕ:
ð15Þ

Equation of energy:

∂Θ
∂t̄

þ u
∂Θ
∂r̄

þ v
∂Θ
∂z̄

¼ χ5
Pe

∂2Θ
∂r̄2

þ 1
r̄
∂Θ
∂r̄

þ ∂2Θ
∂z̄2

� �
−St

χ6
d̄
Θþ χ7

Ec
Re

2
∂u
∂r̄

� �
2
þ 2

u
r̄

� �
2

�
þ2

∂v
∂z̄

� �
2
þ ∂v

∂r̄
þ ∂u

∂z̄

� �
2
�
:

ð16Þ

Equation of wax concentration:

∂ϕ
∂t̄

þ u
∂ϕ
∂r̄

þ v
∂ϕ
∂z̄

¼ εp 1 − αmð Þ ϕ − C̄dð Þ ∂2v
∂r̄2

þ 1
r̄
∂v
∂r̄

� ��
þ 1 − αmð Þ ∂ϕ

∂r̄
−
dC̄d

dΘ
∂Θ
∂r̄

� �
− ϕ − C̄dð Þ ∂αm

∂r̄

� �
×

∂v
∂r̄

�
þ 1
Re ⋅ Sc

dC̄d

dΘ
∂2Θ
∂r̄2

þ 1
r̄
∂Θ
∂r̄

þ ∂2Θ
∂z̄2

� ��
þ d2C̄d

dΘ2

∂Θ
∂r̄

� �
2
þ ∂Θ

∂z̄

� �
2

� ��
:

ð17Þ

Equation of wax precipitation kinetics:

∂αm
∂t̄

þ u
∂αm
∂r̄

þ v
∂αm
∂z̄

¼ 1 − αm½ �K̄ 1 Θð Þ

− αm
Re
χ2

∂v
∂r̄

� �
2
K̄ 2 Θð Þ:

ð18Þ
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Equation of oil volume fraction:

∂ϕoil

∂t̄
þ u

∂ϕoil

∂r̄
þ v

∂ϕoil

∂z̄
¼ 0: ð19Þ

Equation of deposit growth:

dδ̄
dt̄

¼ ϕ1
1 − f xð Þð Þ

x
1

Re ⋅ Sc
dC̄d

dΘ
∂Θ
∂r̄

����
r̄¼R̄eff

 !
: ð20Þ

Equation of deposit aging:

dx
dt̄

¼ ϕ1f xð Þ 2 1 − δ̄ð Þ
δ̄ 2 − δ̄ð Þ

1
Re ⋅ Sc

dC̄d

dΘ
∂Θ
∂r̄

�
þ εp 1 − αmð Þ ϕ − C̄dð Þ ∂v

∂r̄

�
r̄¼R̄eff

:
ð21Þ

The following dimensionless numbers and parameters
are employed in the model Equations (13)–(21):

χ1 ¼
ρf
ρmix

;  χ2 ¼
μmix

μf

ρf
ρmix

;  χ3 ¼
βTð Þmix

βTð Þf
;   ð22Þ

χ4 ¼
βCð Þmix

βCð Þf
;  χ5 ¼

αmix

αf
¼ kmix

kf

ρf
ρmix

Cpð Þf
Cpð Þmix

;   ð23Þ

χ6 ¼
ρf
ρmix

Cpð Þf
Cpð Þmix

;  χ7 ¼
μmix

μf
χ6;  εp ¼

Dp

R
;   ð24Þ

ϕ0 ¼
C1 − ρgel
À Á
Cwall − C1ð Þ ;  ϕ1 ¼

Cwall − C1ð Þ
ρgel

;   ð25Þ

αavg ¼ 1:684 − 0:323 lnQ;   ð26Þ

Re¼ ρfU1R
μf

;    GrT ¼
ρ2f g βTð Þf ΔTð ÞR3

μ2f
;   ð27Þ

GrC ¼ ρ2f g βCð Þf ΔCð ÞR3

μ2f
;  Ec¼ U21

Cpð ÞfΔT
;   ð28Þ

Pr¼ μf
ρfαf

;  Pe¼ U1R
αf

;    St¼ hr
ρfU1 Cpð Þf

;   ð29Þ

Sc¼ μf
ρfDd

;    We¼ ρfU21R
σ

;    Da¼ κ

R2 ;   ð30Þ

f xð Þ ¼ 1 − x
α2avgx2 − x þ 1

: ð31Þ

The following thermodynamic model, presented in Cra-
goe’s [19] study and Al-Ahmad et al.’s [17] study, is adopted
in this study:

C̄d ¼
1
Sf

0:981þ 0:0677Θ
1 − 0:0208Θ

� �
; ð32Þ

where Sf ¼ð0:0077MWoil − 1:737Þ denotes the shift factor
while MWoil ¼ 6; 084

 

oAPI−5:9 denotes the molecular weight of waxy
crude oil. Note that the American Petroleum Institute (API)
gravity is a scale used to grade crude oils, calibrated in degrees
API ( °API). Thus, crude oils are classified into three catego-
ries based on their API gravity: heavy crude oils are those
whose API gravity is less than 22.1°API, intermediate crude
oils are those whose API gravity ranges between 22.1°API and
31.5°API (inclusive), and light crude oils are those whose API
gravity is greater than 31.5°API. In this study, a heavy waxy
crude oil with an API gravity of 18°API is considered.

The corresponding boundary and initial conditions for
the flow are formulated in the following manner:

∂u
∂r̄

¼ 0;  
∂v
∂r̄

¼ 0;  
∂Θ
∂r̄

¼ 0 

∂ϕ
∂r̄

¼ 0;  
∂αm
∂r̄

¼ 0;  
∂ϕoil

∂r̄
¼ 0

at r̄ ¼ 0

u¼ 0;  v ¼ 0;  Θ¼ β0;  ϕ¼ β1 

αm ¼ 1;  ϕoil ¼ 0
at r̄ ¼ λ

u¼ 0;  v ¼ 1;  Θ¼ 1;  ϕ¼ 0

αm ¼ 0;  ϕoil ¼ 1 − ϕwater

at z̄ ¼ 0

∂u
∂z̄

¼ 0;  
∂v
∂z̄

¼ 0;  
∂Θ
∂z̄

¼ 0 

∂ϕ
∂z̄

¼ 0;  
∂αm
∂z̄

¼ 0;  
∂ϕoil

∂z̄
¼ 0

as z̄ →1

u¼ 0;  v ¼ 1;  Θ¼ 1;  ϕ¼ 0;  αm ¼ 0 

ϕoil ¼ 1 − ϕwater;  δ̄ ¼ 0;  x ¼ 0
at t̄ ¼ 0

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

:

ð33Þ

Here, the parameter λ¼ Reff
R , β0 ¼ Tinterface−Twall

T1−Twall
, and β1 ¼

Cinterface−C1
Cwall−C1

. Note that when λ¼ 1, there is no gel layer present.

This study focuses on the following engineering parameters
of interest: the skin friction coefficient (Cf ), the local Nusselt
number (Nuz), and the local Sherwood number (Shz). These
parameters are expressed in dimensionless form as follows:

Cf Re¼ 2
∂v
∂r̄

� �
r̄¼1

; ð34Þ

Nuz ¼ −
∂Θ
∂r̄

� �
r̄¼1

; ð35Þ

Shz ¼ −
∂ϕ
∂r̄

� �
r̄¼1

: ð36Þ

The skin friction coefficient, the local Nusselt number,
and the local Sherwood number characterize the shear stress,
the rate of heat transfer, and the rate of mass transfer at the
wall of the crude oil pipeline, respectively.
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3. Numerical Solution

The governing equations given by Equations (13)–(21), subject
to the boundary and initial conditions given in Equation (33),
are solved numerically using a combination of the second-
order semi-implicit finite difference method [20] and the
BSCM [5]. The model equations are discretized in two sepa-
rate stages: temporal discretization and spatial discretization,
as shown below.

3.1. Temporal Discretization. The nonlinear terms are discre-
tized in time using the Adams–Bashforth second-order method,
which is an explicit numerical scheme with second-order accu-
racy. The linear terms involving spatial derivatives are discre-
tized in time using the Crank–Nicolson method, which is an
implicit numerical scheme with second-order accuracy. This
decoupling of the governing PDEs helps save on computer
memory. Finally, the forward Euler method is used to discretize
the time derivatives. Therefore, the time-discretized numerical
schemes are as follows (for k¼ 1; 2; 3;…):

ukþ1
− uk

Δt̄
þ 1
2

3uk
∂uk

∂r̄
− uk−1

∂uk−1

∂r̄

� �
þ 1
2

3vk
∂uk

∂z̄
− vk−1

∂uk−1

∂z̄

� �
þ ∂Pk

∂r̄

¼ χ2
Re

1
2

2
∂2ukþ1

∂r̄2
þ 2

∂2uk

∂r̄2

� �
þ 1
2

∂2ukþ1

∂z̄2
þ ∂2uk

∂z̄2

� �
þ ∂2vk

∂r̄∂z̄
þ 1
2

2
r̄
∂ukþ1

∂r̄
þ 2

r̄
∂uk

∂r̄

� �
−
1
2

2
r̄2
ukþ1 þ 2

r̄2
uk

� �� �
−

χ2
Re ⋅ Dað Þ

1
2

ukþ1 þ uk
À Áþ χ3

GrT
Re2

cos φð ÞΘk þ χ4
GrC
Re2

cos φð Þϕk þ χ1
We

1
2

3 RK̄ð Þk ∂ ϕoilð Þk
∂r̄

− RK̄ð Þk−1 ∂ ϕoilð Þk−1
∂r̄

� �
;

ð37Þ

vkþ1
− vk

Δt̄
þ 1
2

3uk
∂vk

∂r̄
− uk−1

∂vk−1

∂r̄

� �
þ 1
2

3vk
∂vk

∂z̄
− vk−1

∂vk−1

∂z̄

� �
þ ∂Pk

∂z̄

¼ χ2
Re

1
2

∂2vkþ1

∂r̄2
þ ∂2vk

∂r̄2

� �
þ 1
2

2
∂2vkþ1

∂z̄2
þ 2

∂2vk

∂z̄2

� �
þ ∂2uk

∂r̄∂z̄
þ 1

r̄
∂uk

∂z̄
þ 1
2

1
r̄
∂vkþ1

∂r̄
þ 1

r̄
∂vk

∂r̄

� �� �
−

χ2
Re ⋅ Dað Þ

1
2

vkþ1 þ vk
À Áþ χ3

GrT
Re2

sin φð ÞΘk þ χ4
GrC
Re2

sin φð Þϕk þ χ1
We

1
2

3 RK̄ð Þk ∂ ϕoilð Þk
∂z̄

− RK̄ð Þk−1 ∂ ϕoilð Þk−1
∂z̄

� �
;

ð38Þ

Θkþ1
− Θk

Δt̄
þ 1
2

3uk
∂Θk

∂r̄
− uk−1

∂Θk−1

∂r̄

� �
þ 1
2

3vk
∂Θk

∂z̄
− vk−1

∂Θk−1

∂z̄

� �
¼ χ5
Pe

1
2

∂2Θkþ1

∂r̄2
þ ∂2Θk

∂r̄2

� �
þ 1

r̄
1
2

∂Θkþ1

∂r̄
þ ∂Θk

∂r̄

� �
þ 1
2

∂2Θkþ1

∂z̄2
þ ∂2Θk

∂z̄2

� �� �
þ χ7

Ec
Re

1
2

3 2
∂uk

∂r̄

� �2

þ 2
uk

r̄

� �2

þ 2
∂vk

∂z̄

� �2

þ ∂vk

∂r̄
þ ∂uk

∂z̄

� �2� ��
− 2

∂uk−1

∂r̄

� �2

þ 2
uk−1

r̄

� �2

þ 2
∂vk−1

∂z̄

� �2

þ ∂vk−1

∂r̄
þ ∂uk−1

∂z̄

� �2� ��
− St

χ6
d̄

1
2

Θkþ1 þ Θk
À Á

;

ð39Þ

ϕkþ1
− ϕk

Δt̄
þ 1
2

3uk
∂ϕk

∂r̄
− uk−1

∂ϕk−1

∂r̄

� �
þ 1
2

3vk
∂ϕk

∂z̄
− vk−1

∂ϕk−1

∂z̄

� �
¼ εp

3
2

1 − αmð ÞkÂ Ã
ϕk

− C̄dð ÞkÀ Á ∂2vk

∂r̄2
þ 1

r̄
∂vk

∂r̄

� �
þ 1 − αmð ÞkÂ Ã ∂ϕk

∂r̄
−

dC̄d

dΘ

� �
k ∂Θk

∂r̄

� ����
− ϕk

− C̄dð ÞkÀ Á ∂ αmð Þk
∂r̄

��
∂vk

∂r̄

�
−
1
2

1 − αmð Þk−1À Á
ϕk−1

− C̄dð Þk−1À Á ∂2vk−1

∂r̄2
þ 1

r̄
∂vk−1

∂r̄

� ��
þ 1 − αmð Þk−1À Á ∂ϕk−1

∂r̄
−

dC̄d

dΘ

� �
k−1 ∂Θk−1

∂r̄

� �
− ϕk−1

− C̄dð Þk−1À Á ∂ αmð Þk−1
∂r̄

� �
∂vk−1

∂r̄

��
þ 1
Re ⋅ Sc

3
2

dC̄d

dΘ

� �
k ∂2Θk

∂r̄2
þ 1

r̄
∂Θk

∂r̄
þ ∂2Θk

∂z̄2

� �
þ d2C̄d

dΘ2

� �
k ∂Θk

∂r̄

� �2

þ ∂Θk

∂z̄

� �2� �� ��
−
1
2

dC̄d

dΘ

� �
k−1 ∂2Θk−1

∂r̄2
þ 1

r̄
∂Θk−1

∂r̄
þ ∂2Θk−1

∂z̄2

� �
þ d2C̄d

dΘ2

� �
k−1 ∂Θk−1

∂r̄

� �2

þ ∂Θk−1

∂z̄

� �2� �� ��
;

ð40Þ
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αmð Þkþ1
− αmð Þk

Δt̄
þ 1
2

3uk
∂ αmð Þk
∂r̄

− uk−1
∂ αmð Þk−1

∂r̄

� �
þ 1
2

3vk
∂ αmð Þk
∂z̄

− vk−1
∂ αmð Þk−1

∂z̄

� �
¼ −

Re
χ2

1
2

3 αmð Þk ∂vk

∂r̄

� �2

K̄ 2ð Þk − αmð Þk−1 ∂vk−1

∂r̄

� �2

K̄ 2ð Þk−1
� �

þ 1
2

3 1 − αmð ÞkÂ Ã
K̄ 1ð Þk − 1 − αmð Þk−1À Á

K̄ 1ð Þk−1Â Ã
;

ð41Þ

ϕoilð Þkþ1
− ϕoilð Þk

Δt̄
þ 1
2

3uk
∂ ϕoilð Þk

∂r̄
− uk−1

∂ ϕoilð Þk−1
∂r̄

� �
þ 1
2

3vk
∂ ϕoilð Þk

∂z̄
− vk−1

∂ ϕoilð Þk−1
∂z̄

� �
¼ 0; ð42Þ

δ̄kþ1
− δ̄k

Δt̄
¼ 3
2
ϕ1

1 − f xk
À ÁÀ Á

xk
1

Re ⋅ Sc
dC̄d

dΘ

� �
k ∂Θk

∂r̄

����
r̄¼R̄eff

 !
−
1
2
ϕ1

1 − f xk−1
À ÁÀ Á

xk−1
1

Re ⋅ Sc
dC̄d

dΘ

� �
k−1 ∂Θk−1

∂r̄

����
r̄¼R̄eff

 !
;

ð43Þ

xkþ1
− xk

Δt̄
¼ 3
2
ϕ1f xk
À Á 2 1 − δ̄k

À Á
δ̄k 2 − δ̄k
À Á 1

Re ⋅ Sc
dC̄d

dΘ

� �
k ∂Θk

∂r̄
þ εp 1 − αmð ÞkÂ Ã

ϕk
− C̄dð ÞkÀ Á ∂vk

∂r̄

� �
r̄¼R̄eff

−
1
2
ϕ1f xk−1
À Á 2 1 − δ̄k−1

À Á
δ̄k−1 2 − δ̄k−1

À Á 1
Re ⋅ Sc

dC̄d

dΘ

� �
k−1 ∂Θk−1

∂r̄
þ εp 1 − αmð Þk−1À Á

ϕk−1
− C̄dð Þk−1À Á ∂vk−1

∂r̄

� �
r̄¼R̄eff

:

ð44Þ

The arbitrary functions f ðxk−1Þ and f ðxkÞ are given by
the following equations:

f xk−1
À Á¼ 1 − xk−1

α2avg xk−1
À Á

2
− xk−1 þ 1

; ð45Þ

f xk
À Á¼ 1 − xk

α2avg xk
À Á

2
− xk þ 1

: ð46Þ

The intermediate functions uk, vk, Pk, Θk, ϕk, ðαmÞk,
ðϕoilÞk, δ̄k, and xk are expanded using first-order Taylor series
about the point ðr̄; z̄; t̄ k−1Þ to get the following equations:

uk ¼ uk−1 þ Δt̄ −uk−1
∂uk−1

∂r̄
− vk−1

∂uk−1

∂z̄

�
−
∂Pk−1

∂r̄
−

χ2
Re ⋅ Dað Þ u

k−1 þ χ2
Re

2
∂2uk−1

∂r̄2

�
þ ∂2uk−1

∂z̄2
þ ∂2vk−1

∂r̄∂z̄
þ 2

r̄
∂uk−1

∂r̄
−

2
r̄2
uk−1

�
þ χ3

GrT
Re2

cos φð ÞΘk−1 þ χ4
GrC
Re2

cos φð Þϕk−1

þ χ1
We

RK̄ð Þk−1 ∂ ϕoilð Þk−1
∂r̄

�
;

ð47Þ

vk ¼ vk−1 þ Δt̄ −uk−1
∂vk−1

∂r̄
− vk−1

∂vk−1

∂z̄

�
−
∂Pk−1

∂z̄
−

χ2
Re ⋅ Dað Þ v

k−1 þ χ2
Re

∂2vk−1

∂r̄2

�
þ 2

∂2vk−1

∂z̄2
þ ∂2uk−1

∂r̄∂z̄
þ 1

r̄
∂uk−1

∂z̄
þ 1

r̄
∂vk−1

∂r̄

�
þ χ3

GrT
Re2

sin φð ÞΘk−1 þ χ4
GrC
Re2

sin φð Þϕk−1

þ χ1
We

RK̄ð Þk−1 ∂ ϕoilð Þk−1
∂z̄

�
;

ð48Þ

Θk ¼ Θk−1 þ Δt̄ −uk−1
∂Θk−1

∂r̄
− vk−1

∂Θk−1

∂z̄

�
þ χ5
Pe

∂2Θk−1

∂r̄2
þ 1

r̄
∂Θk−1

∂r̄
þ ∂2Θk−1

∂z̄2

� �
− St

χ6
d̄
Θk−1 þ χ7

Ec
Re

2
∂uk−1

∂r̄

� �2

þ 2
uk−1

r̄

� �2�
þ 2

∂vk−1

∂z̄

� �2

þ ∂vk−1

∂r̄
þ ∂uk−1

∂z̄

� �2��
;

ð49Þ
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ϕk ¼ ϕk−1 þ Δt̄ −uk−1
∂ϕk−1

∂r̄
− vk−1

∂ϕk−1

∂z̄

�
þ εp 1 − αmð Þk−1Â Ã

ϕk−1
− C̄dð Þk−1Â Ãh

×
∂2vk−1

∂r̄2
þ 1

r̄
∂vk−1

∂r̄

� �
þ 1 − αmð Þk−1Â Ãn

×
∂ϕk−1

∂r̄
−

dC̄d

dΘ

� �
k−1 ∂Θk−1

∂r̄

� �
− ϕk−1

− C̄dð Þk−1À Á ∂ αmð Þk−1
∂r̄

�
∂vk−1

∂r̄

�
þ 1
Re ⋅ Sc

dC̄d

dΘ

� �
k−1 ∂2Θk−1

∂r̄2
þ 1

r̄
∂Θk−1

∂r̄

��
þ ∂2Θk−1

∂z̄2

�
þ d2C̄d

dΘ2

� �
k−1

×
∂Θk−1

∂r̄

� �2

þ ∂Θk−1

∂z̄

� �2� ���
;

ð50Þ

αmð Þk ¼ αmð Þk−1 þ Δt̄ −uk−1
∂ αmð Þk−1

∂r̄

�
− vk−1

∂ αmð Þk−1
∂z̄

þ 1 − αmð Þk−1Â Ã
K̄ 1ð Þk−1

−
Re
χ2

αmð Þk−1 ∂vk−1

∂r̄

� �2

K̄ 2ð Þk−1
�
;

ð51Þ

ϕoilð Þk ¼ ϕoilð Þk−1 þ Δt̄ −uk−1
∂ ϕoilð Þk−1

∂r̄

�
− vk−1

∂ ϕoilð Þk−1
∂z̄

�
;

ð52Þ

δ̄k ¼ δ̄k−1 þ Δt̄ ϕ1
1 − f xk−1

À ÁÀ Á
xk−1

�
×

1
Re ⋅ Sc

dC̄d

dΘ

� �
k−1∂Θk−1

∂r̄

����
r̄¼R̄eff

 !)
;

ð53Þ

xk ¼ xk−1 þ Δt̄ ϕ1f xk−1
À Á 2 1 − δ̄k−1

À Á
δ̄k−1 2 − δ̄k−1

À Á(

×
1

Re ⋅ Sc
dC̄d

dΘ

� �
k−1 ∂Θk−1

∂r̄
þ εp 1 − αmð Þk−1À Á�

× ϕk−1
− C̄dð Þk−1À Á ∂vk−1

∂r̄

�
r̄¼R̄eff

)
:

ð54Þ

The time-discretized boundary and initial conditions are
given as follows:

ukþ1
r̄ 0; z̄ð Þ ¼ 0;  vkþ1

r̄ 0; z̄ð Þ ¼ 0;  Θkþ1
r̄ 0; z̄ð Þ ¼ 0

ϕkþ1
r̄ 0; z̄ð Þ ¼ 0;  αm

kþ1
r̄ 0; z̄ð Þ ¼ 0;  ϕoil

kþ1
r̄ 0; z̄ð Þ ¼ 0

;

ð55Þ

ukþ1 λ; z̄ð Þ ¼ 0;  vkþ1 λ; z̄ð Þ ¼ 0;  Θkþ1 λ; z̄ð Þ ¼ β0 

ϕkþ1 λ; z̄ð Þ ¼ β1;   αmð Þkþ1 λ; z̄ð Þ ¼ 1;   ϕoilð Þkþ1 λ; z̄ð Þ ¼ 0
;

ð56Þ

ukþ1 r̄ ; 0ð Þ ¼ 0;  vkþ1 r̄ ; 0ð Þ ¼ 1;  Θkþ1 r̄ ; 0ð Þ ¼ 1 

ϕkþ1 r̄; 0ð Þ ¼ 0;   αmð Þkþ1 r̄; 0ð Þ ¼ 0 

ϕoilð Þkþ1 r̄; 0ð Þ ¼ 1 − ϕwater;

ð57Þ

ukþ1
z̄ r̄ ;1ð Þ ¼ 0;  vkþ1

z̄ r̄ ;1ð Þ ¼ 0;  Θkþ1
z̄ r̄;1ð Þ ¼ 0

ϕkþ1
z̄ r̄;1ð Þ ¼ 0;  αm

kþ1
z̄ r̄;1ð Þ ¼ 0;  ϕoil

kþ1
z̄ r̄;1ð Þ ¼ 0

;

ð58Þ

u0 r̄; z̄ð Þ ¼ 0;  v0 r̄; z̄ð Þ ¼ 1;  P0 r̄ ; z̄ð Þ ¼ 1 

Θ0 r̄ ; z̄ð Þ ¼ 1;  ϕ0 r̄ ; z̄ð Þ ¼ 0;  α0m r̄ ; z̄ð Þ ¼ 0 

ϕ0
oil r̄ ; z̄ð Þ ¼ 1 − ϕwater;  δ̄0 ¼ 0;  x0 ¼ 0:

ð59Þ

The linear iterative schemes given by Equations (37)–(54)
and the corresponding boundary and initial conditions given by
Equations (55)–(59) are discrete in time but continuous in space.

3.2. Spatial Discretization. The linear iterative schemes given
by Equations (37)–(54) are discretized in space using the
BSCM based on the Chebyshev–Gauss–Lobatto grid points
[5]. The domain r̄ 2 ½a; b� is transformed into the new domainbr 2 ½− 1; 1� using the following linear transformation:

r̄ ¼ 1
2

b − að Þbr þ 1
2

bþ að Þ: ð60Þ

Similarly, the domain z̄ 2 ½α; β� is transformed into the
new domain bz 2 ½− 1; 1� using the following linear transfor-
mation:

z̄ ¼ 1
2

β − αð Þbz þ 1
2

β þ αð Þ: ð61Þ

Here, a¼ 0; b¼ λ; α¼ 0, and β¼ L1, where L1 is a suf-
ficiently large finite number to approximate the asymptotic
behavior at infinity. Lagrange fundamentals (or Lagrange
coefficients) are chosen as the basis functions. We use the bivar-
iate Lagrange interpolating polynomials to approximate the
unknown functions uðr̄ ; z̄ ; t̄ kþ1Þ, vðr̄; z̄ ; t̄ kþ1Þ, Θðr̄ ; z̄ ; t̄ kþ1Þ,
ϕðr̄; z̄; t̄ kþ1Þ, αmðr̄ ; z̄ ; t̄ kþ1Þ, and ϕoilðr̄; z̄ ; t̄ kþ1Þ as follows:

u r̄ ; z̄ ; t̄ kþ1ð Þ ≈ ∑
M

m¼0
∑
N

n¼0
u brm;bzn; t̄ kþ1ð ÞLm brð ÞLn bzð Þ; ð62Þ

v r̄ ; z̄ ; t̄ kþ1ð Þ ≈ ∑
M

m¼0
∑
N

n¼0
v brm;bzn; t̄ kþ1ð ÞLm brð ÞLn bzð Þ; ð63Þ

Θ r̄; z̄; t̄ kþ1ð Þ≈ ∑
M

m¼0
∑
N

n¼0
Θ brm;bzn; t̄ kþ1ð ÞLm brð ÞLn bzð Þ; ð64Þ

ϕ r̄; z̄; t̄ kþ1ð Þ≈ ∑
M

m¼0
∑
N

n¼0
ϕ brm;bzn; t̄ kþ1ð ÞLm brð ÞLn bzð Þ; ð65Þ
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αm r̄; z̄; t̄ kþ1ð Þ ≈ ∑
M

m¼0
∑
N

n¼0
αm brm;bzn; t̄ kþ1ð ÞLm brð ÞLn bzð Þ;

ð66Þ

ϕoil r̄; z̄; t̄ kþ1ð Þ≈ ∑
M

m¼0
∑
N

n¼0
ϕoil brm;bzn; t̄ kþ1ð ÞLm brð ÞLn bzð Þ :

ð67Þ

The Lagrange cardinal polynomials are defined by the
following equation:

Lm brð Þ ¼ ∏
M

i¼ 0
i ≠m

br − br ið Þbrm − brið Þ ;  Lm br ið Þ ¼ δmi ¼
1; if i¼m

0; if i ≠m

(
;

ð68Þ

Ln bzð Þ ¼ ∏
N

j¼ 0
j ≠ n

bz − bzjÀ Á
bzn − bzjÀ Á ;  Ln bzjÀ Á¼ δnj ¼

1; if j¼ n

0; if j ≠ n

(
:

ð69Þ

The above interpolations utilize symmetrically distrib-
uted Chebyshev–Gauss–Lobatto grid points ðbri;bzjÞ defined
on the domain ½− 1; 1�× ½− 1; 1� by the following equation:

bri ¼ cos
πi
M

� �
 and bzj ¼ cos

πj
N

� �
; ð70Þ

for i¼ 0; 1;…;M;  j¼ 0; 1;…;N , where M and N denote the
number of collocation (or grid) points in r̄ and z̄ direction,
respectively. The Chebyshev–Gauss–Lobatto grid points
are indexed from right to left of the domains in r̄ and z̄ sincebrM ¼ − 1, br0 ¼ 1, bzN ¼ − 1, and bz0 ¼ 1. Hence, we take
r̄0 ¼ b; r̄1; r̄2;…; r̄M ¼ a and z̄0 ¼ β; z̄1; z̄2;…; z̄N ¼ α as
the computational grids.

The Chebyshev–Gauss–Lobatto grid points are selected
to discretize the continuous spatial derivatives (in both r̄ and
z̄) and convert them into a discrete matrix form at the collo-
cation points using the standard Chebyshev derivative matri-
ces ½Di;m� and ½dj; n� [21]. This is illustrated as follows:

∂u
∂r̄

����
r̄ i;z̄ jð Þ

≈ ∑
M

m¼0
∑
N

n¼0
u brm;bzn; t̄ kþ1ð ÞLn bzjÀ Á dLm brð Þ

dbr dbr
dr̄

� �����br¼br i
¼ DU kþ1ð Þ

j ;   at z̄ ¼ z̄ j  and t̄ ¼ t̄ kþ1

;

ð71Þ

∂u
∂bz
����

r̄ i;z̄ jð Þ
≈ ∑

M

m¼0
∑
N

n¼0
u brm;bzn; t̄ kþ1ð ÞLm brið Þ dLn bzð Þ

dbz dbz
dz̄

� �����bz¼bz j
¼ ∑

N

n¼0
dj;nU

kþ1ð Þ
n

;

ð72Þ

∂2u
∂r̄2

����
r̄ i;z̄ jð Þ

≈D2U kþ1ð Þ
j ; ð73Þ

∂2u
∂z̄2

����
r̄ i;z̄ jð Þ

≈ ∑
N

n¼0
d2j;nU

kþ1ð Þ
n ; ð74Þ

∂2u
∂r̄∂z̄

����
r̄ i;z̄ jð Þ

≈ ∑
N

n¼0
dj;nDU kþ1ð Þ

n ; ð75Þ

where

D¼ 2= b − að Þ½ � Di;m

Â Ã
;   for  i;m¼ 0; 1; 2;…;M; ð76Þ

U kþ1ð Þ
j ¼ u r̄0; z̄ j; t̄ kþ1

À Á
; u r̄1; z̄ j; t̄ kþ1

À Á
;…; u r̄ M ; z̄ j; t̄ kþ1

� �h i
T
;

ð77Þ

d¼ 2= β − αð Þ½ � dj;n
Â Ã

;   for  j; n¼ 0; 1; 2;…;N: ð78Þ

The partial derivatives of the other dependent variables,
i.e., vðr̄; z̄; t̄ kþ1Þ, Θðr̄; z̄; t̄ kþ1Þ, ϕðr̄ ; z̄ ; t̄ kþ1Þ, αmðr̄ ; z̄ ; t̄ kþ1Þ,
and ϕoilðr̄; z̄ ; t̄ kþ1Þ, with respect to r̄ and z̄ are similarly
transformed to discrete matrix form. Substituting the respec-
tive discrete derivative matrices into the temporal schemes
above yields matrix systems of the form:

AU¼ R; ð79Þ

where A is the coefficient matrix, U is the unknown column
vector, and R is the solution matrix. The corresponding
boundary conditions are imposed on the main diagonal of
the subblock matrices of A.

The system represented by Equation (79) is solved itera-
tively starting from appropriate initial guesses. The iteration
process is repeated for k¼ 1; 2; 3;…; until the prescribed
absolute error tolerance is achieved. MATLAB® software is
employed for the computer simulations.

4. Results and Discussion

The flow variables investigated in this study include axial
velocity, radial velocity, fluid temperature, wax concentration,
wax precipitation kinetics, and oil volume fraction. Various
flow parameters were varied, including Reynolds number
(Re), thermal Grashof number (GrT), mass Grashof number
(GrC), Eckert number (Ec), Schmidt number (Sc), andWeber
number (We), at the final time step. These parameters were
input into a computational program for independent varia-
tion. The results of the parametric study are presented in
graphs and tables and subsequently discussed.

4.1. Effects of Varying Reynolds Number. It is observed in
Figure 2 that an increase in Reynolds number leads to an
increase in the radial velocity profiles of waxy crude oil in the
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pipeline under laminar flow conditions. The Reynolds num-
ber represents the ratio of inertial forces to viscous forces
acting on a fluid element. The observed trend can be attrib-
uted to the enhanced shear stress acting on the fluid. As the
Reynolds number increases, the shear stress, which represents
the frictional force between adjacent fluid layers, becomes
strong enough to induce mixing between the layers. This
mixing, known as shear dispersion, facilitates the distribution
of wax particles more evenly across the pipe radius. The
increased shear stress enables the waxy molecules to over-
come the cohesive forces that tend to aggregate them, allow-
ing them to slide past each other more easily. Consequently,
the tendency of wax particles to deposit on the pipe walls
decreases, and the radial velocity profiles become more uni-
form across the radial direction.

It is observed in Figure 3 that an increase in Reynolds
number results in a decrease in the axial velocity profiles of
waxy crude oil in the pipeline under laminar flow conditions.
This trend can be attributed to the enhanced drag force
acting on the fluid. As the Reynolds number increases, the
drag force, which opposes the movement of fluid particles,
also intensifies. The increased drag force causes the fluid
particles to decelerate in the axial direction, leading to a
reduction in the average axial velocity. Additionally, with
an increase in Reynolds number, the axial velocity profile
becomes more nonuniform. The slower moving fluid parti-
cles near the oil–gel interface exert a retarding effect on the
faster moving fluid particles at the pipe centerline, contrib-
uting to the decline in average axial velocity.

It is observed in Figure 4 that an increase in Reynolds
number leads to an increase in the temperature profiles of
waxy crude oil in the pipeline under laminar flow conditions.
As the Reynolds number increases, the shear stress, which
represents the frictional force between adjacent fluid layers,
also intensifies. This increased shear stress causes the waxy
crude oil molecules to rub against each other with greater
force, generating heat due to internal friction. The generated

heat is then transferred to the surrounding fluid, resulting in
an overall increase in temperature. Furthermore, with an
increase in Reynolds number, the thickness of the thermal
boundary layer, which is a thin layer of fluid adjacent to the
oil-deposit interface where temperature gradients are signifi-
cant, decreases. This reduction in boundary layer thickness
can be attributed to the increased shear stress, which disrupts
the stagnant layer of fluid near the pipe wall and promotes
more efficient heat transfer. The thinner boundary layer
allows heat to dissipate more effectively from the oil-deposit
interface into the bulk fluid, contributing to the overall
increase in temperature profiles.

It is observed in Figure 5 that an increase in Reynolds
number leads to an increase in the total concentration profiles
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FIGURE 4: Effects of varying Re on the temperature profiles.
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of wax in crude oil pipelines under laminar flow conditions.
This trend arises because higher Reynolds numbers signify
stronger fluid motion driven by inertial forces relative to vis-
cous forces. As the Reynolds number increases, the waxy
crude oil encounters greater fluid movement in the radial direc-
tion, promoting mixing within the pipeline. This increased flow
facilitates the distribution and dispersion of waxy components
more evenly throughout the fluid, resulting in higher total con-
centration profiles. In essence, the enhanced fluid motion coun-
teracts the tendency of waxy components to settle or adhere to
the oil–gel interface, leading to a more uniform distribution of
waxy crude oil within the pipeline.

It is observed in Figure 6 that an increase in Reynolds
number leads to a decrease in the aggregation degree profiles

of wax crystals in crude oil pipelines under laminar flow con-
ditions. This trend is attributed to the stronger fluid motion
driven by inertial forces relative to viscous forces at higher
Reynolds numbers.When the Reynolds number increases, the
fluid’s enhanced radial velocity and turbulence promote bet-
ter mixing and dispersion of waxy components. This vigorous
flow hinders the waxy particles from sticking together or
forming aggregates, resulting in lower aggregation degree pro-
files. Essentially, the enhanced fluid motion disrupts the ten-
dency of waxy components to clump or adhere to each other,
thereby reducing aggregation within the pipeline.

It is observed in Figure 7 that an increase in Reynolds
number leads to a decrease in the volume fraction occupied
by crude oil in the pipeline under laminar flow conditions.
As the Reynolds number increases, shear stress between fluid
layers also increases. This increased shear stress causes the
waxy crude oil molecules to deform and flow more readily,
promoting the dispersion of wax crystals within the fluid.
The increased shear stress breaks up the agglomerates of
wax crystals, causing them to become more uniformly dis-
persed within the fluid, resulting in an overall increase in wax
concentration. This increase in wax concentration leads to a
reduction in the volume fraction of crude oil. Moreover, the
increased shear stress also minimizes wax deposition on the
oil–gel interface. As the waxy crystals are more effectively
dispersed, they are less prone to precipitation and adhesion
to the pipe wall, reducing the accumulation of wax deposits.
This reduced deposition enables more wax crystals to remain
in suspension within the bulk fluid, further contributing to
the reduction in the volume fraction of crude oil. This phe-
nomenon bears practical implications for the efficient trans-
port and processing of crude oil in pipelines, as it directly
impacts the quality and composition of the transported fluid.

4.2. Effects of Varying Mass Grashof Number. It is observed in
Figure 8 that an increase in the mass Grashof number leads
to a decrease in the radial velocity profiles of waxy crude oil
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FIGURE 5: Effects of varying Re on the concentration profiles.
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FIGURE 6: Effects of varying Re on the aggregation degree profiles.
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FIGURE 7: Effects of varying Re on the volume fraction of oil profiles.
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in the pipeline. Mass Grashof number indicates the ratio of
the buoyancy forces acting on the wax crystals to the viscous
hydrodynamic forces. The observed trend arises from the
enhanced buoyancy forces acting on the wax crystals associated
with higher mass Grashof number. This increased buoyancy
forces cause the wax crystals to rise toward the oil–gel interface,
forming a layer of wax-enriched fluid with higher viscosity
compared to the surrounding bulk oil, leading to a reduction
in its flow rate. Therefore, the velocity boundary layers adjacent
to the oil–gel interface thicken. The thickened boundary layer
impedes radial fluid motion, consequently reducing the radial
velocities across the pipe’s cross-sectional area.

It is observed in Figure 9 that an increase in the mass
Grashof number leads to an increase in the axial velocity
profiles of waxy crude oil in the pipeline. As the mass

Grashof number increases, the species buoyancy forces
become more dominant relative to viscous hydrodynamic
forces. Consequently, the buoyancy of the waxy crude oil
increases, making it more likely to move upward within the
pipeline. The upward movement of waxy crude oil induces a
flow of oil in the axial direction of the pipeline. This axial flow
thins the hydrodynamic boundary layer, the layer of oil adja-
cent to the pipe wall that is slowed down due to friction. The
thinned hydrodynamic boundary layer facilitates the unre-
stricted flow of waxy crude oil in the axial direction, resulting
in an increase in the axial velocity profile.

It is observed in Figure 10 that an increase in the mass
Grashof number leads to a decrease in the temperature pro-
files of waxy crude oil in the pipeline. With increasing mass
Grashof number, buoyant forces acting on the fluid become
more dominant than viscous forces. This means that the
warmer, less dense oil at the pipe centerline rises more read-
ily, while the cooler, denser oil near the oil–gel interface sinks
more readily. This circulation of oil promotes a more uni-
form distribution of heat throughout the pipe, consequently
leading to a reduced overall temperature profile.

It is observed in Figure 11 that an increase in the mass
Grashof number leads to a decrease in the total concentra-
tion profiles of wax molecules in the crude oil pipeline. The
observed trend arises from the increased dominance of spe-
cies buoyancy forces over viscous hydrodynamic forces.
With increasing mass Grashof number, buoyant forces pro-
pel wax molecules away from the oil–gel interface and
toward the bulk of the fluid. The enhanced natural convec-
tion currents within the oil promote a more comprehensive
mixing of wax molecules across the pipeline’s cross-section.
Consequently, the concentration of wax molecules near the
pipe centerline diminishes, resulting in a decline in the over-
all concentration profile.
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FIGURE 8: Effects of varying GrC on the radial velocity profiles.
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FIGURE 10: Effects of varying GrC on the temperature profiles.
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It is observed in Figure 12 that an increase in the mass
Grashof number leads to an increase in the aggregation degree
profiles of wax crystals on the pipe wall in crude pipelines.
This is because as the mass Grashof number increases, the
buoyancy forces acting on the fluid also intensify. These
intensified buoyancy forces drive a more vigorous convective
flow, which promotes mixing and shear stress within the fluid.
This increased turbulence in the flow creates eddies and vor-
tices that promote the dispersion and collision of wax crystals,
increasing the likelihood of their aggregation. Aggregation
occurs when wax crystals collide and adhere to each other,
forming larger clusters. These larger clusters aremore likely to
deposit on the pipe wall due to their increased inertia and
reduced ability to remain suspended in the flow.

It is observed in Figure 13 that an increase in the mass
Grashof number causes an increase in the volume fraction
occupied by crude oil in the pipeline. The observed trend is
because as the mass Grashof number increases, the buoyancy
forces acting on the wax crystals become stronger, causing
them to disperse more effectively within the crude oil. This
dispersion reduces the tendency of wax crystals to accumu-
late and form deposits on the pipe wall, thereby increasing
the volume fraction of crude oil flowing through the pipeline.

4.3. Effects of Varying Eckert Number. It is observed in
Figure 14 that an increase in the Eckert number leads to
an increase in the temperature profiles of waxy crude oil
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FIGURE 11: Effects of varying GrC on the concentration profiles.
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FIGURE 12: Effects of varying GrC on the aggregation degree profiles.
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FIGURE 13: Effects of varying GrC on the volume fraction of oil
profiles.
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FIGURE 14: Effects of varying Ec on the temperature profiles.
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within the pipeline. This phenomenon is attributed to the
enhanced viscous heating effect. The Eckert number repre-
sents the ratio of viscous dissipation to thermal conduction.
As the Eckert number increases, the viscous shear stresses
acting on the oil also increase. This increased shear stress
generates more heat through viscous dissipation, which in
turn increases the oil temperature. The increased tempera-
ture enhances Brownian motion of the wax crystals, causing
them to collide more frequently and break down into smaller
particles. These smaller particles are less prone to deposition
and contribute to a more uniform temperature distribution
across the pipeline.

4.4. Effects of Varying Weber Number. It is observed in
Figures 15 and 16 that an increase in the Weber number
causes a decrease in both radial and axial velocity profiles

of waxy crude oil within the pipeline. The Weber number
represents the ratio of inertial forces to surface tension forces
within the fluid. With an increase in the Weber number,
inertial forces, which are responsible for dispersing fluid
particles, become relatively more dominant in comparison
to surface tension forces, which act to draw fluid particles
together. Consequently, the fluid’s resistance to deformation
or breakup due to surface tension weakens as inertial forces
take precedence. This weakening leads to a decrease in the
fluid’s capacity to sustain radial and axial velocities, resulting
in a decrease in the velocity profiles.

It is observed in Figure 17 that an increase in the Weber
number leads to a decrease in the temperature profiles of
waxy crude oil within the pipeline. This decrease is attributed
to the enhanced mixing and heat transfer between the oil and
the surrounding environment. With an increase in theWeber
number, inertial forces, which are responsible for fluidmixing
and turbulence, become relatively more dominant compared
to surface tension forces, which tend to dampen mixing. This
increased dominance of inertial forces leads to enhanced tur-
bulence and mixing within the oil, promoting heat transfer
from the oil’s core to its outer regions. Consequently, the
temperature at the pipeline’s centerline, which represents
the core of the flow, decreases. The increased turbulence
also results in the formation of a thinner thermal boundary
layer near the pipe wall. The thermal boundary layer is a
region of the fluid where temperature gradients are signifi-
cant. A thinner boundary layer indicates more efficient heat
transfer between the oil and the surrounding environment,
further contributing to the decrease in temperature of the
bulk oil.

It is observed in Figure 18 that an increase in Weber
number causes a decrease in the total concentration profiles
of waxy crude oil within the pipeline. The observed trend
is attributed to enhanced mixing and shear-induced wax
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FIGURE 15: Effects of varying We on the radial velocity profiles.
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FIGURE 16: Effects of varying We on the axial velocity profiles.
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FIGURE 17: Effects of varying We on the temperature profiles.
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dispersion. With an increase in the Weber number, inertial
forces, which are responsible for fluid mixing and turbulence,
become relatively more dominant compared to surface ten-
sion forces, which tend to promote wax particle aggregation
and deposition. The increased turbulence promotes the mix-
ing of the oil phases, distributing waxy particles more uni-
formly throughout the pipeline cross-section. This reduces
the concentration of wax particles in the near-wall region,
where deposition is most likely to occur.

It is observed in Figure 19 that an increase in the Weber
number causes an increase in the aggregation degree profiles
of wax crystals within crude oil pipeline. This increase is
attributed to the weakening of surface tension forces relative
to inertial forces as the Weber number increases. This weak-
ening allows wax crystals to overcome surface tension and

collide with each other more frequently. Consequently, wax
crystals are more likely to aggregate or stick together and
form larger clusters, leading to higher aggregation degree
profiles near the oil–gel interface.

It is evident in Figure 20 that an increase in the Weber
number causes an increase in the volume fraction occupied
by crude oil within the pipeline. The observed trend is because
higher Weber numbers represent stronger inertial forces rela-
tive to surface tension. As a result, the fluid is less constrained
by surface tension and has a greater tendency to flow as a
continuous, bulk fluid rather than forming stable droplets.
This leads to a higher volume fraction occupied by crude oil
within the pipeline because the fluid is less likely to adhere to
the walls and is more inclined to occupy a larger portion of the
pipeline’s internal volume.

4.5. Skin Friction Coefficient and Rates of Heat and Mass
Transfer. The local skin friction coefficient, the local Nusselt
number, and the local Sherwood number are computed. The
parameters Re, GrT, GrC, Ec, Sc, and We are varied on the
local coefficient of skin friction (CfRe), local Nusselt number
(Nuz), and local Sherwood number (Shz), and their numeri-
cal values are presented in Table 1.

From the table, the following observations are noted:

(i) An increase in the Reynolds number (Re) increases
the skin friction coefficient but leads to a decrease in
the Nusselt number and Sherwood number. This
phenomenon is a consequence of the relationship
between wall shear stress and the velocity gradient.
As Re rises, the velocity profile increases, resulting in
higher wall shear stress and, consequently, an elevated
skin friction coefficient. Additionally, the increase in Re
causes the thermal boundary layer to thicken, leading
to a decreased Nusselt number. The Sherwood num-
ber, on the other hand, diminishes because higher Rey-
nolds numbers cause a thickening of the concentration
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FIGURE 18: Effects of varying We on the concentration profiles.
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FIGURE 19: Effects of varying We on the aggregation degree profiles.
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FIGURE 20: Effects of varying We on the volume fraction of oil.
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boundary layer, reducing the rate of species transport
within it.

(ii) An increase in the thermal Grashof number (GrT)
increases the skin friction coefficient and Sherwood
number but has no effect on the Nusselt number.
The rise in the skin friction coefficient is attributed
to the thermal Grashof number causing an increase
in velocity, which subsequently thins the velocity
boundary layer. Conversely, the elevation in the
Sherwood number is a consequence of the thermal
Grashof number leading to a reduction in the thickness
of the concentration boundary layer, thereby increas-
ing the rate of species transport within this layer. The
Nusselt number, however, remains unaffected.

(iii) An increase in themassGrashof number (GrC) results
in an increase in the skin friction coefficient, Nusselt
number, and Sherwood number. This observed pat-
tern is because the higher values of the mass Grashof
number lead to the thinning of the velocity, thermal,
and concentration boundary layers. This, in turn,
results in a higher rate of transportation within these
boundary layers, accounting for the increased values
of the skin friction coefficient, Nusselt number, and
Sherwood number.

(iv) An increase in the Eckert number (Ec) causes an
increase in the skin friction coefficient and Sher-
wood number but decreases the Nusselt number.
This pattern arises from the fact that higher values
of the Eckert number result in an increased fluid
velocity, subsequently leading to higher wall shear
stress. As the Eckert number rises, it also contributes
to the thickening of the thermal boundary layer,

which reduces the heat transfer rate at the pipeline
wall, consequently lowering the Nusselt number.
However, this thickening of the thermal boundary
layer enhances the rate of species transport, leading
to an increase in the Sherwood number.

(v) An increase in the Schmidt number (Sc) causes a
decrease in the skin friction coefficient and Nusselt
number but increases the Sherwood number. This
phenomenon is attributed to the influence of Schmidt
number on fluid behavior. As Sc increases, it decele-
rates the axial velocity of fluid particles, causing the
velocity boundary layer to thicken, which in turn
reduces the motion of fluid particles and leads to a
decrease in the skin friction coefficient. Additionally,
the thermal boundary layer thickness increases with
higher Sc, resulting in reduced heat transfer at the
pipeline wall and a lower Nusselt number. In contrast,
the concentration boundary layer thickness decreases
with increasing Sc, leading to an enhanced rate of
species transportation and an increase in the Sher-
wood number.

(vi) An increase in the Weber number (We) decreases
the skin friction coefficient but it increases the Nus-
selt number and Sherwood number. This trend can
be attributed to the influence of the Weber number
on the behavior of the fluid. An increase in We
results in the deceleration of fluid particle velocities,
leading to the thickening of the velocity boundary
layer, which subsequently reduces particle motion
and causes a decrease in the skin friction coefficient.
Moreover, an increase in We causes the thermal
boundary layer thickness to decrease, resulting in a
higher rate of heat transfer. The Sherwood number
experiences an increase because higher values of the
Weber number lead to a reduction in concentration
boundary layer thickness, enhancing the rate of spe-
cies transport.

5. Validation

The findings from this research are validated against experi-
mental data from Ying et al. [14]. In particular, the fluid
temperature profile is compared in both studies, as shown
in Figures 21 and 22. It is observed that the temperature pro-
files follow a similar trend as time increases. This validation
confirms the model’s accuracy in predicting wax deposition
under laminar flow conditions.

6. Summary and Conclusions

This study presents a novel numerical investigation of wax
deposition from multiphase flow in field-scale crude oil pipe-
lines. Waxy crude oil and the solid wax deposit are treated as
two immiscible phases separated by a smooth, continuous
interface. Two deposition mechanisms, such as molecular diffu-
sion and shear dispersion, are considered. Themodel equations,
in the form of coupled nonlinear PDEs governing the flow, are
discretized in time using a second-order semi-implicit finite

TABLE 1: Skin friction coefficient and rates of heat and mass transfer
for various values of the parameters Re, GrT, GrC, Ec, Sc, and We.

Re GrT GrC Ec Sc We CfRe Nuz Shz
2.24 5 5 1.2 1.5 1.0 0.1230 1.9907 1.3916
3.24 5 5 1.2 1.5 1.0 0.1874 1.9912 1.3206
4.24 5 5 1.2 1.5 1.0 0.2926 1.9911 1.2494
5.24 5 5 1.2 1.5 1.0 0.4022 1.9908 1.1864
2.24 10 5 1.2 1.5 1.0 0.1246 1.9907 1.3926
2.24 15 5 1.2 1.5 1.0 0.1262 1.9907 1.3935
2.24 20 5 1.2 1.5 1.0 0.1277 1.9907 1.3944
2.24 5 10 1.2 1.5 1.0 0.2038 1.9915 1.4182
2.24 5 15 1.2 1.5 1.0 0.2793 1.9921 1.4438
2.24 5 20 1.2 1.5 1.0 0.3495 1.9925 1.4683
2.24 5 5 2.7 1.5 1.0 0.1233 1.9890 1.3922
2.24 5 5 4.2 1.5 1.0 0.1236 1.9874 1.3928
2.24 5 5 5.7 1.5 1.0 0.1238 1.9857 1.3933
2.24 5 5 1.2 3.0 1.0 0.1098 1.9906 1.4851
2.24 5 5 1.2 4.5 1.0 0.1055 1.9905 1.5162
2.24 5 5 1.2 6.0 1.0 0.1033 1.9905 1.5318
2.24 5 5 1.2 1.5 1.5 0.1113 1.9919 1.5007
2.24 5 5 1.2 1.5 2.0 0.1047 1.9925 1.5614
2.24 5 5 1.2 1.5 2.5 0.1004 1.9929 1.6002
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difference scheme and in space using the BSCM. The study
analyzes the impact of varying the flow parameters on the
flow variables. The following conclusions are drawn from
this study:

(i) The aggregation of wax crystals in the pipeline
decreases by at most 2.5% with increasing Reynolds
number from 2.2361 to 3.1361. However, it increases
by at most 3.4% with increasing mass Grashof num-
ber from 5 to 11. Additionally, it increases by at most
4.8% with increasingWeber number from 1.0 to 2.5.

(ii) The total concentration of waxy components in the
pipeline increases by at most 10.0% with increasing
Reynolds number from 2.2361 to 3.1361. However,
it decreases by at most 8.0% with increasing mass
Grashof number from 5 to 11. Additionally, it

decreases by at most 20% with increasing Weber
number from 1.0 to 2.5.

(iii) The fraction of the volume occupied by waxy crude
oil in the pipeline decreases by up to 10.0% with
increasing Reynolds number from 2.2361 to 3.1361.
However, it increases by up to 9.0% with increasing
mass Grashof number from 5 to 11, and by up to
25% with increasingWeber number from 1.0 to 2.5.

(iv) The temperature of waxy crude oil in the pipeline
increases by at most 0.001% with increasing Rey-
nolds number from 2.2361 to 3.1361, and by at
most 0.002% with increasing Eckert number from
1.2 to 1.5. However, it decreases by at most 0.0034%
with increasing mass Grashof number from 5 to 11.
Additionally, it decreases by at most 1.3% with
increasing Weber number from 1.0 to 2.5.

(v) The radial velocity of waxy crude oil in the pipeline
increases by at most 1.0% with increasing Reynolds
number from 2.2361 to 3.1361. However, it decreases
by at most 1.8% with increasing mass Grashof num-
ber from 5 to 11. Additionally, it decreases by at most
1.3% with increasing Weber number from 1.0 to 2.5.

(vi) The axial/streamwise velocity of waxy crude oil in
the pipeline decreases by at most 0.7% with increas-
ing Reynolds number from 2.2361 to 3.1361 and by
at most 1.2% with increasing Weber number from
1.0 to 2.5. However, it increases by at most 3.0%
with increasing mass Grashof number from 5 to 11.

(vii) Skin friction coefficient increases from 0.1230 to
0.4022 with increasing Reynolds number from
2.2361 to 5.2361 and from 0.1230 to 0.1277 with
increasing mass Grashof number from 5 to 20. It
also increases from 0.1230 to 0.1334 with increas-
ing Weber number from 1.0 to 2.5.

(viii) The Nusselt number increases from 1.9907 to 4.9834
with increasing Reynolds number from 2.2361 to
5.2361 and from 1.9907 to 2.0225 with increasing
mass Grashof number from 5 to 20. It also increases
from 1.9907 to 2.0434 with increasing Weber num-
ber from 1.0 to 2.5.

(ix) The Sherwood number increases from 1.3916 to
7.2234 with increasing mass Grashof number from
5 to 20 and from 1.3916 to 1.6002 with increasing
Weber number from 1.0 to 2.5.

The insights gained from this study provide valuable
guidance for optimizing pipeline operations, designing effec-
tive wax control strategies, and enhancing pipeline integrity
management in field-scale crude oil transportation systems.
Pipeline operators can utilize the model to identify critical
flow parameters influencing wax deposition and optimize
these parameters to minimize wax accumulation. While the
current study focuses on laminar flow, future research should
extend this study to incorporate the effects of turbulence and
droplet interactions, as these factors could also play a vital
role in wax deposition.
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FIGURE 22: Temperature drop curves at some typical positions in the
pipe (Ying et al. [14]).
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study).
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Nomenclature

Symbols

Cp: Specific heat at constant pressure, (J/(kg·K))
Cinterface: Wax concentration at oil–gel interface, (kg/m3)
Dp: Shear dispersion coefficient, (m)
Dd: Molecular diffusion coefficient of wax, (m2/s)
d̄ : Dimensionless diameter of water droplet
g: Gravitational acceleration, (m/s2)
k: Thermal conductivity, (W/m·K)
K1: Smooth positive function of fluid temperature, (1/s)
K2: Smooth positive function of fluid temperature, (1/Pa)
L∞: A sufficiently large finite number to approximate

the asymptotic behavior at infinity, (dimensionless)
P: Pressure, (dimensionless)
Q: Volume flow rate, (m3/s)
R: Radius of clean pipe, (m)
Reff: Effective radius for oil flow, (m)
Tinterface: Fluid temperature at oil–gel interface, (K)
(r̄ , z̄): Dimensionless cylindrical coordinate variables
t̄ : Dimensionless time
(u,v): Dimensionless velocity components
x: Weight fraction of wax crystals in the gel layer
Da: Darcy number
Ec: Eckert number
GrT: Thermal Grashof number
GrC: Mass Grashof number
Pr: Prandtl number
Pe: Peclet number
Re: Reynolds number
St: Stanton number
Sc: Schmidt number
We: Weber number
Cf: Skin friction coefficient
Nuz: Nusselt number
Shz: Sherwood number.

Greek Symbols

αavg: Average aspect ratio of the wax crystals
αm: Aggregation degree of wax, (dimensionless)
βC: Concentration volume expansion coefficient, (m3/kg)
βT: Thermal volume expansion coefficient, (1/K)
δ̄: Dimensionless deposit thickness
μ: Coefficient of dynamic viscosity, (Ns/m2)
ϕ: Dimensionless total concentration of wax
ϕi: Proportion of volume occupied by the ith phase
ρ: Fluid density, (kg/m3)
σ: Surface tension coefficient, (N/m)
Θ: Dimensionless temperature of waxy crude oil
ϕ: Angle of elevation of pipe from the horizontal.

Subscripts

f: Fluid phase
i 2: (Oil, water, gel)

water: Water droplets
oil: Crude oil
gel: Deposit or gel-like layer
mix: Mixture fluid
wall: Condition at the pipe inner wall
interface: Condition at the oil–gel interface
∞: Condition at the free stream.
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