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A jointly censored sample is a very useful sampling technique in conducting comparative life tests of the products, its efficiency
appears in permitting the selection of two samples from two manufacturing lines at the same time and conducting a life-testing
experiment. This article presents estimation information of the joint generalized Pareto distributions parameters using Type-II
progressive censoring scheme, which is carried out with binomial removal. The generalized Pareto distribution has many
applications in different fields. We outline the problem of parameter estimation using the frequentest maximum likelihood and
the Bayesian estimation methods. Furthermore, different interval estimation methods for estimating the four parameters were
used: the asymptotic property of the maximum likelihood estimator, the credible confidence intervals, and the Bootstrap
confidence intervals. The detailed numerical simulations have been considered to compare the performance of the proposed
estimates. In addition, the applicability of the joint generalized Pareto censored model has been performed by applying a real data

example.

1. Introduction

In many fields of manufacturing, the products may come
from more than one production line under the same pro-
cessing environment. Hence, selecting two samples from two
production lines and conducting a test on a life-testing
experiment is essential, therefore a jointly censored sam-
ple is quite useful in conducting comparative life tests of the
products. Assume the two test samples are independent with
sizes m and n, and they are selected from two production
lines, then they are located simultaneously on a life-testing
experiment. Furthermore, to optimize the cost and the
experimental time of the economic life test procedure,
suppose that we implement a joint progressive Type-II
censoring (JPC) scheme and end the life-testing experi-
ment once r failures occur. In this sequence, we are con-
cerned with developing both point and interval estimation of
the unknown parameters of the lifetime density function,

and hence estimate the mean lifetimes of units manufactured
by the two lines. In this article, we used the JPC scheme
which was described by Rasouli and Balakrishnan [1]. The
units under consideration are following two parameters
generalized Pareto (GP) lifetime distribution. Although
much work has been performed on different types of the
progressive censoring schemes for one sample, few articles
discussed the idea of two sample problems. Inference on the
joint Type-II censoring scheme have been discussed earlier
in the literature. See for example, Basu [2]; Johnson and
Mehrotra [3]; Bhattacharyya and Mehrotra [4]; and Bhat-
tacharyya [5], who have reviewed all issues related to this
model. Recently, Balakrishnan and Rasouli [6] developed
exact inferential methods based on maximum likelihood
estimates (MLEs) and compared their performance with
those based on approximate Bayesian and bootstrap
methods. In 2010, Rasouli and Balakrishnan generalized the
model to be a joint progressive Type-II censoring scheme
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with two exponential lifetime distributions. Ashour and
Eraki [7] used the joint Type-II censoring idea for estimating
the parameters of Weibull populations, see also Parsi et al.
[8]; Doostparast et al. [9]; Balakrishnan et al. [10]; Mondal
and Kundu [11]; Algarni et al. [12]; Shrahili et al. [13];
Alotaibi et al. [14].

GP distribution has many applications and it can model
many real life distributions, recently many authors studied
GP distribution, for example, one may refer to Martin et al.
[15], who discussed baseline methods for the parameter
estimation. Huang et al. [16] obtained statistical inference of
dynamic conditional GP distribution with weather and air
quality factors. Shui et al. [17] discussed outlier-robust
truncated maximum likelihood parameter estimators of
GP distribution. He et al. [18] introduced risk analysis by GP
distribution. Mahgoun et al. [19] discussed GP distribution
exploited for ship detection as a model for sea clutter in
a Pol-SAR application.

In the present article, we aimed to work on a joint
progressive censored data under GP lifetime units. Since not
much work had been performed regarding the joint pro-
gressive censored samples under GP distribution with bi-
nomial removal of the censored units, we will focus our work
on making statistical inference for the unknown parameters
of GP distribution. Therefore, both frequentest and Bayesian
point and interval estimation methods are investigated.
Numerical techniques were used to compare the perfor-
mance of estimation methods to select the most efficient one.
Simulation analysis is implemented to obtain the point and
interval estimation for the unknown parameters of the GP
distribution. Monte Carlo simulation and Gibbs sampling
techniques were used to generate samples from the joint GP
distribution under the performed scheme, hence the sim-
ulation experiments can be obtained easily. Finally real data
analysis is achieved to illustrate the purpose of this study.

The rest of the article is organized as follows. In Section
2, model description is given. Point estimation methods are
studied in Section 3, while confidence intervals are obtained
in Section 4. Data analysis and simulation are used in Section
5 to facilitate comparison between different types of point
and interval estimation of GP parameters and a real data set
is performed to check the advantage of the new scheme over
the old one. Finally, an optimal censoring scheme is sug-
gested in Section 6.

2. Model Description

Suppose X, X,, ..., X,, denote the ordered lifetimes of m
units of population 1, and it is assumed that they are in-
dependent and identically distributed (i.i.d) from general-
ized Pareto distribution (GP) with shape and scale
parameters 6, and A,, respectively. Similarly, it is assumed
thatY,,Y,,...,Y, denote the ordered lifetimes of # units of
population 2, and it is assumed that they are independent
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and identically distributed (i.i.d) from generalized Pareto
distribution with shape and scale parameters 6, and A,,
respectively.

The generalized Pareto probability density function
(pdf) is given by the following equation:

] 05\ 0!
X(l-l—T) , 0+0,

f(x;6,4) = (1)
1
X e—x/)t’
and its cumulative density function (CDF) is as follows:

-1/6
1+9)L_x> , 0+0,

0=0,

o
F(x:6,)) = )

1-e™ 6=0,

where A >0 and for >0, x>0, and for <0, 0<x< —A/.
For 6> 0, the GP distribution is one of the several forms of
the usual Pareto family of distribution often called the Pareto
distribution. For <0, the support of the distribution is
0<x< — (M6), and the GP distribution has bounded
support. For 8 — 0, the GP distribution reduces to the
exponential distribution. The special case where 6 = -1
corresponds to the uniform distribution U (0,1). In this
work, we considered the case when 6 > 0, with support x > 0.

For the joint progressive censored sampling scheme
described by Rasouli and Balakrishnan [1], assume
W, < ... <Wy are the ordered statistics of the N =m +n
random variables {X,,X,,...,X,,,Y,,Y,,...,Y,}. A JPC
scheme between the two samples is described as follows. At
the time of the first failure (can be from either X or Y), R,
units are randomly withdrawn from the remaining N -1
surviving units. Next, at the time of the second failure (can
be from either X or Y), R, units are randomly withdrawn
from the remaining N — R, — 2 surviving units, and so on.
Finally, at the time of the rth failure (can be again from either
XorY),allremainingR, = N —r — R, — ... — R,_, surviving
units are withdrawn from the life-testing experiment. Let
Ri=§;+T;andi=1,...,r, where S; and T, are the number
of units withdrawn at the time of the ith failure that belong to
X and Y sample, respectively, and they are unknown ran-
dom variables. The data observed in this form will consist of
(Z,W,S), where W = (W,,...,W,) with » <N is a fixed
integer, Z = Z,,...,Z,, where Z, = 1 if the j* failure takes
place from population 1 and Z; =0, and S= (5;,...,S,).
The progressive Type-II censoring scheme R = (R,,...R,)
has the decomposition S+ T = (S;,...,S,) + (T,...T,).

The likelihood function of the joint progressive censored
sample under generalized Pareto lifetime (JGP) can be
written as follows:



Mathematical Problems in Engineering

L(6,,6,,11,1, | w,z,8) =C

where

<m Sz - ) )(n - Xa((R; -

r i 1 1+91wi -z; (1/6,+1)-5,/6, 1+92wi ~(zi-1) (1/6,+1)-(1,/6,) ew < Y 3
EOHDUEINS ) R

5;)-(1 —zj))> (4)

andm, =Y _z;andn, =Y (1-z;) =r—-m,.

In the following section, we provided the point inference
for two GP populations under the joint progressive cen-
soring scheme. We obtained the maximum likelihood es-
timators (MLEs) and Bayes estimators of the unknown
parameters; numerical methods will be used to obtain the
estimated parameters.

3. Point Estimations

In this section, we will use likelihood inference together with
the nonclassical Bayesian estimation method. Numerical
methods was used to solve some nonlinear equations since it
is impossible to write it in explicit forms. These methods will

o7 (y; W, Z,8)

i <m+n—1—zllR>
R;

be used in Section 4 to obtain exact and approximate
confidence intervals for the unknown parameters.

3.1. Maximum Likelihood Estimators (MLEs). The maximum
likelihood estimation (MLE) is commonly used inferential
statistics, MLE has many nice properties, such as invariance,
consistency, and normal approximation properties. It de-
pends basically on maximizing the likelihood function of
distribution under consideration. Assume the log-likelihood
function of the unknown parameters 6,,6,,4,, and A, is
denoted by Z (y; w,z,s), where y = (0,,0,,1,,1,) is a vector
of parameters. Now, taking partial derivatives of £ (y; w, z)
with respect to the unknown parameters, we obtained the
following equation:

S (O
S (O

Solving this equation by equating it to zero will give 6,
and 6,. Numerical methods such as Newton-Raphson was
suggested to be used to solve the above system of nonlinear

o7 (y; W, z,8)

m,
o, _/11+Z((

i=1

of (y;w,2,8)  n, ¢
oan, A2+Z<(

i=1

oo ()

s (ol

equations. Now, for estimating A, and A,, take the partial
derivative with respect to A, and A, as follows:

yali)  Bw
A 0,) (A, +0yw;)

(6)



Equating the partial derivatives to zero yields, A, and 1,
is given by the following explicit forms:

A, = alw,(Z:_l (1/6, + 1)z; + 5,16, ~ 1)’

m

r

(7)

1
nT

1, = ’ézw(zz‘r_l (1/6, +1)(1 - z;) + (t,/6,) 1).

3.2. Bayes Estimators. In this section, Bayes estimates for the
unknown parameters 6,,0,,4;, and A, are observed. In
Bayesian method all parameters are considered as random
variables with certain distribution called prior distribution.
If prior information is not available which is usually the case,
we need to select a prior distribution. Since the selection of
prior distribution plays an important role in estimation of
the parameters, our choice for the prior of 6,,0,, A;, and A,
are the independent gamma distributions i,
G(a;,b,),G(ayb,), G(as,bs),G(ay,by), respectively. The
reason for choosing this prior density is that Gamma prior
has flexible nature as a noninformative prior, specially when
the values of hyperparameters are assumed to be zero. Thus,
the suggested prior for 6,,6,, A;, and A, are

f1(60,) e 9?—1647191’
f2(6;) 9;2_167%92’
fi(h) OC/\TS_leih’Jl’
fa(h) OC/\;‘l_leimz’

(8)

1 nay—lva:—zi—1~ya,—z; —b 0,—b,0,— b\ —
P(w); S>OC9T1 932 /\Tj - )LZ4 “igm bbby b4A2“1(91»/\1)“2 (0,,1,)
b bl
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respectively, and a,,a,,a5,a,,b,,b,, bj,andb, are the
hyperparameters of prior distributions. In Bayesian esti-
mation method, we need to also determine the loss function.
In this article, we considered quadratic loss function because
this loss function is mostly used as symmetrical loss function
and is defined as L(7,y) = (§ — y)*, where 7 is the point
estimate of the vector parameter p. Under quadratic loss
function, Bayes estimators are the posterior mean of the
distribution.
The joint prior of 8,,0,, A;, and A, is as follows:

9(y) 9T1—1622—1/1?3—1)6447167blelfbzesz)nfby\rbm) (9)
where 0,,0,,1,,1,,a,,a,,a5,b;,b,,andb; >0, while the

joint posterior of 0, 6,, A, and A, is given by the following
equation:

p< Y ): L(y | w,2,8)g(y)
W,Z,S -[GIJGJM-[ML(Y | w,z,5)g (y)d0,d6,dA,d),”
(10)

where L(y | w,z,s) is the likelihood function of the GP
distribution under PC scheme. Substituting L(y | w,z,s)
and g(y) as defined in equation (1) and (#prior), re-
spectively, the joint posterior is as follows:

(11)

o Gy, (“1>b1)G02 (a2, bz)le (a3 - z; b3)GA2 (ay =z + Lbyu, (0,1 )u, (0,,1,),

where  uy (0;,1,) = (1+0,w,/A,) = /OD= 60 apg
_ ~2;(1/8,41)= (1,/6,)
u, (0,,1,) = (1 +6,w;/1,) .

The Bayes estimate of any function of 6,,6,, A;, and A,,
say h(0;,0,,A,,1,), under the quadratic loss function is
hg (0,05, 41,4,) = Eg g3 2 data (B (61, 05,41, 1)) Since it is
difficult to compute this expected value analytically, we will
use the Markov Chain Monte Carlo (MCMC) technique, see
Lindley [20] and Karandikar [21].

We will use Gibbs sampling method to generate
a sample from the posterior density function p(y/w,z,s)
and compute Bayes estimates. Gibbs Sampling is a Markov
chain Monte Carlo (MCMC) algorithm which is used to
obtain a sequence of observations that are approximately

following a certain probability distribution. In another
words, it is a specific case of the Metropolis—Hastings
algorithm. Gibbs Sampling is applicable when the joint
distribution is not known explicitly or is difficult to
sample from directly, but the conditional distribution of
each variable is known and is easier to sample from. For
more details, one may refer to Andrew et al. [22];
Muhammed and Almetwally [23]; and El-Sherpieny et al.
[24]. For the purpose of generating a sample from the
posterior distribution, we assumed that the pdf of prior
densities are as described in equation (2). The full con-
ditional posterior densities of 6,, 0,,1,, and A, and the data
is given by the following equation:
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(02,)L1,/\2,w,z s

T

91,)L1,/\2,w,z, )0‘

T

”(91 62,/\2,w,z s

6., 62,/\1,w, Zs )

To apply Gibbs technique, we need the following
algorithm:

(1) Start with initial values (69,69,1%,19)

(2) Use M-H algorithm to generate posterior sample for
0,,0,, A;, and A, from equation (8).

(3) Repeat Step 2 M times and obtain (6,;, 6,;,4;1,A,1),
(6120355412, A5)s - - -5 (Brags Oapps Ao Asaa)s

(4) After obtaining the posterior sample, the Bayes es-

timates of 0,, 0,, A,, and A, with respect to quadratic
loss function are as follows:

AMc:—E 0, - 1 M_ZMOQA
! |\ w,z,s M-M, & ")
AMc:'E 6, \] - 1 Miw"e'
2 |\ w,z,8) | M-M, & )
AMC:—E M - 1 MﬁZMO,L
! | "\ w,z,s M-M, & ")
AMC:—E A - 1 Miw‘)/\'
g | "\ w,z,8 M-M, & )

(13)

where M, is the burn-in-period of Markov Chain.

4. Interval Estimation

Normal approximation method for constructing confidence
intervals is an efficient method, it has an advantage and
performs well when the sample size is large enough, oth-
erwise this method will not be useful. If this is the case,
bootstrap methods may provide more accurate approximate
confidence intervals. In this section, four different ap-
proximate confidence interval methods are proposed. Our
goal is to select the best interval with respect to the interval
lengths, i.e., the interval with the shortest length is the best.

4.1. Asymptotic Confidence Interval. When the sample size is
large enough, the normal approximation of the MLE can be
used to construct asymptotic confidence intervals for the

o G"z (a

OCGe (ay,b1)uy (01,4:),

(az> by)u, (0,1,),

(12)
- Zi’b3)”1 (91>A1)’

4~ Zi + Lby)uy (0,,1).

parameters 6,,6,, A;, and A,. The asymptotic normality of
MLE can be stated as (y —y) — 4N, (0,1 '(y)), where
y = (0,,0,A,,1,), is a vector of parameters, —,; denotes
convergence in distribution, and I(y) is the Fisher in-
formation matrix, i.e.,

E(%1,6,) E(410,) E(1n,) E(410,)

The expected values of the second order partial de-
rivatives can be evaluated using integration techniques.
Therefore, the 100(1 — )% approximate CIs for 6,,6,, A,,
and A, are

01 + zep Vs
t Zgr\Va2s
+ 25\V335
* Zgn\Vass

respectively, where v, v,,, v33, and v, are the entries in the
main diagonal of fisher matrix I"'(y) and zg, is the
(&/2)100% lower percentile of standard normal distribution.

)

D>
)

(15)

y =)

4.2. Bootstrap Confidence Interval. Since the asymptotic
confidence intervals do not perform very well for small sample
size, an alternative approach to the traditional one is used,
namely, the bootstrap method. Parametric and nonparametric
bootstrap methods are presented in Davison and Hinkley [25]
and Efron and Tibshirani [26]. In this section, we used two
parametric bootstrap methods: (a) percentile bootstrap and (b)
t-bootstrap (see Hall [27] and Efron [28, 29]).

4.2.1. Percentile Bootstrap Confidence Interval. The confi-
dence intervals based on percentile bootstrap are performed
by using the following algorithm:

(1) Step  (1): Given the original data set
(w,z,s) ={(w;,z;,8,),i=1,...,k, 1<k < max
{n,m}}, and z; = 0 or 1 depending on whether the



failure is from population one or two. Estimate 0,, 0,,
Ay, and A, using the maximum likelihood estimation
(say ,0,,1,,and 1,).

(2) Step (2): Generate a bootstrap sample (w*,z*,s*)
from joint Weibull distribution with parameters
0,,0,,1,, 1, obtained in Step (1).

(3) Step (3): With respect to A(';?*L*Z*zf*) the bootstrap
sample estimation is 8, ,0, ,A,,A,.

(4) Step (4): Repeat Step 2 and 3 M-times to obtain
different bootstrap samples.

(5) Step (5): Arrange the different bootstrap samples in
4 d (70 g My
an ascending order as (y; ,wj Ly ¥
where = j=1,2,3,4 and (¥, =0, .9, = 92 ,
2% /\1 Yy = 1 2)-

A two-sided 100(1-€)% percentile bootstrap confidence
intervals for the unknown parameters 6,,0,, A;, and A, are
given by the following equation:

(@j [Mf/z])ﬁ/;‘[ 1- E/z]))j =1,2,3,4. (16)

4.2.2. Bootstrap-t Confidence Intervals. For this method, use
the following algorithm:

(1) Given  the original data set (w,z,s)=

{(w;,z;,8),i=1,...,k,1<k< max{n,m}}, and z; =

0 or 1 depending on whether the failure is from

population one or two. Estimate 0,,6,, 1;, and A,

using the maximum likelihood estimation (say
6,,0,,1,,and 1,).

(2) Generate a bootstrap sample (w*,z*,s*) from joint

Weibull distribution with parameters
0,,0,,A;,and A,
(3) The bootstrap sample estimation is

@*,@*,X;,and X;

(4) Compute the t-statistics T, = 51*— @/\/Var(él*),
T,=0," - 0,/\Var(6,"), Ty = A —X,/\[Var(X)),
and T, —)t —/\/\lVar()t) where Var(9 )

Var((—) ) Var ()t ), and Var (A ) are the asymptotic
variance of 0,,0,, A;, and A,, respectively

(5) Repeat Steps 2 to 4 M

LT, j=1,2,3,4.

(6) Arrange the T'values obtained in Step 5 in ascending
orderTI] T2] .. T[M ,j=1,2,3,4.

Two-sided 100 (1 — )% t-bootstrap confidence intervals
for the unknown parameters 0,,0,, A,, and A, are given by
the following equation:

times T](-l), T](z),
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M) Var(8,), 6, + T[] Var(él) )

+

Mg, ] Var

(17)

(

(6 + 1) Var(8).0, + 7]
< L+ T[ g Var

(

)L+T M) Var )

)[; + T4[ME’2] Var(A ) /\ + T[M1 ] Var

4.3. Credible Intervals. Using MCMC techniques in Section
3.2, Bayes credible intervals of the parameters 0,, 6,, A, and
A, can be obtained as follows:

(1) Arrange 6,;,0,,,A,;, and A,;, ascending order as

follow 011 Oi2p - - -5 O1 s
92[1]>92[2]: ce. ’HZ[M]’AI[I]’AHZ]’ ce ”\l[M]’ and
Mnp A+ Ao

(2) Two-sided 100(1 — )% credible intervals for the
unknown parameters 6,,0,, A;, and 1, are given by
the following equation:

<91 (Mg, ] 0 [Ml-W])’

(18)

(92 [My, ] 2 [M,_ m])
< 1[Mg ] A 1M, E/z])’
(

2[Mg, ] 2[M1 &) )

5. Data Analysis and Simulations

In this section, comparisons are proposed regarding the
different methods of point and interval estimation that were
used in the previous sections. These comparisons need
numerical analysis methods and simulation, Monte Carlo
simulation was carried out. We analyzed a real data set for
illustrative purposes; also, a simulation study was carried out
to compare the performances of the different estimators,
using different parameter values and different sampling
schemes.

5.1. Simulation Study. In this subsection, the Monte Carlo
simulation study was utilized to analyze the point and
confidence interval estimation for the parameters of GP
distribution based on the JPC scheme with binomial re-
moval. The simulation results are summarized in Tables 1-3
and some concluding remarks of simulation results are
pointed out. To evaluate the performance of the estimation
procedures described in this article, we performed an
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TaBLE 1: MLE and Bayesian estimation methods for GP based on JPC scheme with binomial removal: Case 1.

6, =1.2,A, =1.5,0,=08,1, =13

MLE Bayesian
P m,n r
Bias MSE L.CI BP BT Bias MSE L.CI
0, -0.1070 0.3141 2.1575 0.3716 0.3734 0.1136 0.1125 1.1888
38 M 0.2343 0.6998 3.1495 0.4183 0.4171 0.1747 0.1459 1.2873
0, -0.1096 0.2406 1.8753 0.3039 0.3024 0.0901 0.0577 0.7950
015 30. 25 Ay 0.2358 0.5393 2.7276 0.3379 0.3385 0.1382 0.0864 0.9927
’ 0, -0.0765 0.2248 1.8353 0.2328 0.2342 0.1111 0.0986 1.1212
47 M 0.2113 0.5604 2.8165 0.4470 0.4429 0.1702 0.1445 1.2413
0, -0.0950 0.1736 1.5910 0.2195 0.2198 0.0809 0.0535 0.8268
A 0.2377 0.4801 2.5528 0.4226 0.4244 0.1374 0.0796 1.0029
0, -0.1258 0.2939 2.0682 0.3326 0.3299 0.1097 0.1174 1.1922
38 M 0.2718 0.8972 3.5587 0.3862 0.3869 0.1820 0.1577 1.3092
0, -0.1435 0.2237 1.7673 0.2677 0.2668 0.0750 0.0524 0.8106
05 30. 25 A 0.2630 0.6031 2.8658 0.5155 0.5111 0.1297 0.0764 0.9194
’ 0, -0.1223 0.2228 1.7879 0.2514 0.2510 0.0783 0.0981 1.1519
47 M 0.2481 0.6264 2.9476 0.4655 0.4635 0.1773 0.1480 1.2727
0, —-0.1252 0.1738 1.5598 0.2193 0.2180 0.0675 0.0475 0.7839
A 0.2250 0.4979 2.6228 0.4034 0.4010 0.1136 0.0793 0.9689
0, -0.0498 0.1602 1.5574 0.1954 0.1963 0.0826 0.0793 1.0336
73 M 0.0862 0.3192 2.1900 0.2285 0.2283 0.1414 0.1293 1.2784
0, —0.0642 0.0900 1.1495 0.1465 0.1476 0.0528 0.0380 0.6929
015 50. 55 A 0.1014 0.1951 1.6860 0.2062 0.2064 0.1034 0.0657 0.9164
’ 0, —0.0344 0.1185 1.3436 0.1447 0.1426 0.0802 0.0696 0.9834
97 A 0.1305 0.2983 2.0802 0.1949 0.1942 0.1514 0.1277 1.2348
0, -0.0332 0.0683 1.0168 0.0948 0.0948 0.0481 0.0337 0.6791
Ay 0.0907 0.1614 1.5347 0.1677 0.1674 0.1020 0.0629 0.8676
0, -0.0738 0.1537 1.5101 0.1731 0.1745 0.0780 0.0794 1.0173
73 M 0.1170 0.3552 2.2919 0.2728 0.2726 0.1431 0.1267 1.2095
0, -0.0649 0.0961 1.1889 0.1330 0.1322 0.0547 0.0425 0.7491
05 50. 55 A 0.1131 0.1998 1.6960 0.1809 0.1813 0.1055 0.0685 0.9047
’ 0, -0.0243 0.1216 1.3644 0.1321 0.1311 0.0779 0.0730 0.9805
97 M 0.0812 0.2653 1.9947 0.1892 0.1907 0.1291 0.1147 1.1928
0, -0.0487 0.0707 1.0252 0.0921 0.0924 0.0401 0.0343 0.6885
Ay 0.0960 0.1664 1.5549 0.1453 0.1461 0.0999 0.0651 0.9256
0, -0.0220 0.0680 1.0192 0.0790 0.0796 0.0529 0.0507 0.8254
170 M 0.0474 0.1316 1.4108 0.1120 0.1118 0.1046 0.0891 1.0500
0, -0.0315 0.0371 0.7451 0.0552 0.0549 0.0236 0.0228 0.5809
015 110. 125 Ay 0.0474 0.0706 1.0255 0.0741 0.0738 0.0747 0.0413 0.6996
’ 0, -0.0223 0.0545 0.9111 0.0579 0.0582 0.0390 0.0416 0.7669
215 M 0.0568 0.1214 1.3485 0.0927 0.0927 0.0939 0.0803 0.9922
0, -0.0183 0.0301 0.6767 0.0463 0.0463 0.0238 0.0217 0.5584
A 0.0236 0.0545 0.9109 0.0641 0.0642 0.0532 0.0353 0.7036
0, -0.0193 0.0691 1.0283 0.0744 0.0739 0.0563 0.0517 0.8571
170 A 0.0524 0.1305 1.4020 0.0973 0.0969 0.0983 0.0837 1.0777
0, -0.0274 0.0358 0.7348 0.0538 0.0536 0.0265 0.0236 0.5889
05 110. 125 Ay 0.0394 0.0747 1.0606 0.0752 0.0752 0.0690 0.0434 0.7391
’ 0, -0.0295 0.0487 0.8575 0.0596 0.0589 0.0328 0.0352 0.7124
215 M 0.0852 0.1313 1.3815 0.0885 0.0881 0.1223 0.0917 1.0405
0, -0.0163 0.0281 0.6544 0.0438 0.0442 0.0277 0.0203 0.5575
A 0.0405 0.0577 0.9290 0.0615 0.0620 0.0667 0.0382 0.7144

o
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TaBLE 2: MLE and Bayesian estimation methods for GP based on JPC scheme with binomial removal: Case 2.

0, =0.4,1, =0.65,0, =0.7,1, = 1.8

MLE Bayesian
P m,n m;, m, . .
Bias MSE L.CI BP BT Bias MSE L.CI
0, -0.0780 0.1139 1.2879 0.1900 0.1874 0.0783 0.0816 0.9430
38 A 0.1098 0.0792 1.0165 0.1622 0.1613 0.1690 0.0867 0.8643
0, -0.1446 0.2904 2.0358 0.2776 0.2749 0.0688 0.0549 0.7931
015 30. 25 Ay 0.2431 1.2161 4.2186 0.4798 0.4786 0.0722 0.0522 0.8544
’ 0, -0.0779 0.0859 1.1084 0.1465 0.1479 0.0636 0.0688 0.8687
47 M 0.0740 0.0613 0.9263 0.1070 0.1074 0.1202 0.0612 0.8002
0, -0.1332 0.2020 1.6836 0.2490 0.2465 0.0622 0.0552 0.8273
A 0.3044 0.9990 3.7337 0.4639 0.4627 0.0961 0.0592 0.8724
0, -0.1060 0.0964 1.1447 0.2016 0.2009 0.0747 0.0888 0.9539
38 M 0.0765 0.0713 1.0030 0.1335 0.1331 0.1230 0.0694 0.8319
0, -0.1336 0.2390 1.8442 0.2571 0.2577 0.0790 0.0537 0.8066
05 30. 25 A, 0.3110 1.1623 4.0485 0.7156 0.7204 0.0894 0.0563 0.8486
’ 0, -0.0778 0.0819 1.0799 0.1827 0.1815 0.0524 0.0630 0.8295
47 M 0.0579 0.0606 0.9382 0.1462 0.1476 0.1133 0.0601 0.7943
0, -0.1297 0.1793 1.5808 0.2437 0.2426 0.0654 0.0499 0.7465
A 0.2946 0.9882 3.7236 0.6212 0.6204 0.0881 0.0577 0.8527
0, —-0.0695 0.0574 0.8995 0.1200 0.1206 0.0480 0.0509 0.7484
73 M 0.0621 0.0399 0.7444 0.1024 0.1008 0.1066 0.0456 0.6818
0, —-0.0659 0.0960 1.1874 0.1525 0.1513 0.0564 0.0403 0.7161
015 50. 55 A, 0.1542 0.4190 2.4657 0.2325 0.2315 0.0910 0.0572 0.8513
’ 0, —0.0398 0.0449 0.8162 0.0751 0.0746 0.0441 0.0429 0.7176
97 A 0.0331 0.0285 0.6487 0.0600 0.0608 0.0698 0.0294 0.5969
0, -0.0434 0.0615 0.9579 0.1056 0.1063 0.0387 0.0301 0.6311
A, 0.0879 0.2666 1.9955 0.1961 0.1963 0.0805 0.0595 0.9262
0, —-0.0659 0.0565 0.8954 0.1122 0.1111 0.0452 0.0517 0.7435
73 M 0.0482 0.0420 0.7814 0.0829 0.0840 0.0917 0.0423 0.7060
0, —0.0693 0.0782 1.0624 0.1135 0.1149 0.0411 0.0330 0.6727
05 50. 55 A 0.1510 0.3952 2.3933 0.2390 0.2389 0.1023 0.0636 0.8960
’ 0, -0.0395 0.0451 0.8183 0.0804 0.0804 0.0442 0.0419 0.7157
97 A 0.0349 0.0297 0.6615 0.0679 0.0685 0.0741 0.0321 0.6107
0, -0.0350 0.0630 0.9745 0.1064 0.1071 0.0512 0.0314 0.6640
A, 0.1246 0.2864 2.0413 0.1868 0.1855 0.0949 0.0613 0.8704
0, —0.0367 0.0286 0.6478 0.0486 0.0490 0.0155 0.0250 0.5653
170 A 0.0277 0.0176 0.5084 0.0416 0.0416 0.0536 0.0187 0.4729
0, -0.0250 0.0337 0.7136 0.0566 0.0564 0.0311 0.0218 0.5438
015 110. 125 A, 0.0504 0.1343 1.4238 0.1047 0.1060 0.0677 0.0533 0.8351
’ 0, -0.0317 0.0207 0.5501 0.0386 0.0385 0.0063 0.0181 0.4915
215 M 0.0234 0.0130 0.4381 0.0285 0.0285 0.0474 0.0145 0.4177
0, -0.0223 0.0268 0.6364 0.0424 0.0427 0.0197 0.0184 0.5040
A 0.0615 0.1098 1.2770 0.0868 0.0872 0.0752 0.0506 0.8087
0, —0.0293 0.0259 0.6202 0.0520 0.0518 0.0275 0.0270 0.5755
170 A 0.0227 0.0164 0.4941 0.0343 0.0345 0.0475 0.0177 0.4701
0, -0.0265 0.0323 0.6974 0.0533 0.0530 0.0261 0.0208 0.5409
05 110. 125 Ay 0.0585 0.1276 1.3821 0.1093 0.1087 0.0755 0.0506 0.8174
’ 0, -0.0209 0.0214 0.5680 0.0388 0.0387 0.0175 0.0181 0.5027
’15 M 0.0187 0.0136 0.4522 0.0302 0.0301 0.0412 0.0143 0.4153
0, -0.0227 0.0261 0.6273 0.0456 0.0450 0.0190 0.0177 0.5158
A 0.0606 0.1103 1.2806 0.0884 0.0879 0.0771 0.0512 0.8293

o
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TaBLE 3: MLE and Bayesian estimation methods for GP based on JPC scheme with binomial removal: Case 3.

0, =3,A, =0.5,0, = 2.5,1, = 0.8

MLE Bayesian
P m,n m;, m, . .
Bias MSE L.CI BP BT Bias MSE L.CI
0, -0.1225 0.8748 3.6367 0.6448 0.6399 0.0730 0.0684 0.9731
38 A 0.1229 0.1610 1.4979 0.2191 0.2171 0.1599 0.1098 1.0032
0, -0.1780 0.8485 3.5446 0.5199 0.5170 0.0417 0.0224 0.5386
015 30. 25 Ay 0.2296 0.5346 2.7225 0.3544 0.3521 0.1445 0.1110 1.0498
’ 0, —0.0844 0.6192 3.0683 0.3737 0.3722 0.0761 0.0723 0.9554
47 M 0.1238 0.1513 1.4461 0.2005 0.2008 0.1616 0.1098 1.0553
0, -0.1270 0.6350 3.0855 0.4516 0.4542 0.0407 0.0250 0.5879
A 0.1780 0.4050 2.3963 0.3548 0.3512 0.1225 0.0914 1.0154
0, -0.0495 0.8648 3.6421 0.7053 0.6970 0.0988 0.0769 1.0033
38 M 0.1364 0.2120 1.7250 0.2059 0.2046 0.1572 0.1196 1.0154
0, -0.1077 0.8035 3.4901 0.6011 0.6000 0.0522 0.0251 0.5755
05 30. 25 A, 0.2513 0.6866 3.0969 0.3506 0.3510 0.1621 0.1243 1.0919
’ 0, -0.1095 0.6208 3.0601 0.4453 0.4476 0.0731 0.0729 0.9974
47 M 0.1183 0.1561 1.4787 0.1868 0.1868 0.1411 0.1097 1.0063
0, —-0.1147 0.5906 2.9801 0.5159 0.5097 0.0406 0.0245 0.5773
A 0.2050 0.4206 2.4130 0.3703 0.3696 0.1411 0.0956 1.0342
0, —0.0846 0.4923 2.7318 0.3140 0.3109 0.0631 0.0780 1.0545
73 M 0.0946 0.0966 1.1610 0.1500 0.1498 0.1551 0.0998 0.9455
0, —0.0401 0.3687 2.3761 0.2793 0.2825 0.0431 0.0334 0.6636
015 50. 55 A 0.0966 0.1640 1.5424 0.1806 0.1803 0.1292 0.0821 0.9686
’ 0, —-0.0720 0.3557 2.3221 0.2009 0.2007 0.0552 0.0797 1.0926
97 A 0.0745 0.0635 0.9440 0.0944 0.0942 0.1155 0.0639 0.8116
0, -0.0337 0.2424 1.9263 0.1773 0.1773 0.0383 0.0326 0.6818
A, 0.0518 0.1103 1.2865 0.1188 0.1180 0.0996 0.0659 0.8705
0, —-0.0257 0.4791 2.7127 0.3319 0.3348 0.0861 0.0829 1.0674
73 M 0.0706 0.0849 1.1090 0.1480 0.1488 0.1259 0.0783 0.8786
0, —-0.0796 0.3202 2.1971 0.2434 0.2464 0.0344 0.0295 0.6497
05 50. 55 A 0.1039 0.1732 1.5803 0.1623 0.1629 0.1264 0.0818 0.9442
’ 0, -0.0451 0.3238 2.2247 0.2232 0.2228 0.0661 0.0743 1.0298
97 A 0.0553 0.0634 0.9631 0.0947 0.0937 0.1086 0.0652 0.7943
0, -0.0551 0.2395 1.9073 0.1972 0.1977 0.0333 0.0313 0.6756
A, 0.0757 0.1240 1.3489 0.1472 0.1461 0.1006 0.0704 0.8533
0, —0.0409 0.2023 1.7567 0.1246 0.1256 0.0461 0.0729 1.0124
170 A 0.0308 0.0309 0.6784 0.0507 0.0503 0.0857 0.0437 0.6772
0, —-0.0197 0.1467 1.5004 0.1134 0.1143 0.0341 0.0374 0.7304
015 110. 125 Ay 0.0374 0.0508 0.8713 0.0614 0.0613 0.0834 0.0417 0.7118
’ 0, -0.0325 0.1695 1.6096 0.1113 0.1114 0.0398 0.0735 1.0183
215 M 0.0276 0.0253 0.6138 0.0423 0.0419 0.0710 0.0308 0.5853
0, -0.0282 0.1052 1.2670 0.0873 0.0862 0.0218 0.0325 0.6899
A 0.0384 0.0424 0.7937 0.0516 0.0515 0.0813 0.0370 0.6699
0, —0.0442 0.1991 1.7415 0.1457 0.1465 0.0419 0.0745 1.1018
170 A 0.0365 0.0331 0.6992 0.0611 0.0621 0.0854 0.0384 0.6426
0, -0.0176 0.1338 1.4331 0.1051 0.1055 0.0351 0.0339 0.6972
05 110. 125 Ay 0.0469 0.0617 0.9569 0.0712 0.0714 0.0908 0.0514 0.7523
’ 0, -0.0125 0.1634 1.5846 0.1037 0.1032 0.0523 0.0728 1.0384
’15 M 0.0366 0.0259 0.6143 0.0443 0.0443 0.0784 0.0307 0.5853
0, -0.0220 0.1122 1.3111 0.0867 0.0869 0.0286 0.0354 0.7265
A 0.0312 0.0471 0.8422 0.0527 0.0531 0.0704 0.0371 0.6477

o
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FIGure 1: Estimated CDF, PDF, and PP plot of GP for data X.
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FiGure 2: Estimated CDF, PDF, and PP plot of GP for data Y.

extensive simulation study. Since the JPC samples scheme
with binomial removal of the GP distribution is given in
terms of the cdf and pdf of GP distribution, it is easy to
generate a random sample from this model.

[ M 6,
9—1[(1—u,) -1, 6,#0,
xi:<
A In(1-w,), 0, =0, (19
19
[ A
2[(-v) " -1], 6,#0,
Vi =1 ’
| -1, In(1-v), 0, =0,

where 0<u<1 and 0<v<1. Therefore, we need to de-
termine some values of actual parameters for this model as
follows:

Case 1. 6, =1.2,1, = 1.5,6, = 0.8,1, = 1.3.

Case 2. 6, = 0.4,), = 0.65,0, = 0.7,1, = 1.8.

Case 3. 6, =3,1, = 0.5,6, = 2.5,1, = 0.8.

Also, we need to suggest different samples sizes, hence
when the samples size are m = 30 and n = 25, we selected
different failure sizes for this sample as r = 38 and r = 47.
When the sample sizes are m = 50 and n = 55, we selected
different failure sizes as r = 73 and r = 97. Also, when the
sample sizes are m = 110 and n = 125, we selected different
failure sizes as r = 170 and r = 215. The probability of bi-
nomial removal for JPC is supposed to have two values as
P =10.15 and 0.5.

After generating the data for X and Y, we combined
these variables to obtain the W = {XI,XZ, R
XY, Y,,...,Y,} from two different samples with the
same probabilities. Furthermore, W, <W, < ... <Wy de-
note the order statistics, where N = n + m. Then, generate R-
removal of censored form binomial with P probability.
Generate progressive censored sample. For more in-
formation about generating progressive censored samples,
see Balakrishnan [30] and Balakrishnan and Cramer [31].
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FiGure 4: ACF, histogram, and trace plot of A, and 0,.

For the MLE method, we used Newton-Raphson algorithm
and for the Bayesian estimation method, we used MCMC by
MH algorithm. Confidence intervals of Bayesian estimation
method is performed using credible intervals algorithm of
MCMC results when 10000 loop is performed.

Ina (1 -£)100£% confidence interval, we get the length
of the interval (L.CI) when & = 5%. The Biases and MSEs are
used to compare MLE and Bayesian estimation methods.
The results are obtained in Tables 1-3 after 10000 loops.

The following concluding remakes are noticed based on
these Tables:

(1) As sample size increases with fixing all other values
of model, the bias, MSE, and L.CI associated with the
parameter of the GP distribution based on JPC es-
timates decrease for all methods of estimation.

(2) As the number of failed units increases (r) with
fixing all other values of the model, the bias, MSE,
and L.CI associated with the parameter of the GP

distribution based on JPC estimates decrease for all
methods of estimation.

(3) The Bayesian estimation method is the best esti-
mation method to estimate the parameters of the GP
distribution based on JPC, since it has the smallest
bias and MSE values and shortest L.CI.

(4) The bootstrap confidence interval is the shortest
interval length for estimation of the GP parameters
based on JPC.

(5) When comparing the asymptotic confidence in-
tervals with the credible confidence intervals, we can
realize that the latter have shorter interval lengths.

5.2. Application of Data. Abu-Zinadah [32] used this data to
inference the jointly Type-II censored samples from two
Pareto distributions. The data are as follow: X =0.152, 0.548,
0.759, 0.778, 0.916, 0.976, 1.017, 1.433, 1.558, 1.822, 1.888,
2.395, 3.066, 3.901, 5.489, 5.809, 17.886, 21.829, 43.239, and
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TaBLE 4: MLE and Bayesian estimation methods for GP based on JPC scheme with binomial removal.
p 0.1 0.5
MLE Bayesian MLE Bayesian
m
Estimate SE Estimate SE Estimate SE Estimate SE
0, 0.5393 0.6240 0.9504 0.6121 0.1229 0.4495 0.8500 0.3281
20 M 3.6581 2.4356 3.6370 2.2474 3.1396 1.2869 2.8928 1.2789
0, 2.9656 1.1532 2.3175 1.0591 1.7832 1.6354 2.8058 1.4668
A, 2.4019 1.6005 3.0646 1.4616 2.8372 1.9272 3.3960 1.8141
0, 0.8031 0.4999 1.0957 0.3366 0.7766 0.5568 0.8263 0.3387
25 M 2.9710 1.3029 2.2852 0.6248 3.2473 1.8360 3.1524 0.9213
0, 1.1402 1.0574 2.1494 0.9079 2.6532 0.9443 2.4127 0.3564
A, 3.4690 2.4049 3.2225 0.5395 2.7533 1.7404 3.1848 0.2771
0, 1.1172 0.5119 1.8141 0.3047 0.6859 0.4335 0.8834 0.3192
30 M 2.4175 1.0644 1.7678 0.5406 3.2102 1.4751 2.5594 0.6514
0, 1.6383 0.7780 2.0479 0.4506 3.3062 0.9110 2.8932 0.3247
A 2.8376 1.6038 1.8831 0.5966 2.2662 1.6233 1.6953 0.2339
0, 1.0690 0.4798 0.8663 0.2643 0.9730 0.4341 1.1057 0.3050
35 M 2.4427 1.0600 2.3529 0.4543 2.5322 1.0979 2.2959 0.6252
0, 3.2396 0.9787 3.4954 0.3715 2.9439 0.9221 3.6897 0.2512
A 2.2195 1.3993 1.9277 0.5021 2.7814 1.7635 3.9422 0.2770
138.6767——
2l
3.0
2.8
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FiGure 5: Contour plot of log-likelihood function with different values of parameters; m = 35 and p = 0.5.
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90.793. Y=0.006, 0.383, 0.489, 0.925, 1.25, 1.337, 1.448,
1.976, 2.426, 5.484, 8.611, 9.430, 16.120, 37.360, 41.090,
49.276, 152.313, 442.915, 12510.900, and 63621.000.

The empirical and fitted distribution functions, CDF,
and PP-plots are presented in Figures 1 and 2. The graphical
tools such as trace plots and auto-correlation function (ACF)
plots are used to check the convergence of MCMC. Figures 3
and 4 show the trace and ACF plots for 6, A,,6,, and A, of
a chain of different number of iterations. The ACF plots for
0,, A;,0,, and A, show that the chains have a low auto-
correlation. Also, they indicate a rapid convergence of the
MCMC subject to the normal distribution. For more in-
formation about convergence of MCMC one may refer to
Freitas et al. [33]. From Table 4, it is clear that Bayesian
estimation performs better than MLE for different number
of failures and different binomial probabilities, this is be-
cause it has less mean squared error (SE). Figure 5 shows the
Contour plots of log-likelihood function with different
parameter values, the MLE results of model with m = 35 and
p = 0.5 are unique and attain their maximum points.

6. Conclusions

In this article, we considered point and interval estimation
for two joint populations with generalized Pareto lifetimes
under progressive Type-II censoring schemes. Classical and
nonclassical estimation methods were proposed and nu-
merical methods were implemented to evaluate the per-
formance of the different methods of estimation, it was
shown through a real data example that Bayesian methods
were superior to the classical method (MLE). While com-
paring the confidence intervals it was realized that Bootstrap
confidence interval has the shortest interval lengths com-
pared to asymptotic and credible confidence intervals.
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