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Tis paper shows the healthmonitoring and assessment of a three-phase inductionmotor in abnormal conditions using amachine
learning algorithm.Te convolutional neural network (CNN) and recurrent neural network (RNN) algorithms are the prominent
methods used in machine learning algorithms, and the combined method is known as the CRNN method. Te abnormal
conditions of a three phase-induction motor are represented by three-phase faults, line-to-ground faults, etc. Te pattern of fault
current is traced, and key features are extracted by the CRNN algorithm. Te performance parameters like THD (%), accuracy,
and reliability of abnormal conditions are measured with the CRNN algorithm. Te assessment of abnormal conditions is being
realized at the terminals of a three-phase induction motor. A fuzzy logic controller (FLC) is also used to assess such abnormalities.
It is observed that performance parameters are found to be better with the CRNN method in comparison to CNN, RNN, ANN,
and other methods. Such a realization makes the system more compatible with abnormality recognition.

1. Introduction

Induction motors are one of the most versatile and fre-
quently used variable-speed drives for industrial and do-
mestic applications. Normally, the three-phase supply-based
induction motor is used to drive heavy loads. Te major
challenge with the induction motor is maintaining the
normal supply. Te changing loads, fault conditions, and
overspeeding afect the supply and create abnormalities that
can be assessed using the machine learning algorithm. Te

monitoring aspect of machine failure diagnostics is im-
portant, and for recognizing a failure in mechanical systems,
classifying the error, and recognizing group faults, nu-
merous sensors are installed to gather information from
thermal imaging or vibration. Afterward, these data are
analyzed to see whether a defect has occurred or not, and if
so, what kind of fault it is.

Traditionally, to identify a machine’s malfunction, a
sensor is required for signal acquisition, feature selection,
and fault categorization, as well as extraction. Sensing data

Hindawi
Mathematical Problems in Engineering
Volume 2023, Article ID 1264345, 8 pages
https://doi.org/10.1155/2023/1264345

mailto:gksinghgu@yahoo.com
https://orcid.org/0000-0003-2365-4333
https://orcid.org/0000-0002-0042-8694
https://orcid.org/0000-0002-7279-6883
https://orcid.org/0000-0003-0254-0580
https://orcid.org/0000-0002-2298-9214
https://orcid.org/0000-0001-7622-5490
https://orcid.org/0000-0003-3765-9071
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/1264345


acquisition entails gathering sensor data while the device in
use is active. Conventional extracted features include
original sensor data from time data in both the temporal and
frequency domains. A new framework for deep learning is
proposed to achieve very accurate machine fault detection
and to understand how to facilitate and expedite deep neural
network training networks. In comparison to current
techniques, the suggested technique is more accurate and
quicker to train. Te initial sensor data are utilized using
wavelet transformation to turn the data into pictures, fol-
lowed by assembling the time-frequency distributions.Ten,
a trained network is applied to extract more fundamental
features, including the time-frequency label [1–5]. Te
higher tiers of the algorithm are then fne-tuned using
photographs and neural network design. Te document
causes a bug in the system, in which experiments and a
diagnosis pathway are used to confrm the pipeline’s ef-
ciency and applicability in general on three fundamental
mechanical data sets containing gearboxes, induction mo-
tors, and bearings with three-time series samples of diferent
sizes [6–11].

Te proposed method can be used to diagnose faults in
rotary machine systems’ exterior bearings and uses deep
learning and information fusion. Te suggested method
takes as its direct input raw signals from various phases of
the motor current, from which features are then retrieved.
Afterward, CNN classifes each feature set separately for the
network of neurons. An innovative decision-level infor-
mation fusion strategy is presented to combine data from all
of the used convolutional neural networks in order to im-
prove classifcation accuracy. CNN provides higher accuracy
in its image recognition pattern and a better approach to
automatically detecting important features without any
human supervision. On the contrary, RNN produces the
sequential output, which depends on time-sequence events.
Decision-level data processing has difculty because of
straightforward pattern categorization problems that can be
efciently solved by well-known supervised learning algo-
rithms. Te suggested fault diagnosis product’s efcacy is
validated by tests that used genuine bearing fault signals
[12–14]. Tis work describes a technique for identifying
bearing defects and tracking bearing deterioration in electric
motors. Te method collects fault features that refect var-
ious faults based on signal kurtosis and cross-correlation,
and the characteristics are then integrated to create a health
index using hierarchical clustering and a semisupervised k-
nearest neighbour distance measure. Experiments with a
computer cooling fan motor bearing and a simulator for
machinery faults were used to validate the method. Te
technique can locate defects under masking noise and di-
agnose faults in their early stages. Additionally, it ofers a
health index that monitors fault degeneration while ex-
cluding intermittent defects. Furthermore, inaccurate ref-
erence data are not necessary [15–18]. In theory,
sophisticated artifcial intelligence-based systems provide
early fault identifcation, but their complexity conficts with
instant messaging are fundamental characteristics.

Tis manuscript utilizes the motor current signature,
which is already present in standard drives, and proposes a

combination of simulations and upsampling to practice the
neural network efectively without any need for numerous
broken prototypes, which is the main obstacle to industrial
viability [19–22]. Deep conviction systems for biomedical
applications using intuitive procedures with a cross-point
approach are analyzed. Te mechanism of the Internet of
things (IoT) integrated with radio frequency identifcation
(RFID) technology for healthcare systems gives fruitful
information. Biomedical signals for healthcare using
Hadoop infrastructure with artifcial intelligence and fuzzy
logic interpretation show the health analysis [23–25]. An
induction motor driven by an inverter and its diagnosis
using a machine learning algorithm are well analyzed. With
the help of growing curvilinear component analysis, the
stator of an induction motor helps to track the fault at the
grid terminal. A diagnosis of the IGBTconverter and current
sensor fault for the inverter-driven induction motor using
the online Simulink method is well explained in [26–28].

2. Mathematical Modeling of Three-phase
Induction Motor

Te mathematical modeling of a three-phase induction
motor is designed in the d-q reference frame coordinates.
Te conversion of three-phase coordinates to (d−q) coor-
dinates is assessed using the Clarke and Park transformation.
In the Clarke transformation, three-phase (a, b, and c)
coordinates are converted into stationary reference coor-
dinates (α−β). A further Park transformation is used to
convert the stationary reference coordinates (α−β) into
synchronous reference frame coordinates (d−q). Te
mathematical modeling of a three-phase induction motor is
represented as

Vsd � Rsisd +
d

dt
ϕsd − ωsϕsq

Vsq � Rsisq +
d

dt
ϕsq + ωsϕsq

Vrd � Rrird +
d

dt
ϕrd − ωrϕrq

Vrq � Rrirq +
d

dt
ϕrq + ωrϕrd

ϕsd � Lsisd + Lmird

ϕsq � Lsisq + Lmirq

ϕrd � Lsird + Lmisd

ϕrq � Lsirq + Lmisq

, (1)

where Vsd and isd are d-axis stator voltage and stator current,
respectively. Vrd and ird are d-axis rotor voltage and rotor
current, respectively. Vsq and isq are q-axis stator voltage and
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stator current, respectively. Vrq and irq are q-axis rotor
voltage and rotor current, respectively.

Te torque equation is given by

Te − TL � J
d ωr( 

dt
. (2)

Electromagnetic torque is given by

Te � p ϕsdisq − ϕsqisd , (3)

where p is the pole pair.
Te general structure of a grid-connected three-phase

induction motor is shown in Figure 1.

3. Design of the Convolution Neural
Network (CNN)

CNN is defned as a product of the two inputs in the real-
time domain. A particular kind of feedforward neural
network is the convolutional neural network (CNN). It can
be used for target recognition, segmentation, and image
classifcation, among other things. Te CNN model is dif-
ferent from other neural networks in that it has convolu-
tional and pooling layers. Te feedforward network can be
illustrated as a function, as given in the following equation:

Y � f(X, f). (4)

where X � x[ )1, x2, x3, .....xn] are inputs vectors.
Y � y 1, y2, y3, .....yn] are output vectors. f is the faulty
current at the diferent level.

Te convolution layer’s goal is to derive local charac-
teristics from input data, as shown in the following equation:

YF � conv(Y, f). (5)

YF � conv(Y, convf). (6)

Conv is a convolution layer, YF is a set of extracted
features, and extraction of the convolution layer fromX. Yf is
the set of extracted features after the pooling layer. CNN has
Softmax layers to integrate and categorize features as part of
a classifcation model.Te compressed features of the output
are given as Yf , as shown in the following equation:

YF � pool YF, poolf( ,

YFF � Softmax FC, YF, poolf( ( .
(7)

Te architecture of CNNwith a pooling layer is shown in
Figure 2, and data extraction from Table 1 process is shown
in Figure 3.

4. Design of the Recurrent Neural
Network (RNN)

RNNs are a variety of feedforward neural networks . RNN is
most often used for data that has a sequence, for example in
speech recognition and translation software. A popular RNN
model was the LSTM LSTM-RNN, which uses memory cells
to retain long-term data to address the issue of vanishing
gradients. As a classifcation algorithm, LSTM-RNN

additionally includes Softmax layers as well as full levels [22].
Te architecture of the RNN is shown in Figure 4. Te
normalized output of the RNN is represented mathemati-
cally, as shown in the following equation:

YFF � Softmax F( )C LSTM YF, poolf( ( . (8)

5. Design of the Convolution Recurrent Neural
Network (CRNN)

CRNN is a combination of CNN and RNN.Te efectiveness
of CNN-based models in utilizing geographic information
characteristics, such as those seen in photographs, is good.
CNN, unfortunately, is unable to handle sequential data.
RNN-based models, on the other hand, excel at modeling
sequential data, such as texts. A novel model called CRNN is
suggested, which combines CNN and RNN and is infuenced
by their traits. Te characteristics of the inputs are extracted
by the CNN, and the retrieved features are further processed
by the RNN to lessen the dependence on variables under
various variable situations. By eliminating the ambiguity and
boundary conditions of the images, it investigates the op-
tions one at a time [22]. Te general equations of CRNN are
listed in the following equations:

it � σ W( )iwxt+Uihht−1+bi, (9)

f t � σ W( )fwxt+Ufhht−1+bf, (10)

ot � σ W( )owxt+Uohht−1+bo, (11)

gt � tanh W( )gwxt+Ughht−1+bg, (12)

ct � f t ∘ ct−1 + it ∘gt, (13)

ROTOR

FAULTS

Grid
terminal

STATOR

Figure 1: Structure of a grid-connected three-phase induction
motor [6].
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ht � ot ∘ tanhct, (14)
where t is the LSTM step. xt is the input data. ht is the hidden
data. ct is the cell state. it, ft, and ot are the input gate, forget
gate, and output gate, respectively. Ws, Us, and bs are the
weights and bias. σ, tanh,◦ are sigmoid functions, hyperbolic
tangents, and multiplicators, respectively. Te mixed solu-
tion of CNN and RNN in mathematical form for evaluating
the various fault conditions of a three-phase induction
motor is shown as

YFF � Softmax FC LSTM YF, poolf( ,((

conv(Y, convf), pool YF, poolf( .
(15)

Te architecture of the problem solution of CRNN is
shown in Figure 5. Te forget gate is mathematically
represented by ct

f� ftoct−1, which means that it is the dot
product of the convolution of two inputs. While taking the
dot product of two inputs, a few elements are removed from
the output, which can be forgotten. LSTM is a long short-
term memory that is an extended part of an RNN, and it
occurs when gradient failure.

6. Result and Performance Analysis of the
Abnormal Condition

In previous sections, the designs of CNN, RNN, and CRNN
have been discussed in detail. Now, the performance parameters
like THD (%), accuracy, and reliability will be estimated for the
performance analysis of the single and multilabeling data. Te
comparison of THD (%) of fault current for single and mul-
tilabeling data is shown in Table 2. Such a graphic comparison is
also depicted in Figure 6. In the same way, a comparison of the
accuracy of fault current for single and multilabeling data is
shown in Table 3 for the precision of 1.2% and 1.9%. Such a
graphic comparison is also depicted in Figure 7.

In the same way, a comparison of the reliability of fault
current for single and multilabeling data is shown in Table 4
for the precisions of 1.2% and 1.9%. Such a graphic com-
parison is also depicted in Figure 8.

It is observed that in Figures 6–8, the least and improved
values of THD (%), accuracy, and reliability are attained with
CRNN in comparison to CNN, RNN, and ANN [19]. THD is
defned as total harmonic distortion, which is represented as

THD �

�����
1
g
2 − 1



, (16)

whereg is the distortion factor, which is given in the fol-
lowing equation:

g �
X01( rms
(X)rms

, (17)

where X01 is the fundamental harmonic component, and
X1 is the rms input value.

7. Conclusion

Tis study uses a machine learning method to monitor and
evaluate a three-phase induction motor’s health when it is in an
aberrant state. Te CRNN approach, which combines the well-

Input

Convolution Pooling

Fully
Connected

Output

Features
extraction

Classifications

Figure 2: Architecture of the CNN [1].

Table 1: Fault level at various conditions.

Level (f ) L1 L2 L3 L4 L5 L6 L7 L8 L9
Tree-phase fault 1 0 1 0 1 1 1 0 0
Line to ground fault 0 1 1 1 0 0 1 1 0
Line to line fault 1 1 0 0 0 1 1 1 0

Input Data Data Extraction

Data
Characterization

OUTPUT

Figure 3: Data extraction of the CNN [2].
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Figure 4: Architecture of the RNN [22].
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Figure 5: Architecture of the CRNN.
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Table 2: Comparison of THD (%) of fault current with various methods.

Data CRNN CNN RNN ANN [19]
Single label 5.66 7.98 8.98 10.33
Multilabel 6.12 8.97 9.98 11.22

0

2

4

6

8

10

12

CRNN CNN RNN ANN [19]

TH
D

 (%
)

Single label
Multi-label

Figure 6: Graphical comparison of THD (%) with various methods.

Table 3: Comparison of the accuracy of fault current with various methods.

Data
1.2% precision 1.9% precision

CRNN CNN RNN ANN [19] CRNN CNN RNN ANN [19]
Single label 1.36 2.36 2.66 3.69 1.56 2.98 3.78 4.65
Multilabel 1.45 2.89 3.21 4.23 1.61 2.91 3.06 4.02

0
1
2
3
4
5
6

1.2% precision
CRNN

1.2% precision
CNN

1.2% precision
RNN

1.2% precision
ANN [19]

1.9% precision
CRNN

1.9% precision
CNN

1.9% precision
RNN

1.9% precision
ANN [19]

Single Label
Multi Label

Figure 7: Graphical comparison of reliability with various methods for diferent precision values.

Table 4: Comparison of reliability of fault current with various methods.

Data
1.2% precision 1.9% precision

CRNN CNN RNN ANN [19] CRNN CNN RNN ANN [19]
Single label 1.12 2.33 2.99 4.12 1.03 2.94 3.66 4.63
Multilabel 1.23 2.64 3.33 5.12 1.16 2.98 3.89 4.88
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known CNN and RNN algorithms, is one of the main machine
learning algorithms. Tree-phase faults and line-to-ground
faults, are some of the abnormal conditions of a three-phase
induction motor. By using the CRNN technique, the fault
current’s pattern is tracked and its main features are retrieved.
With the CRNN algorithm, performance metrics including
THD (%), accuracy, and reliability of abnormal conditions are
measured. Also, the performance metrics including THD (%),
accuracy, and reliability of abnormal conditions are measured.
Tis abnormal condition assessment is realized at the terminals
of a three-phase induction motor. An artifcial neural network
(ANN) is also used to evaluate this irregularity.When compared
toANN,RNN,CNN, and other approaches, theCRNNmethod
is proven to have better performance metrics. Tis realization
improves the system’s ability to detect abnormalities.

8. Future Scope

It is also a possibility that performance parameters like THD
(%), accuracy, and reliability of abnormal conditions can be
improved by using other advanced methods for the perfect
recognition of abnormal conditions in induction motors.
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