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A jointly censored sample is a very useful sampling technique in conducting comparative life tests of the products, its efciency
appears in permitting the selection of two samples from two manufacturing lines at the same time and conducting a life-testing
experiment. Tis article presents estimation information of the joint generalized Pareto distributions parameters using Type-II
progressive censoring scheme, which is carried out with binomial removal. Te generalized Pareto distribution has many
applications in diferent felds. We outline the problem of parameter estimation using the frequentest maximum likelihood and
the Bayesian estimation methods. Furthermore, diferent interval estimation methods for estimating the four parameters were
used: the asymptotic property of the maximum likelihood estimator, the credible confdence intervals, and the Bootstrap
confdence intervals. Te detailed numerical simulations have been considered to compare the performance of the proposed
estimates. In addition, the applicability of the joint generalized Pareto censored model has been performed by applying a real data
example.

1. Introduction

In many felds of manufacturing, the products may come
from more than one production line under the same pro-
cessing environment. Hence, selecting two samples from two
production lines and conducting a test on a life-testing
experiment is essential, therefore a jointly censored sam-
ple is quite useful in conducting comparative life tests of the
products. Assume the two test samples are independent with
sizes m and n, and they are selected from two production
lines, then they are located simultaneously on a life-testing
experiment. Furthermore, to optimize the cost and the
experimental time of the economic life test procedure,
suppose that we implement a joint progressive Type-II
censoring (JPC) scheme and end the life-testing experi-
ment once r failures occur. In this sequence, we are con-
cerned with developing both point and interval estimation of
the unknown parameters of the lifetime density function,

and hence estimate themean lifetimes of units manufactured
by the two lines. In this article, we used the JPC scheme
which was described by Rasouli and Balakrishnan [1]. Te
units under consideration are following two parameters
generalized Pareto (GP) lifetime distribution. Although
much work has been performed on diferent types of the
progressive censoring schemes for one sample, few articles
discussed the idea of two sample problems. Inference on the
joint Type-II censoring scheme have been discussed earlier
in the literature. See for example, Basu [2]; Johnson and
Mehrotra [3]; Bhattacharyya and Mehrotra [4]; and Bhat-
tacharyya [5], who have reviewed all issues related to this
model. Recently, Balakrishnan and Rasouli [6] developed
exact inferential methods based on maximum likelihood
estimates (MLEs) and compared their performance with
those based on approximate Bayesian and bootstrap
methods. In 2010, Rasouli and Balakrishnan generalized the
model to be a joint progressive Type-II censoring scheme
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with two exponential lifetime distributions. Ashour and
Eraki [7] used the joint Type-II censoring idea for estimating
the parameters of Weibull populations, see also Parsi et al.
[8]; Doostparast et al. [9]; Balakrishnan et al. [10]; Mondal
and Kundu [11]; Algarni et al. [12]; Shrahili et al. [13];
Alotaibi et al. [14].

GP distribution has many applications and it can model
many real life distributions, recently many authors studied
GP distribution, for example, one may refer to Mart́ın et al.
[15], who discussed baseline methods for the parameter
estimation. Huang et al. [16] obtained statistical inference of
dynamic conditional GP distribution with weather and air
quality factors. Shui et al. [17] discussed outlier-robust
truncated maximum likelihood parameter estimators of
GP distribution. He et al. [18] introduced risk analysis by GP
distribution. Mahgoun et al. [19] discussed GP distribution
exploited for ship detection as a model for sea clutter in
a Pol-SAR application.

In the present article, we aimed to work on a joint
progressive censored data under GP lifetime units. Since not
much work had been performed regarding the joint pro-
gressive censored samples under GP distribution with bi-
nomial removal of the censored units, we will focus our work
on making statistical inference for the unknown parameters
of GP distribution. Terefore, both frequentest and Bayesian
point and interval estimation methods are investigated.
Numerical techniques were used to compare the perfor-
mance of estimationmethods to select the most efcient one.
Simulation analysis is implemented to obtain the point and
interval estimation for the unknown parameters of the GP
distribution. Monte Carlo simulation and Gibbs sampling
techniques were used to generate samples from the joint GP
distribution under the performed scheme, hence the sim-
ulation experiments can be obtained easily. Finally real data
analysis is achieved to illustrate the purpose of this study.

Te rest of the article is organized as follows. In Section
2, model description is given. Point estimation methods are
studied in Section 3, while confdence intervals are obtained
in Section 4. Data analysis and simulation are used in Section
5 to facilitate comparison between diferent types of point
and interval estimation of GP parameters and a real data set
is performed to check the advantage of the new scheme over
the old one. Finally, an optimal censoring scheme is sug-
gested in Section 6.

2. Model Description

Suppose X1, X2, . . . , Xm denote the ordered lifetimes of m

units of population 1, and it is assumed that they are in-
dependent and identically distributed (i.i.d) from general-
ized Pareto distribution (GP) with shape and scale
parameters θ1 and λ1, respectively. Similarly, it is assumed
that Y1, Y2, . . . , Yn denote the ordered lifetimes of n units of
population 2, and it is assumed that they are independent

and identically distributed (i.i.d) from generalized Pareto
distribution with shape and scale parameters θ2 and λ2,
respectively.

Te generalized Pareto probability density function
(pdf) is given by the following equation:

f(x; θ, λ) �

1
λ

1 +
θx

λ
 

− 1/θ− 1

, θ≠ 0,

1
λ

e
− x/λ

, θ � 0,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(1)

and its cumulative density function (CDF) is as follows:

F(x; θ, λ) �

1 − 1 +
θx

λ
 

− 1/θ

, θ ≠ 0,

1 − e
− x/λ

, θ � 0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(2)

where λ> 0 and for θ> 0, x> 0, and for θ< 0, 0<x< − λ/.
For θ> 0, the GP distribution is one of the several forms of
the usual Pareto family of distribution often called the Pareto
distribution. For <0, the support of the distribution is
0<x< − (λ/θ), and the GP distribution has bounded
support. For θ⟶ 0, the GP distribution reduces to the
exponential distribution. Te special case where θ � − 1
corresponds to the uniform distribution U(0, λ). In this
work, we considered the case when θ > 0, with support x> 0.

For the joint progressive censored sampling scheme
described by Rasouli and Balakrishnan [1], assume
W1 ≤ . . . ≤WN are the ordered statistics of the N � m + n

random variables X1, X2, . . . , Xm, Y1, Y2, . . . , Yn . A JPC
scheme between the two samples is described as follows. At
the time of the frst failure (can be from either X or Y), R1
units are randomly withdrawn from the remaining N − 1
surviving units. Next, at the time of the second failure (can
be from either X or Y), R2 units are randomly withdrawn
from the remaining N − R1 − 2 surviving units, and so on.
Finally, at the time of the rth failure (can be again from either
X or Y), all remaining Rr � N − r − R1 − . . . − Rr− 1 surviving
units are withdrawn from the life-testing experiment. Let
Ri � Si + Ti and i � 1, . . . , r, where Si and Ti are the number
of units withdrawn at the time of the ith failure that belong to
X and Y sample, respectively, and they are unknown ran-
dom variables. Te data observed in this form will consist of
(Z, W, S), where W � (W1, . . . , Wr) with r<N is a fxed
integer, Z � Z1, . . . , Zr, where Zj � 1 if the jth failure takes
place from population 1 and Zj � 0, and S � (S1, . . . , Sr).
Te progressive Type-II censoring scheme R � (R1, . . . Rr)

has the decomposition S + T � (S1, . . . , Sr) + (T1, . . . Tr).
Te likelihood function of the joint progressive censored

sample under generalized Pareto lifetime (JGP) can be
written as follows:
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L θ1, θ2, λ1, λ2 ∣ w, z, s(  � C 
r

i�1

1
λzi

1

1
λ1− zi

2
1 +

θ1wi

λ1
 

− zi 1/θ1+1( )− si/θ1
1 +

θ2wi

λ2
 

− zi− 1( ) 1/θ2+1( )− ti/θ2( )

, 0≤w1 ≤ . . . ≤wr, (3)

where

C � 
r
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zj − sj ⎛⎝ ⎞⎠zi + n − 
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i− 1
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i− 1
j�1 Rj − sj  − 1 − zj  

ti
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m + n − i − 
i− 1
j�1Rj

Ri

⎛⎜⎝ ⎞⎟⎠

,

(4)

and mr � 
r
i�1zi and nr � 

r
i�1(1 − zi) � r − mr.

In the following section, we provided the point inference
for two GP populations under the joint progressive cen-
soring scheme. We obtained the maximum likelihood es-
timators (MLEs) and Bayes estimators of the unknown
parameters; numerical methods will be used to obtain the
estimated parameters.

3. Point Estimations

In this section, we will use likelihood inference together with
the nonclassical Bayesian estimation method. Numerical
methods was used to solve some nonlinear equations since it
is impossible to write it in explicit forms. Tese methods will

be used in Section 4 to obtain exact and approximate
confdence intervals for the unknown parameters.

3.1.MaximumLikelihoodEstimators (MLEs). Temaximum
likelihood estimation (MLE) is commonly used inferential
statistics, MLE has many nice properties, such as invariance,
consistency, and normal approximation properties. It de-
pends basically on maximizing the likelihood function of
distribution under consideration. Assume the log-likelihood
function of the unknown parameters θ1, θ2, λ1, and λ2 is
denoted by l(c; w, z, s), where c � (θ1, θ2, λ1, λ2) is a vector
of parameters. Now, taking partial derivatives of l(c; w, z)

with respect to the unknown parameters, we obtained the
following equation:

zl(c;w, z, s)
zθ1

� − 
r

i�1

1
θ1

+ 1 zi +
si

θ1
 

1
λ1/wi(  + θ1

−
zi + si

θ21
  ln 1 + θ1

wi

λ1
  ,

zl(c;w, z, s)
zθ2

� − 
r

i�1

1
θ2

+ 1  1 − zi(  +
ti

θ2
 

1
λ2/wi(  + θ2

−
1 − zi(  + ti

θ22
  ln 1 + θ2

wi

λ2
  .

(5)

Solving this equation by equating it to zero will give θ1
and θ2. Numerical methods such as Newton-Raphson was
suggested to be used to solve the above system of nonlinear

equations. Now, for estimating λ1 and λ2, take the partial
derivative with respect to λ1 and λ2 as follows:

zl(c;w, z, s)
zλ1

� −
mr

λ1
+ 

r

i�1

1
θ1

+ 1 zi +
si

θ1
 

θ1wi

λ1 λ1 + θ1wi( 
,

zl(c;w, z, s)
zλ2

� −
nr

λ2
+ 

r

i�1

1
θ2

+ 1  1 − zi(  +
ti

θ2
 

θ2wi

λ2 λ2 + θ2wi( 
.

(6)
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Equating the partial derivatives to zero yields, λ1 and λ2
is given by the following explicit forms:

λ1 � θ1wi


r
i�1 1/θ1 + 1( zi + si/θ1

mr

− 1 ,

λ2 � θ2wi


r
i�1 1/θ2 + 1(  1 − zi(  + ti/θ2( 

nr

− 1 .

(7)

3.2. Bayes Estimators. In this section, Bayes estimates for the
unknown parameters θ1, θ2, λ1, and λ2 are observed. In
Bayesian method all parameters are considered as random
variables with certain distribution called prior distribution.
If prior information is not available which is usually the case,
we need to select a prior distribution. Since the selection of
prior distribution plays an important role in estimation of
the parameters, our choice for the prior of θ1, θ2, λ1, and λ2
are the independent gamma distributions i.e.,
G(a1, b1), G(a2, b2), G(a3, b3), G(a4, b4), respectively. Te
reason for choosing this prior density is that Gamma prior
has fexible nature as a noninformative prior, specially when
the values of hyperparameters are assumed to be zero. Tus,
the suggested prior for θ1, θ2, λ1, and λ2 are

f1 θ1( ∝ θa1− 1
1 e

− b1θ1 ,

f2 θ2( ∝ θa2− 1
2 e

− b2θ2 ,

f3 λ1( ∝ λa3− 1
1 e

− b3λ1 ,

f4 λ2( ∝ λa4− 1
2 e

− b4λ2 ,

(8)

respectively, and a1, a2, a3, a4, b1, b2, b3, and b4 are the
hyperparameters of prior distributions. In Bayesian esti-
mation method, we need to also determine the loss function.
In this article, we considered quadratic loss function because
this loss function is mostly used as symmetrical loss function
and is defned as L(c, c) � (c − c)2, where c is the point
estimate of the vector parameter c. Under quadratic loss
function, Bayes estimators are the posterior mean of the
distribution.

Te joint prior of θ1, θ2, λ1, and λ2 is as follows:

g(c)∝ θa1− 1
1 θa2− 1

2 λa3− 1
1 λa4− 1

2 e
− b1θ1− b2θ2− b2λ1− b3λ1− b4λ2 , (9)

where θ1, θ2, λ1, λ2, a1, a2, a3, b1, b2, and b3 > 0, while the
joint posterior of θ1, θ2, λ1, and λ2 is given by the following
equation:

p
c

w, z, s
  �

L(c ∣ w, z, s)g(c)

θ1
θ2

λ1
λ2

L(c ∣ w, z, s)g(c)dθ1dθ2dλ1dλ2
,

(10)

where L(c ∣ w, z, s) is the likelihood function of the GP
distribution under PC scheme. Substituting L(c ∣ w, z, s)
and g(c) as defned in equation (1) and (#prior), re-
spectively, the joint posterior is as follows:

p
c

w, z, s
 ∝ θa1− 1

1 θa2− 1
2 λa3− zi − 1

1 λa4− zi

2 e
− b1θ1− b2θ2− b3λ1− b4λ2u1 θ1, λ1( u2 θ2, λ2( 

∝Gθ1 a1, b1( Gθ2 a2, b2( Gλ1 a3 − zi, b3( Gλ2 a4 − zi + 1, b4( u1 θ1, λ1( u2 θ2, λ2( ,

(11)

where u1(θ1, λ1) � (1 + θ1wi/λ1)
− zi(1/θ1+1)− (si/θ1) and

u2(θ2, λ2) � (1 + θ2wi/λ2)
− zi(1/θ2+1)− (ti/θ2).

Te Bayes estimate of any function of θ1, θ2, λ1, and λ2,
say h(θ1, θ2, λ1, λ2), under the quadratic loss function is
hB(θ1, θ2, λ1, λ2) � Eθ1 ,θ2 ,λ1 ,λ2/ data(h(θ1, θ2, λ1, λ2)). Since it is
difcult to compute this expected value analytically, we will
use the Markov Chain Monte Carlo (MCMC) technique, see
Lindley [20] and Karandikar [21].

We will use Gibbs sampling method to generate
a sample from the posterior density function p(c/w, z, s)
and compute Bayes estimates. Gibbs Sampling is a Markov
chain Monte Carlo (MCMC) algorithm which is used to
obtain a sequence of observations that are approximately

following a certain probability distribution. In another
words, it is a specifc case of the Metropolis–Hastings
algorithm. Gibbs Sampling is applicable when the joint
distribution is not known explicitly or is difcult to
sample from directly, but the conditional distribution of
each variable is known and is easier to sample from. For
more details, one may refer to Andrew et al. [22];
Muhammed and Almetwally [23]; and El-Sherpieny et al.
[24]. For the purpose of generating a sample from the
posterior distribution, we assumed that the pdf of prior
densities are as described in equation (2). Te full con-
ditional posterior densities of θ1, θ2, λ1, and λ2 and the data
is given by the following equation:
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π
θ1

θ2, λ1, λ2,w, z, s
 ∝Gθ1 a1, b1( u1 θ1, λ1( ,

π
θ2

θ1, λ1, λ2,w, z, s
 ∝Gθ2 a2, b2( u2 θ2, λ2( ,

π
λ1

θ1, θ2, λ2,w, z, s
 ∝Gλ1 a3 − zi, b3( u1 θ1, λ1( ,

π
λ2

θ1, θ2, λ1,w, z, s
 ∝Gλ2 a4 − zi + 1, b4( u2 θ2, λ2( .

(12)

To apply Gibbs technique, we need the following
algorithm:

(1) Start with initial values (θ01, θ
0
2, λ

0
1, λ

0
2)

(2) Use M-H algorithm to generate posterior sample for
θ1, θ2, λ1, and λ2 from equation (8).

(3) Repeat Step 2 M times and obtain (θ11, θ21, λ11, λ21),
(θ12, θ22, λ12, λ22), . . . , (θ1M, θ2M, λ1M, λ2M),

(4) After obtaining the posterior sample, the Bayes es-
timates of θ1, θ2, λ1, and λ2 with respect to quadratic
loss function are as follows:

θ1
MC

� Eπ
θ1

w, z, s
   ≈

1
M − M0



M− M0

i�1
θ1i

⎛⎝ ⎞⎠,

θ2
MC

� Eπ
θ2

w, z, s
   ≈

1
M − M0



M− M0

i�1
θ2i

⎛⎝ ⎞⎠,

λ1
MC

� Eπ
λ1

w, z, s
   ≈

1
M − M0



M− M0

i�1
λ1i

⎛⎝ ⎞⎠,

λ2
MC

� Eπ
λ2

w, z, s
   ≈

1
M − M0



M− M0

i�1
λ2i

⎛⎝ ⎞⎠,

(13)

where M0 is the burn-in-period of Markov Chain.

4. Interval Estimation

Normal approximation method for constructing confdence
intervals is an efcient method, it has an advantage and
performs well when the sample size is large enough, oth-
erwise this method will not be useful. If this is the case,
bootstrap methods may provide more accurate approximate
confdence intervals. In this section, four diferent ap-
proximate confdence interval methods are proposed. Our
goal is to select the best interval with respect to the interval
lengths, i.e., the interval with the shortest length is the best.

4.1. Asymptotic Confdence Interval. When the sample size is
large enough, the normal approximation of the MLE can be
used to construct asymptotic confdence intervals for the

parameters θ1, θ2, λ1, and λ2. Te asymptotic normality of
MLE can be stated as (c − c) ⟶dN4(0, I− 1(c)), where
c � (θ1, θ2λ1, λ2), is a vector of parameters,⟶d denotes
convergence in distribution, and I(c) is the Fisher in-
formation matrix, i.e.,

I(c) � −

E lθ1θ1  E lθ1θ2  E lθ1λ1  E lθ1λ2 

E lθ2θ1  E lθ2θ2  E lθ2λ1  E lθ2λ2 

E lλ1θ1  E lλ1θ2  E lλ1λ1  E lλ1λ2 

E lλ2θ1  E lλ2θ2  E lλ2λ1  E lλ2λ2 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (14)

Te expected values of the second order partial de-
rivatives can be evaluated using integration techniques.
Terefore, the 100(1 − ξ)% approximate CIs for θ1, θ2, λ1,
and λ2 are

θ1 ± zξ/2
���
v11

√
,

θ2 ± zξ/2
���
v22

√
,

λ1 ± zξ/2
���
v33

√
,

λ2 ± zξ/2
���
v44

√
,

(15)

respectively, where v11, v22, v33, and v44 are the entries in the
main diagonal of fsher matrix I− 1(c) and zξ/2 is the
(ξ/2)100% lower percentile of standard normal distribution.

4.2. Bootstrap Confdence Interval. Since the asymptotic
confdence intervals do not perform very well for small sample
size, an alternative approach to the traditional one is used,
namely, the bootstrap method. Parametric and nonparametric
bootstrap methods are presented in Davison and Hinkley [25]
and Efron and Tibshirani [26]. In this section, we used two
parametric bootstrap methods: (a) percentile bootstrap and (b)
t-bootstrap (see Hall [27] and Efron [28, 29]).

4.2.1. Percentile Bootstrap Confdence Interval. Te conf-
dence intervals based on percentile bootstrap are performed
by using the following algorithm:

(1) Step (1): Given the original data set
(w, z, s) � (wi, zi, si), i � 1, . . . , k, 1≤ k< max

n, m{ }}, and zi � 0 or 1 depending on whether the

Mathematical Problems in Engineering 5



failure is from population one or two. Estimate θ1, θ2,
λ1, and λ2 using the maximum likelihood estimation
(say θ1, θ2, λ1, and λ2).

(2) Step (2): Generate a bootstrap sample (w∗, z∗, s∗)

from joint Weibull distribution with parameters
θ1, θ2, λ1, λ2 obtained in Step (1).

(3) Step (3): With respect to (w∗, z∗, s∗) the bootstrap
sample estimation is θ1

∗
, θ2
∗
, λ
∗
1 , λ
∗
2 .

(4) Step (4): Repeat Step 2 and 3 M-times to obtain
diferent bootstrap samples.

(5) Step (5): Arrange the diferent bootstrap samples in
an ascending order as (ψ∗[1]

j , ψ∗[2]
j , . . . , ψ∗[M]

j ),
where j � 1, 2, 3, 4 and (ψ∗1 � θ1

∗
, ψ∗2 � θ2

∗
,

ψ∗3 � λ
∗
1 , ψ∗4 � λ

∗
2 ).

A two-sided 100(1-ξ)% percentile bootstrap confdence
intervals for the unknown parameters θ1, θ2, λ1, and λ2 are
given by the following equation:

ψ∗ Mξ/2[ ]
j , ψ∗ M1− ξ/2[ ]

j , j � 1, 2, 3, 4. (16)

4.2.2. Bootstrap-t Confdence Intervals. For this method, use
the following algorithm:

(1) Given the original data set (w, z, s) �

(wi, zi, si), i � 1, . . . , k, 1≤ k< max n, m{ } , and zi �

0 or 1 depending on whether the failure is from
population one or two. Estimate θ1, θ2, λ1, and λ2
using the maximum likelihood estimation (say
θ1, θ2, λ1, and λ2).

(2) Generate a bootstrap sample (w∗, z∗, s∗) from joint
Weibull distribution with parameters
θ1, θ2, λ1, and λ2

(3) Te bootstrap sample estimation is
θ1
∗
, θ2
∗
, λ
∗
1 , and λ

∗
2

(4) Compute the t-statistics T1 � θ1
∗
− θ1/

��������

Var( θ1
∗
)



,

T2 � θ2
∗

− θ2/
��������

Var( θ2
∗
)



, T3 � λ
∗
1 − λ1/

�������

Var(λ
∗
1 )



,

and T4 � λ
∗
2 − λ2/

�������

Var(λ
∗
2 )



, where Var( θ1
∗
),

Var( θ2
∗
),Var(λ

∗
1 ), and Var(λ

∗
2 ) are the asymptotic

variance of θ1, θ2, λ1, and λ2, respectively
(5) Repeat Steps 2 to 4 M times T

(1)
j , T

(2)
j ,

. . . , T
(M)
j , j � 1, 2, 3, 4.

(6) Arrange the T values obtained in Step 5 in ascending
order T

[1]
j , T

[2]
j , . . . , T

[M]
j , j � 1, 2, 3, 4.

Two-sided 100(1 − ξ)% t-bootstrap confdence intervals
for the unknown parameters θ1, θ2, λ1, and λ2 are given by
the following equation:

θ1 + T
Mξ/2[ ]

1

�������

Var θ1 



, θ1 + T
M1− ξ/2[ ]

1

�������

Var θ1 



 ,

θ2 + T
Mξ/2[ ]

2

�������

Var θ2 



, θ2 + T
M1− ξ/2[ ]

2

�������

Var θ2 



 ,

λ1 + T
Mξ/2[ ]

3

�������

Var λ1 



, λ1 + T
M1− ξ/2[ ]

3

�������

Var λ1 



 ,

λ2 + T
Mξ/2[ ]

4

�������

Var λ2 



, λ2 + T
M1− ξ/2[ ]

4

�������

Var λ2 



 .

(17)

4.3. Credible Intervals. Using MCMC techniques in Section
3.2, Bayes credible intervals of the parameters θ1, θ2, λ1, and
λ2 can be obtained as follows:

(1) Arrange θ1i, θ2i, λ1i, and λ2i, ascending order as
follow θ1[1], θ1[2], . . . , θ1[M],
θ2[1], θ2[2], . . . , θ2[M], λ1[1], λ1[2], . . . , λ1[M], and
λ2[1], λ2[2], . . . , λ2[M].

(2) Two-sided 100(1 − ξ)% credible intervals for the
unknown parameters θ1, θ2, λ1, and λ2 are given by
the following equation:

θ1 Mξ/2[ ], θ1 M1− ξ/2[ ] ,

θ2 Mξ/2[ ], θ2 M1− ξ/2[ ] ,

λ1 Mξ/2[ ], λ1 M1− ξ/2[ ] ,

λ2 Mξ/2[ ], λ2 M1− ξ/2[ ] .

(18)

5. Data Analysis and Simulations

In this section, comparisons are proposed regarding the
diferent methods of point and interval estimation that were
used in the previous sections. Tese comparisons need
numerical analysis methods and simulation, Monte Carlo
simulation was carried out. We analyzed a real data set for
illustrative purposes; also, a simulation study was carried out
to compare the performances of the diferent estimators,
using diferent parameter values and diferent sampling
schemes.

5.1. Simulation Study. In this subsection, the Monte Carlo
simulation study was utilized to analyze the point and
confdence interval estimation for the parameters of GP
distribution based on the JPC scheme with binomial re-
moval. Te simulation results are summarized in Tables 1–3
and some concluding remarks of simulation results are
pointed out. To evaluate the performance of the estimation
procedures described in this article, we performed an
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Table 1: MLE and Bayesian estimation methods for GP based on JPC scheme with binomial removal: Case 1.

θ1 � 1.2, λ1 � 1.5, θ2 � 0.8, λ2 � 1.3

P m, n r
MLE Bayesian

Bias MSE L.CI BP BT Bias MSE L.CI

0.15 30, 25

38

θ1 − 0.1070 0.3141 2.1575 0.3716 0.3734 0.1136 0.1125 1.1888
λ1 0.2343 0.6998 3.1495 0.4183 0.4171 0.1747 0.1459 1.2873
θ2 − 0.1096 0.2406 1.8753 0.3039 0.3024 0.0901 0.0577 0.7950
λ2 0.2358 0.5393 2.7276 0.3379 0.3385 0.1382 0.0864 0.9927

47

θ1 − 0.0765 0.2248 1.8353 0.2328 0.2342 0.1111 0.0986 1.1212
λ1 0.2113 0.5604 2.8165 0.4470 0.4429 0.1702 0.1445 1.2413
θ2 − 0.0950 0.1736 1.5910 0.2195 0.2198 0.0809 0.0535 0.8268
λ2 0.2377 0.4801 2.5528 0.4226 0.4244 0.1374 0.0796 1.0029

0.5 30, 25

38

θ1 − 0.1258 0.2939 2.0682 0.3326 0.3299 0.1097 0.1174 1.1922
λ1 0.2718 0.8972 3.5587 0.3862 0.3869 0.1820 0.1577 1.3092
θ2 − 0.1435 0.2237 1.7673 0.2677 0.2668 0.0750 0.0524 0.8106
λ2 0.2630 0.6031 2.8658 0.5155 0.5111 0.1297 0.0764 0.9194

47

θ1 − 0.1223 0.2228 1.7879 0.2514 0.2510 0.0783 0.0981 1.1519
λ1 0.2481 0.6264 2.9476 0.4655 0.4635 0.1773 0.1480 1.2727
θ2 − 0.1252 0.1738 1.5598 0.2193 0.2180 0.0675 0.0475 0.7839
λ2 0.2250 0.4979 2.6228 0.4034 0.4010 0.1136 0.0793 0.9689

0.15 50, 55

73

θ1 − 0.0498 0.1602 1.5574 0.1954 0.1963 0.0826 0.0793 1.0336
λ1 0.0862 0.3192 2.1900 0.2285 0.2283 0.1414 0.1293 1.2784
θ2 − 0.0642 0.0900 1.1495 0.1465 0.1476 0.0528 0.0380 0.6929
λ2 0.1014 0.1951 1.6860 0.2062 0.2064 0.1034 0.0657 0.9164

97

θ1 − 0.0344 0.1185 1.3436 0.1447 0.1426 0.0802 0.0696 0.9834
λ1 0.1305 0.2983 2.0802 0.1949 0.1942 0.1514 0.1277 1.2348
θ2 − 0.0332 0.0683 1.0168 0.0948 0.0948 0.0481 0.0337 0.6791
λ2 0.0907 0.1614 1.5347 0.1677 0.1674 0.1020 0.0629 0.8676

0.5 50, 55

73

θ1 − 0.0738 0.1537 1.5101 0.1731 0.1745 0.0780 0.0794 1.0173
λ1 0.1170 0.3552 2.2919 0.2728 0.2726 0.1431 0.1267 1.2095
θ2 − 0.0649 0.0961 1.1889 0.1330 0.1322 0.0547 0.0425 0.7491
λ2 0.1131 0.1998 1.6960 0.1809 0.1813 0.1055 0.0685 0.9047

97

θ1 − 0.0243 0.1216 1.3644 0.1321 0.1311 0.0779 0.0730 0.9805
λ1 0.0812 0.2653 1.9947 0.1892 0.1907 0.1291 0.1147 1.1928
θ2 − 0.0487 0.0707 1.0252 0.0921 0.0924 0.0401 0.0343 0.6885
λ2 0.0960 0.1664 1.5549 0.1453 0.1461 0.0999 0.0651 0.9256

0.15 110, 125

170

θ1 − 0.0220 0.0680 1.0192 0.0790 0.0796 0.0529 0.0507 0.8254
λ1 0.0474 0.1316 1.4108 0.1120 0.1118 0.1046 0.0891 1.0500
θ2 − 0.0315 0.0371 0.7451 0.0552 0.0549 0.0236 0.0228 0.5809
λ2 0.0474 0.0706 1.0255 0.0741 0.0738 0.0747 0.0413 0.6996

215

θ1 − 0.0223 0.0545 0.9111 0.0579 0.0582 0.0390 0.0416 0.7669
λ1 0.0568 0.1214 1.3485 0.0927 0.0927 0.0939 0.0803 0.9922
θ2 − 0.0183 0.0301 0.6767 0.0463 0.0463 0.0238 0.0217 0.5584
λ2 0.0236 0.0545 0.9109 0.0641 0.0642 0.0532 0.0353 0.7036

0.5 110, 125

170

θ1 − 0.0193 0.0691 1.0283 0.0744 0.0739 0.0563 0.0517 0.8571
λ1 0.0524 0.1305 1.4020 0.0973 0.0969 0.0983 0.0837 1.0777
θ2 − 0.0274 0.0358 0.7348 0.0538 0.0536 0.0265 0.0236 0.5889
λ2 0.0394 0.0747 1.0606 0.0752 0.0752 0.0690 0.0434 0.7391

215

θ1 − 0.0295 0.0487 0.8575 0.0596 0.0589 0.0328 0.0352 0.7124
λ1 0.0852 0.1313 1.3815 0.0885 0.0881 0.1223 0.0917 1.0405
θ2 − 0.0163 0.0281 0.6544 0.0438 0.0442 0.0277 0.0203 0.5575
λ2 0.0405 0.0577 0.9290 0.0615 0.0620 0.0667 0.0382 0.7144
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Table 2: MLE and Bayesian estimation methods for GP based on JPC scheme with binomial removal: Case 2.

θ1 � 0.4, λ1 � 0.65, θ2 � 0.7, λ2 � 1.8

P m, n m1, m2
MLE Bayesian

Bias MSE L.CI BP BT Bias MSE L.CI

0.15 30, 25

38

θ1 − 0.0780 0.1139 1.2879 0.1900 0.1874 0.0783 0.0816 0.9430
λ1 0.1098 0.0792 1.0165 0.1622 0.1613 0.1690 0.0867 0.8643
θ2 − 0.1446 0.2904 2.0358 0.2776 0.2749 0.0688 0.0549 0.7931
λ2 0.2431 1.2161 4.2186 0.4798 0.4786 0.0722 0.0522 0.8544

47

θ1 − 0.0779 0.0859 1.1084 0.1465 0.1479 0.0636 0.0688 0.8687
λ1 0.0740 0.0613 0.9263 0.1070 0.1074 0.1202 0.0612 0.8002
θ2 − 0.1332 0.2020 1.6836 0.2490 0.2465 0.0622 0.0552 0.8273
λ2 0.3044 0.9990 3.7337 0.4639 0.4627 0.0961 0.0592 0.8724

0.5 30, 25

38

θ1 − 0.1060 0.0964 1.1447 0.2016 0.2009 0.0747 0.0888 0.9539
λ1 0.0765 0.0713 1.0030 0.1335 0.1331 0.1230 0.0694 0.8319
θ2 − 0.1336 0.2390 1.8442 0.2571 0.2577 0.0790 0.0537 0.8066
λ2 0.3110 1.1623 4.0485 0.7156 0.7204 0.0894 0.0563 0.8486

47

θ1 − 0.0778 0.0819 1.0799 0.1827 0.1815 0.0524 0.0630 0.8295
λ1 0.0579 0.0606 0.9382 0.1462 0.1476 0.1133 0.0601 0.7943
θ2 − 0.1297 0.1793 1.5808 0.2437 0.2426 0.0654 0.0499 0.7465
λ2 0.2946 0.9882 3.7236 0.6212 0.6204 0.0881 0.0577 0.8527

0.15 50, 55

73

θ1 − 0.0695 0.0574 0.8995 0.1200 0.1206 0.0480 0.0509 0.7484
λ1 0.0621 0.0399 0.7444 0.1024 0.1008 0.1066 0.0456 0.6818
θ2 − 0.0659 0.0960 1.1874 0.1525 0.1513 0.0564 0.0403 0.7161
λ2 0.1542 0.4190 2.4657 0.2325 0.2315 0.0910 0.0572 0.8513

97

θ1 − 0.0398 0.0449 0.8162 0.0751 0.0746 0.0441 0.0429 0.7176
λ1 0.0331 0.0285 0.6487 0.0600 0.0608 0.0698 0.0294 0.5969
θ2 − 0.0434 0.0615 0.9579 0.1056 0.1063 0.0387 0.0301 0.6311
λ2 0.0879 0.2666 1.9955 0.1961 0.1963 0.0805 0.0595 0.9262

0.5 50, 55

73

θ1 − 0.0659 0.0565 0.8954 0.1122 0.1111 0.0452 0.0517 0.7435
λ1 0.0482 0.0420 0.7814 0.0829 0.0840 0.0917 0.0423 0.7060
θ2 − 0.0693 0.0782 1.0624 0.1135 0.1149 0.0411 0.0330 0.6727
λ2 0.1510 0.3952 2.3933 0.2390 0.2389 0.1023 0.0636 0.8960

97

θ1 − 0.0395 0.0451 0.8183 0.0804 0.0804 0.0442 0.0419 0.7157
λ1 0.0349 0.0297 0.6615 0.0679 0.0685 0.0741 0.0321 0.6107
θ2 − 0.0350 0.0630 0.9745 0.1064 0.1071 0.0512 0.0314 0.6640
λ2 0.1246 0.2864 2.0413 0.1868 0.1855 0.0949 0.0613 0.8704

0.15 110, 125

170

θ1 − 0.0367 0.0286 0.6478 0.0486 0.0490 0.0155 0.0250 0.5653
λ1 0.0277 0.0176 0.5084 0.0416 0.0416 0.0536 0.0187 0.4729
θ2 − 0.0250 0.0337 0.7136 0.0566 0.0564 0.0311 0.0218 0.5438
λ2 0.0504 0.1343 1.4238 0.1047 0.1060 0.0677 0.0533 0.8351

215

θ1 − 0.0317 0.0207 0.5501 0.0386 0.0385 0.0063 0.0181 0.4915
λ1 0.0234 0.0130 0.4381 0.0285 0.0285 0.0474 0.0145 0.4177
θ2 − 0.0223 0.0268 0.6364 0.0424 0.0427 0.0197 0.0184 0.5040
λ2 0.0615 0.1098 1.2770 0.0868 0.0872 0.0752 0.0506 0.8087

0.5 110, 125

170

θ1 − 0.0293 0.0259 0.6202 0.0520 0.0518 0.0275 0.0270 0.5755
λ1 0.0227 0.0164 0.4941 0.0343 0.0345 0.0475 0.0177 0.4701
θ2 − 0.0265 0.0323 0.6974 0.0533 0.0530 0.0261 0.0208 0.5409
λ2 0.0585 0.1276 1.3821 0.1093 0.1087 0.0755 0.0506 0.8174

215

θ1 − 0.0209 0.0214 0.5680 0.0388 0.0387 0.0175 0.0181 0.5027
λ1 0.0187 0.0136 0.4522 0.0302 0.0301 0.0412 0.0143 0.4153
θ2 − 0.0227 0.0261 0.6273 0.0456 0.0450 0.0190 0.0177 0.5158
λ2 0.0606 0.1103 1.2806 0.0884 0.0879 0.0771 0.0512 0.8293
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Table 3: MLE and Bayesian estimation methods for GP based on JPC scheme with binomial removal: Case 3.

θ1 � 3, λ1 � 0.5, θ2 � 2.5, λ2 � 0.8

P m, n m1, m2
MLE Bayesian

Bias MSE L.CI BP BT Bias MSE L.CI

0.15 30, 25

38

θ1 − 0.1225 0.8748 3.6367 0.6448 0.6399 0.0730 0.0684 0.9731
λ1 0.1229 0.1610 1.4979 0.2191 0.2171 0.1599 0.1098 1.0032
θ2 − 0.1780 0.8485 3.5446 0.5199 0.5170 0.0417 0.0224 0.5386
λ2 0.2296 0.5346 2.7225 0.3544 0.3521 0.1445 0.1110 1.0498

47

θ1 − 0.0844 0.6192 3.0683 0.3737 0.3722 0.0761 0.0723 0.9554
λ1 0.1238 0.1513 1.4461 0.2005 0.2008 0.1616 0.1098 1.0553
θ2 − 0.1270 0.6350 3.0855 0.4516 0.4542 0.0407 0.0250 0.5879
λ2 0.1780 0.4050 2.3963 0.3548 0.3512 0.1225 0.0914 1.0154

0.5 30, 25

38

θ1 − 0.0495 0.8648 3.6421 0.7053 0.6970 0.0988 0.0769 1.0033
λ1 0.1364 0.2120 1.7250 0.2059 0.2046 0.1572 0.1196 1.0154
θ2 − 0.1077 0.8035 3.4901 0.6011 0.6000 0.0522 0.0251 0.5755
λ2 0.2513 0.6866 3.0969 0.3506 0.3510 0.1621 0.1243 1.0919

47

θ1 − 0.1095 0.6208 3.0601 0.4453 0.4476 0.0731 0.0729 0.9974
λ1 0.1183 0.1561 1.4787 0.1868 0.1868 0.1411 0.1097 1.0063
θ2 − 0.1147 0.5906 2.9801 0.5159 0.5097 0.0406 0.0245 0.5773
λ2 0.2050 0.4206 2.4130 0.3703 0.3696 0.1411 0.0956 1.0342

0.15 50, 55

73

θ1 − 0.0846 0.4923 2.7318 0.3140 0.3109 0.0631 0.0780 1.0545
λ1 0.0946 0.0966 1.1610 0.1500 0.1498 0.1551 0.0998 0.9455
θ2 − 0.0401 0.3687 2.3761 0.2793 0.2825 0.0431 0.0334 0.6636
λ2 0.0966 0.1640 1.5424 0.1806 0.1803 0.1292 0.0821 0.9686

97

θ1 − 0.0720 0.3557 2.3221 0.2009 0.2007 0.0552 0.0797 1.0926
λ1 0.0745 0.0635 0.9440 0.0944 0.0942 0.1155 0.0639 0.8116
θ2 − 0.0337 0.2424 1.9263 0.1773 0.1773 0.0383 0.0326 0.6818
λ2 0.0518 0.1103 1.2865 0.1188 0.1180 0.0996 0.0659 0.8705

0.5 50, 55

73

θ1 − 0.0257 0.4791 2.7127 0.3319 0.3348 0.0861 0.0829 1.0674
λ1 0.0706 0.0849 1.1090 0.1480 0.1488 0.1259 0.0783 0.8786
θ2 − 0.0796 0.3202 2.1971 0.2434 0.2464 0.0344 0.0295 0.6497
λ2 0.1039 0.1732 1.5803 0.1623 0.1629 0.1264 0.0818 0.9442

97

θ1 − 0.0451 0.3238 2.2247 0.2232 0.2228 0.0661 0.0743 1.0298
λ1 0.0553 0.0634 0.9631 0.0947 0.0937 0.1086 0.0652 0.7943
θ2 − 0.0551 0.2395 1.9073 0.1972 0.1977 0.0333 0.0313 0.6756
λ2 0.0757 0.1240 1.3489 0.1472 0.1461 0.1006 0.0704 0.8533

0.15 110, 125

170

θ1 − 0.0409 0.2023 1.7567 0.1246 0.1256 0.0461 0.0729 1.0124
λ1 0.0308 0.0309 0.6784 0.0507 0.0503 0.0857 0.0437 0.6772
θ2 − 0.0197 0.1467 1.5004 0.1134 0.1143 0.0341 0.0374 0.7304
λ2 0.0374 0.0508 0.8713 0.0614 0.0613 0.0834 0.0417 0.7118

215

θ1 − 0.0325 0.1695 1.6096 0.1113 0.1114 0.0398 0.0735 1.0183
λ1 0.0276 0.0253 0.6138 0.0423 0.0419 0.0710 0.0308 0.5853
θ2 − 0.0282 0.1052 1.2670 0.0873 0.0862 0.0218 0.0325 0.6899
λ2 0.0384 0.0424 0.7937 0.0516 0.0515 0.0813 0.0370 0.6699

0.5 110, 125

170

θ1 − 0.0442 0.1991 1.7415 0.1457 0.1465 0.0419 0.0745 1.1018
λ1 0.0365 0.0331 0.6992 0.0611 0.0621 0.0854 0.0384 0.6426
θ2 − 0.0176 0.1338 1.4331 0.1051 0.1055 0.0351 0.0339 0.6972
λ2 0.0469 0.0617 0.9569 0.0712 0.0714 0.0908 0.0514 0.7523

215

θ1 − 0.0125 0.1634 1.5846 0.1037 0.1032 0.0523 0.0728 1.0384
λ1 0.0366 0.0259 0.6143 0.0443 0.0443 0.0784 0.0307 0.5853
θ2 − 0.0220 0.1122 1.3111 0.0867 0.0869 0.0286 0.0354 0.7265
λ2 0.0312 0.0471 0.8422 0.0527 0.0531 0.0704 0.0371 0.6477
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extensive simulation study. Since the JPC samples scheme
with binomial removal of the GP distribution is given in
terms of the cdf and pdf of GP distribution, it is easy to
generate a random sample from this model.

xi �

λ1
θ1

1 − ui( 
− θ1 − 1 , θ1 ≠ 0,

− λ1 ln 1 − ui( , θ1 � 0,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

yi �

λ2
θ2

1 − vi( 
− θ2 − 1 , θ2 ≠ 0,

− λ2 ln 1 − vi( , θ2 � 0,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(19)

where 0< u< 1 and 0< v< 1. Terefore, we need to de-
termine some values of actual parameters for this model as
follows:

Case 1. θ1 � 1.2, λ1 � 1.5, θ2 � 0.8, λ2 � 1.3.

Case 2. θ1 � 0.4, λ1 � 0.65, θ2 � 0.7, λ2 � 1.8.

Case 3. θ1 � 3, λ1 � 0.5, θ2 � 2.5, λ2 � 0.8.
Also, we need to suggest diferent samples sizes, hence

when the samples size are m � 30 and n � 25, we selected
diferent failure sizes for this sample as r � 38 and r � 47.
When the sample sizes are m � 50 and n � 55, we selected
diferent failure sizes as r � 73 and r � 97. Also, when the
sample sizes are m � 110 and n � 125, we selected diferent
failure sizes as r � 170 and r � 215. Te probability of bi-
nomial removal for JPC is supposed to have two values as
P � 0.15 and 0.5.

After generating the data for X and Y, we combined
these variables to obtain the W � X1, X2, . . . ,

Xm, Y1, Y2, . . . , Yn} from two diferent samples with the
same probabilities. Furthermore, W1 ≤W2 ≤ . . . ≤WN de-
note the order statistics, where N � n + m. Ten, generate R-
removal of censored form binomial with P probability.
Generate progressive censored sample. For more in-
formation about generating progressive censored samples,
see Balakrishnan [30] and Balakrishnan and Cramer [31].
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Figure 1: Estimated CDF, PDF, and PP plot of GP for data X.
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Figure 2: Estimated CDF, PDF, and PP plot of GP for data Y.

10 Mathematical Problems in Engineering



For the MLE method, we used Newton–Raphson algorithm
and for the Bayesian estimation method, we used MCMC by
MH algorithm. Confdence intervals of Bayesian estimation
method is performed using credible intervals algorithm of
MCMC results when 10000 loop is performed.

In a (1 − ξ)100ξ% confdence interval, we get the length
of the interval (L.CI) when ξ � 5%. Te Biases and MSEs are
used to compare MLE and Bayesian estimation methods.
Te results are obtained in Tables 1–3 after 10000 loops.

Te following concluding remakes are noticed based on
these Tables:

(1) As sample size increases with fxing all other values
of model, the bias, MSE, and L.CI associated with the
parameter of the GP distribution based on JPC es-
timates decrease for all methods of estimation.

(2) As the number of failed units increases (r) with
fxing all other values of the model, the bias, MSE,
and L.CI associated with the parameter of the GP

distribution based on JPC estimates decrease for all
methods of estimation.

(3) Te Bayesian estimation method is the best esti-
mation method to estimate the parameters of the GP
distribution based on JPC, since it has the smallest
bias and MSE values and shortest L.CI.

(4) Te bootstrap confdence interval is the shortest
interval length for estimation of the GP parameters
based on JPC.

(5) When comparing the asymptotic confdence in-
tervals with the credible confdence intervals, we can
realize that the latter have shorter interval lengths.

5.2. Application of Data. Abu-Zinadah [32] used this data to
inference the jointly Type-II censored samples from two
Pareto distributions. Te data are as follow: X� 0.152, 0.548,
0.759, 0.778, 0.916, 0.976, 1.017, 1.433, 1.558, 1.822, 1.888,
2.395, 3.066, 3.901, 5.489, 5.809, 17.886, 21.829, 43.239, and
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Figure 3: ACF, histogram, and trace plot of λ1 and θ1.
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Figure 4: ACF, histogram, and trace plot of λ2 and θ2.
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Table 4: MLE and Bayesian estimation methods for GP based on JPC scheme with binomial removal.

P 0.1 0.5

m
MLE Bayesian MLE Bayesian

Estimate SE Estimate SE Estimate SE Estimate SE

20

θ1 0.5393 0.6240 0.9504 0.6121 0.1229 0.4495 0.8500 0.3281
λ1 3.6581 2.4356 3.6370 2.2474 3.1396 1.2869 2.8928 1.2789
θ2 2.9656 1.1532 2.3175 1.0591 1.7832 1.6354 2.8058 1.4668
λ2 2.4019 1.6005 3.0646 1.4616 2.8372 1.9272 3.3960 1.8141

25

θ1 0.8031 0.4999 1.0957 0.3366 0.7766 0.5568 0.8263 0.3387
λ1 2.9710 1.3029 2.2852 0.6248 3.2473 1.8360 3.1524 0.9213
θ2 1.1402 1.0574 2.1494 0.9079 2.6532 0.9443 2.4127 0.3564
λ2 3.4690 2.4049 3.2225 0.5395 2.7533 1.7404 3.1848 0.2771

30

θ1 1.1172 0.5119 1.8141 0.3047 0.6859 0.4335 0.8834 0.3192
λ1 2.4175 1.0644 1.7678 0.5406 3.2102 1.4751 2.5594 0.6514
θ2 1.6383 0.7780 2.0479 0.4506 3.3062 0.9110 2.8932 0.3247
λ2 2.8376 1.6038 1.8831 0.5966 2.2662 1.6233 1.6953 0.2339

35

θ1 1.0690 0.4798 0.8663 0.2643 0.9730 0.4341 1.1057 0.3050
λ1 2.4427 1.0600 2.3529 0.4543 2.5322 1.0979 2.2959 0.6252
θ2 3.2396 0.9787 3.4954 0.3715 2.9439 0.9221 3.6897 0.2512
λ2 2.2195 1.3993 1.9277 0.5021 2.7814 1.7635 3.9422 0.2770

 138.1559 

 138.2154 
 138.2825 

 138.2825 

 138.3827 

 138.3827 

 138.5141 

 138.5141 

 138.6835 

 138.6835 

 139.272 2.0

2.2

2.4

2.6

2.8

3.0

λ 1

0.8 1.0 1.2 1.40.6
θ1

 138.231 

 138.326 

 138.431 

 138.558 

 138.697 

 138.855 

 138.855 

 139.193 2.2

2.4

2.6

2.8

3.0

3.2

3.4

θ 2

0.8 1.0 1.2 1.40.6
θ1

 138.154 

 138.2064 

 138.2841 

 138.3782 

 138.3782 

 138.5221 

 138.5221 

 138.6767 

 138.6767 

 139.2154 2.0

2.2

2.4

2.6

2.8

3.0

3.2

λ 2

0.8 1.0 1.2 1.40.6
θ1

 138.1466 

 138.1742 
 138.2088 

 138.2479 

 138.2953 

 138.2953 

 138.3987 
 138.6633 

2.2 2.6 3.43.0
θ2

2.0

2.2

2.4

2.6

2.8

3.0

3.2

λ 2 13
8.1

44
3 

 138.1633 
 138.1838 

 138.2066 

 138.2336 
 138.2724 

 138.3346 

2.22.0 2.82.62.4 3.0
θ1

2.0

2.2

2.4

2.6

2.8

3.0

3.2

λ 2 1
38

.1
49

6 

 138.1869 

 138.2252 
 138.2649 

 138.3152 

 13
8.3

15
2 

 138.3152  1
38

.4
08

7 

 138.6299 

2.22.0 2.82.62.4 3.0
λ1

2.2

2.4

2.6

2.8

3.0

3.2

3.4

θ 2

Figure 5: Contour plot of log-likelihood function with diferent values of parameters; m � 35 and p � 0.5.
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90.793. Y� 0.006, 0.383, 0.489, 0.925, 1.25, 1.337, 1.448,
1.976, 2.426, 5.484, 8.611, 9.430, 16.120, 37.360, 41.090,
49.276, 152.313, 442.915, 12510.900, and 63621.000.

Te empirical and ftted distribution functions, CDF,
and PP-plots are presented in Figures 1 and 2. Te graphical
tools such as trace plots and auto-correlation function (ACF)
plots are used to check the convergence of MCMC. Figures 3
and 4 show the trace and ACF plots for θ1, λ1, θ2, and λ2 of
a chain of diferent number of iterations. Te ACF plots for
θ1, λ1, θ2, and λ2 show that the chains have a low auto-
correlation. Also, they indicate a rapid convergence of the
MCMC subject to the normal distribution. For more in-
formation about convergence of MCMC one may refer to
Freitas et al. [33]. From Table 4, it is clear that Bayesian
estimation performs better than MLE for diferent number
of failures and diferent binomial probabilities, this is be-
cause it has less mean squared error (SE). Figure 5 shows the
Contour plots of log-likelihood function with diferent
parameter values, the MLE results of model with m � 35 and
p � 0.5 are unique and attain their maximum points.

6. Conclusions

In this article, we considered point and interval estimation
for two joint populations with generalized Pareto lifetimes
under progressive Type-II censoring schemes. Classical and
nonclassical estimation methods were proposed and nu-
merical methods were implemented to evaluate the per-
formance of the diferent methods of estimation, it was
shown through a real data example that Bayesian methods
were superior to the classical method (MLE). While com-
paring the confdence intervals it was realized that Bootstrap
confdence interval has the shortest interval lengths com-
pared to asymptotic and credible confdence intervals.
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