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In this study, we consider a network of nonlocally coupled Brockett oscillators (BOs) with attractive and repulsive (AR) couplings
to illustrate the existence of diverse collective dynamical behaviors, whereas previous studies solely concentrated on syn-
chronization. In the absence of coupling, the individual BO oscillator shows stable periodic oscillations (POs) or stable steady state
(SS) depending on the critical values of the parameters. We first begin by examining the collective dynamics by setting the critical
value of the parameters at the active (PO) region. A diverge collective dynamical states are manifested for a fixed nonlocal coupling
range with rising coupling magnitude. Notably, the lower coupling strength exhibits two distinct dynamical patterns at lower and
higher transients. At lesser transients, for example, transient dynamics of desynchronization, chimera, and traveling wave states
are observed. At larger time periods, the transient dynamics disappear with the emergence of a synchronized state. Increasing the
coupling strength results in a unique state of traveling wave or synchronized state for smaller and larger time periods depending
on the coupling strength. Increasing the coupling strength further gives rise to clustering behaviors. Importantly, the considered
system attains cluster oscillation death (COD) through a cluster oscillatory state (COS). Finally, there exists a chimera death at
a larger coupling strength. The observed dynamical transitions are further demonstrated through the two-parameter analysis by

setting different critical thresholds.

1. Introduction

Complex systems around us, such as social systems, bi-
ological networks, and power grids, comprise a large
number of individual constituents, and they interact to
yield a wide range of macroscopic cooperative states.
Understanding such a complicated system can be aided by
mathematical modeling. Depending on the needs of system
behavior, distinct chaotic and periodic oscillator models
have been established [1-5]. To mimic the behavior of the
complex system, the number of individual constituents
connected under various coupling interactions, including
local, global, and nonlocal coupling connectivities, as well
as more complex interactions like random, small-world,
and scale-free connectivities. Such a framework of network

can act as an excellent platform for replicating the dy-
namical behavior of many natural and man-made complex
systems. Importantly, coupling interaction among ele-
ments plays a crucial role. Moreover, depending on the
involved parameters, coupling architecture, and static and
dynamic interaction among the coupled elements, the
system shows various kinds of synchronization [6], trav-
eling waves [7, 8], chimera [9, 10], cluster [11, 12], oscil-
lation quenching states [13-15], and so on. In particular,
heterogeneously and nonlinearly coupled phase oscillators,
AR coupled Stuart-Landau oscillators, coupled Lorenz
oscillators, and other systems have reported the existence of
various collective dynamical behaviors [16-18]. Each of
these has a strong resemblance with many real-life
instances.
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Among the collective dynamical states previously
mentioned, oscillation quenching is an intriguing phe-
nomenon having implications in many practical situations
where undesired fluctuations need to be suppressed [19, 20].
To better comprehend the situations in which the system can
experience oscillation quenching, various analyses have been
conducted. The results have shown that coupled systems
with a small number of oscillators can achieve oscillation
quenching or steady states under distinct conditions or
interactions among the nodes, such as parameter mismatch,
time-delay coupling, conjugate coupling, and mixed at-
tractive and repulsive couplings [6, 21-23]. In addition,
depending on the steady state, the oscillation quenching
state can be categorized as either a homogeneous steady state
(trivial amplitude death and nontrivial amplitude death
states) or an inhomogeneous steady state (oscillation death
state) [19, 20]. Following that, different types of oscillation
quenching states, such as cluster oscillation death, chimera
death, and incoherent oscillation death states, have been
revealed in a network of coupled systems as a result of system
characteristics, connection architecture, and network in-
teraction strength [24-26].

However, the presence of multiple interactions in a re-
alistic system, it is interesting to investigate the presence of
multiple couplings in the same system at the same time. As
a result, mixed attractive and repulsive (AR) couplings have
been considered an account. Such mixed attractive and
repulsive (AR) couplings are more realistic than other in-
teractions, and they can help to unravel a variety of realistic
phenomena. Moreover, such couplings can also be viewed as
positive-negative feedback in biological systems, excitatory-
inhibitory coupling in neural networks, and contrarian-
conformist in social networks. Hence, it is intriguing to
figure out how AR coupling exhibits collective dynamics. As
a consequence, using the various periodic, chaotic, and
neural systems, the competing effects of AR couplings have
been demonstrated. For instance, the existence of different
synchronization, spontaneous symmetry breaking states,
and oscillation death states has been identified due to the
trade-off between AR couplings in the minimal network of
two or three coupled limit-cycle oscillators [6, 27, 28]. Later,
the studies were extended to the network of coupled os-
cillators with AR coupling. Substantially, the emergence of
several dynamical behaviors such as chimera, solitary state,
traveling wave state, and different oscillation quenching
states including chimera death and cluster death states was
discovered [9, 24]. In addition, the interplay between the AR
couplings is also analyzed in the network of chaotic as well as
neuronal systems [29, 30]. Through the Lorentz system, it
was demonstrated the coexistence of amplitude death with
complete synchronization or antiphase synchronization
[31]. Also, the occurrence of explosive transitions was re-
cently proved by utilizing these mixed couplings [32, 33].
Furthermore, such coupling strategies were implemented as
nonlinear couplings or extended to multilayer networks
(34, 35].

On the other hand, the Brockett oscillator is a well-
known periodic oscillator that has received little attention in
the literature [36]. Initially, BO was used to analyze robust
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synchronization [37]. Later, the nonidentical BO-induced
global synchronization was reported [38]. It is further
proved that the observed global synchronization has ap-
plications in power-grid synchronization and renewable
energy sources [39]. Further, the global synchronization was
also verified experimentally in a network of Brockett os-
cillators using analog circuit realizations [40]. According to
the reports, Brockett oscillator has only been investigated
from the standpoint of synchronicity up to these days.
Besides that, the above discussion shows that the attractive
and repulsive can exhibit diverse collective behaviors as
a result of the competitive interaction among couplings. As
a consequence, we investigate whether nonlocally coupled
Brockett oscillators can exhibit collective dynamics other
than synchronization when coupled with attractive and
repulsive couplings. The majority of previous research has
focused solely on the phenomenon of synchronization. Thus,
we construct a network of nonlocally coupled oscillators
with a mix of attractive and repulsive couplings. In par-
ticular, we address the potential collective dynamics detected
by the model under consideration in this study, such as
transient chimera, traveling waves, cluster oscillatory states,
and distinct oscillation death states, respectively. Specifically,
we delineate the dynamical behaviors at the lower and higher
transients.

The remaining sections of the article are structured as
follows. Section 2 introduces the nonlocally coupled
Brockett oscillators. The dynamical transitions are then
described in Section 3 as varying the coupling strength by
using spatiotemporal patterns and two-parameter analysis.
Finally, in Section 4, the conclusion will be presented.

2. The Model

To illustrate the collective dynamical states, we consider
a general mathematical model of a Brockett oscillator (BO).
Originally, the Brockett oscillator was introduced by
R. Brockett in 2013, to study the global synchronization
[36-38]. Following that, the majority of earlier work on BO
focused completely on synchronization behaviors. The dy-
namical equation for BO can be expressed as

5c'+oc3&(x2+x2—1)+x:0c2u, (1)

where x is the state variable representing the amplitude of
the system; « is the constant parameter fixed as a = 1.0
throughout the study; and u is the critical control parameter
for the active state, |u|<%* + x2. To obtain the active (os-
cillatory) region, the one-parameter bifurcation diagram is
plotted using equation (1) by varying the controlling pa-
rameter “u” in Figure 1. It is observed that there is a tran-
sition from stable periodic oscillation (active) to stable
steady state (inactive) through Hopf bifurcation. The stable
periodic oscillation (denoted by green-filled circles con-
nected by a line) exists when 0 < |u| < 1. Also, the amplitude
of periodic oscillations decreases when it becomes zero at
which Hopf bifurcation occurs.

In addition, to inspect whether a network BO can also
exhibit other collective dynamical behaviors, we consider the
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FIGURE 1: One-parameter bifurcation diagram (created with the
XPPAUT program) for & = 1.0 illustrates the transition from stable
periodic oscillation to a stable steady state via Hopf bifurcation by
varying the parameter u. HB is the Hopf bifurcation designated by
diamond point. The line connected by filled circles represents the
periodic oscillation (PO). The solid (red) and dashed (black) lines
denote the stable steady (SS) state and unstable steady state (USS),
respectively.

ring network of nonlocally coupled BOs with attractive and
repulsive couplings which can be written as

i+p
X; :)’i"'% Z (xj—xi),i= 1,2,..., M,
j~p
2 2, 2 e &
J}i:au_‘x(xi+yi_l)yi_xi_i (yj_yi)’
=p

(2)

where x; and y; are the state variables of BOs. M is the
chosen number of oscillators (M = 100) in the network and
¢ is the coupling strength. P is the total number of nearest
neighbors in both directions of the ring and the nonlocal
coupling radius (R) is given by R = P/M. The numerical
simulations are carried out using the RK, algorithm with
fixed step size h = 0.01 and random initial states. The dy-
namical characteristics of system (2) are investigated in the
following sections by fixing the magnitude of u in the active
region (0<u<I).

3. Dynamical Transitions for Different
Critical Thresholds

Many real-world instances can be seen by exploring col-
lective patterns in coupled oscillations. The clear observation
of such patterns can be useful for controlling them or
identifying the circumstances in which they may exist.

To manifest the existence of distinct collective dynamical
state, the spatiotemporal patterns and snapshots are plotted
in Figure 2 by fixing the control parameter at active region
u=0.0, and other parameter values are fixed as
a=1.0,R=0.2, and M = 100. Specifically, the spatiotem-
poral patterns are depicted for the dynamical behaviors at
the lower and the higher values of the time period, to

understand the long-lasting dynamical behaviors. As a re-
sult, the dynamics at a lower time period (2000 <t <2030)
are shown in the lower portion of the spatiotemporal pat-
tern. The dynamical behavior is then depicted in the upper
portion of the spatiotemporal pattern after a long transient
for the period (200000<t<200030). If the coupling
strength is very low at & = 0.01, the lower transients show the
desynchronization (DS) behavior as shown in Figure 2(a).
The oscillators in the DS state are randomly distributed as
shown in Figure 2(e). Further, after a long transient, the
system attains the synchronization (SYN) behavior (see the
upper portion of the spatiotemporal plot). By slightly in-
creasing the coupling strength, ¢ = 0.05, some of the os-
cillators in the desynchronized state exhibit coherent
behaviors while the others exhibit incoherent behavior (see
Figures 2(b) and 2(f)). Such a coexistence of coherent and
incoherent behaviors is referred to as chimera behavior.
After a long transient, the remaining desynchronized os-
cillators also reach the coherent behaviors and the system
shows the synchronization behavior. Since loses the chimera
behavior at large transient it is called a transient chimera
(TC) state. Further, increasing the coupling strength to
€ = 0.2, at the lower values time period result in transient
traveling wave (TTW), while increasing the time period
gives rise to synchronization behavior (see Figures 1(c)
and 2(g).

Upon increasing the coupling strength to ¢ = 0.55 and
€=0.65, the system shows a traveling-wave state and
a synchronized state for lower and higher time periods as
portrayed in Figures 2(d), 2(h), 2(i), and 2(m). On increasing
the coupling strength further to € = 0.75, we observed the
cluster oscillatory (COS) state where the existence of in-
homogeneous oscillators oscillates either upper and the
lower branch while the homogeneous oscillators at the edges
of inhomogeneous oscillators as in Figures 2(j) and 2(n).
When the coupling strength is increased still more to
& = 0.85, the oscillators in the homogeneous state also attain
the inhomogeneous state and exhibit the cluster oscillation
death (COD) state. The number of patches in the cluster
oscillation death at lower and higher time periods is the
same, as illustrated in Figures 2(k) and 2(o). Furthermore,
with higher coupling, we found chimera death (CD), which
is the coexistence of coherent and incoherent oscillation
death states, as illustrated in Figures 2(l) and 2(p) for lower
and higher time periods. From the observation, we identified
that the transient dynamics are observed only at lower values
of coupling strength. Also, it is observed that the structure of
observed oscillation death states is similar for lower and
higher values of time period.

Additionally, the occurrence of incoherent oscillation
death (IOD) state is noticed at P = 1 where the oscillators
have interacted with a local nearest neighbor, that is, the
oscillators are connected only with the closest nearest
neighbor in both directions of the ring. In the IOD state, all
the oscillators attain the upper and lower branches of the
inhomogeneous state alternatively, which is clear from the
spatiotemporal pattern and snapshot in Figures 3(a) and
3(b). For the purpose of determining the fixed point solution
for the IOD state, it is assumed that an odd number of
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FIGURE 2: Space-time diagram and snapshot of nonlocally coupled Brockett oscillators with attractive and repulsive couplings for (a)
transient desynchronized state (e =0.01), (b) transient chimera (e = 0.05), (c) transient traveling wave (¢ =0.2), (d) traveling wave
(¢ = 0.55), (i) synchronized state (¢ = 0.65), (j) cluster oscillatory state (e = 0.75), (k) cluster oscillation death (e = 0.85), and (1) chimera
death (e = 1.0). In the space-time diagram, the lower portion is obtained after transient 2 x 10° time units, and the upper portion is observed
after transient 2 x 10* time units. The second panel (e-h) and fourth panel (m-p) are the corresponding snapshots of first panel (a-d) and
third panel (i-1), respectively. Lower transients display the dynamical transition from desynchronized state to chimera death through
transient chimera, transient traveling waves, synchronization, cluster oscillatory states, and cluster oscillation death states for the given
coupling strength, whereas larger transients exhibit the transition from synchronized state to chimera death through the traveling wave state
and cluster oscillation death states. Other parameters are fixed as R = 0.2, & = 1.0, u = 0.0, and M = 100.

oscillators takes the value (x;, y;) = (x,, ¥,) and an even
number of oscillators takes the value (x;, y;) = (—xq, —¥,)-
By substituting this in equation (2) and taking into account
(%, ) = (0,0), the simplified form of equation can take the
form

Xo = Yo — BXo>

Yo = &’u - oc(xg + J’g - 1))’0 = X0+ Byos

(3)

where f=2Pe for odd nearest neighbour P and
B = (2P + 1) for even range of P. By solving equation (3),
we can get the solution for IOD state as given below.

2w 31/3(xﬁ(/34 + a(ﬁ +ﬁ3) _ 1) + 21/3ﬁ1/3

=7
0 62/304/3(1 +ﬁ2)ﬁ1/3 @)

Yo = B>

where 7 = —9ua* (B + B°)* + 1/3+/729u2a8 (B + °)* - 108
(B* +af —1)° (aB + af’)’. It is verified that the IOD state
solution from equation (4) exactly matches with the nu-
merically obtained solution.

Analyzing the dynamical transitions in parametric space
under various values of parameter u can facilitate de-
termining the impact of such parameter in exhibiting var-
ious collective dynamical and its spread across the parameter
space. Thus, to illustrate the global dynamical transitions, the
two-parameter diagram is portrayed in (& R) parametric
space in Figure 4 by fixing the three different critical values
of u. The region for each dynamical state is obtained after
removing the transient 2 x 10° time units. Figure 4(a) is
depicted for u = 0.0, and it is observed that for all values of
the nonlocal coupling range, there exists a transition from
transient desynchronization to transient traveling wave
through transient chimera as a function of coupling
strength. By increasing the magnitude coupling strength, it is
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FIGURE 3: (a) Space-time diagram and (b) snapshot of an incoherent oscillation death (IOD) state in which the oscillators alternately shift
between the upper and lower branches of inhomogeneous stable states for R = 0.01 (P = 1). Other parameters are fixed as « = 1.0, M = 100,

u = 0.0, and ¢ = 0.85, respectively.

(®) ()

FIGURE 4: Two-parameter diagram in (&, R) space (after transient 2 x 10° time units) for (a) u = 0.0, (b) u = 0.5, and (c) u = 1.0. DS, TC, and
TTW are the transient oscillatory states of transient desynchronized state, transient chimera, and transient traveling wave state, respectively.
TW, SYN, and COS are traveling wave, synchronization, and cluster oscillatory states, respectively. COD and CD are the oscillation death
states, namely, cluster oscillation death and chimera death, respectively. It is evident that decreasing the synchronization region with respect
to the parameter u while increasing collective dynamical states in the parametric space (¢, R).

noticed that transition to traveling wave and synchroniza-
tion. Also, one can note that the raising coupling strength
further gives rise to cluster behavior. Particularly, the
transition to cluster oscillation death state takes place
through the cluster oscillatory state. Finally, there exists
a chimera death region at large coupling strength. Impor-
tantly, it can also be noted that the sufficient strength of
coupling strength with minimal nearest neighbors (P <2)
shows the incoherent oscillation death state. Analogously,
Figures 4(b) and 4(c) are plotted for u = 0.5 and u = 1.0.
Increasing the critical value u = 0.5 suppresses the transient
traveling wave with the stabilization of the synchronized
state. As a result, the synchronization region is getting in-
creased. Interestingly, we observed a swing of synchroni-
zation behavior in Figure 4(b), that is, the SYN state is
destabilized with the emergence of TW, and it is again
restabilized with the suppression of TW as a function of ¢.
Upon increasing the critical value to u = 1.0, as shown in
Figure 4(c), we identified the TW, DS, and TC regions which
are also suppressed with the stabilization of the synchro-
nized state. As a result, we obtained a wide synchronization
region.

According to the findings, increasing the control pa-
rameter u broadens the synchronization state region while
suppressing many other collective dynamical states.

4. Conclusions

Understanding the macroscopic collective states is still an
open topic of research, and there is an increasing research
interest among scientists. In this study, we used nonlocally
coupled Brockett oscillators with mixed attractive and re-
pulsive couplings to demonstrate the occurrence of distinct
collective dynamical states. To do so, we first demonstrated
the behavior of a single BO using a one-parameter bi-
furcation diagram, and it is discovered that there is a shift
from periodic oscillation to a stable steady state via Hopf
bifurcation. We then extended this to the network of coupled
systems that exhibit the transition from different dynamical
states as a function of coupling strength. Most importantly,
we discovered the occurrence of a few transient dynamics at
shorter time periods as compared to dynamics at larger time
periods. For example, when the coupling strength is low, we
observed a desynchronized state, chimera, and traveling
wave as transient states detected at lower time periods.
When we increase the time periods while keeping the
coupling strength the same, the transient dynamics ap-
proach the synchronization state. When the coupling
strength was raised, the behavior for lower and higher time
periods was unchanged. We found a significant transition
from synchronization to chimera via the traveling wave,



cluster oscillatory state, and cluster oscillation death state.
Finally, we proved dynamical transitions in parametric
spaces by assigning different values to the critical threshold.
We found that raising the threshold reduces the region of
transient dynamics by widening the synchronization state
region. In addition, we deduced the analytical solution for
incoherent oscillation death state. We believe that obtained
results will offer new insight and aid in the discovery of the
collective dynamical behavior of periodic oscillators with
biological applications including neural networks as well as
power networks.

Furthermore, the study may raise a number of unresolved
scientific and engineering issues. Many complex real-world
networks, for example, have intricate connectivities and
a larger number of constituents. As a result, it will be required
to widen the analysis to include random, small-world, and
scale-free interactions; this will aid in understanding the
necessary conditions for collective dynamical behavior to
emerge. Furthermore, many practical systems typically in-
volve noise. As a result, it will be interesting to investigate the
impact of noise in coupled BOs. This analysis can also be
extended to fractional-order systems, which are more relevant
to realistic real-world systems.
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