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This paper proposes an interactive two-archive method to solve many-objective optimization problems. Two updating strategies
based on the aggregation-based framework are presented and incorporated into a two-archive framework. In addition, we further
extend this method by introducing an interactive mechanism in which evolutionary information is passed from the diversity
archive to the convergence archive. Given the requirement to balance convergence and diversity, a mating selection method is
proposed to regulate the evolutionary speed of these two archives collaboratively. The proposed algorithm has been tested
extensively on several problems with different peer algorithms to validate its effectiveness. The results show that the proposed
method can outperform several state-of-the-art evolutionary algorithms for handling many-objective optimization.

1. Introduction

Multi-objective optimization problems (MOPs), which refer
to the task of optimization with more than one objective,
commonly exist in real-world applications. e.g., engineering
design problems [1], software engineering problems [2], and
water management [3]. Generally, a continuous MOP can be
defined as follows:

minimize  F xð Þ ¼ f1 xð Þ; f2 xð Þ;…; fm xð Þð Þ
s:t:  x 2Ω

; ð1Þ

where x¼ðx1; x2;…; xnÞ is the decision vector, Ω is the deci-
sion space, and F :Ω→ Rm is the objective function vector,
mapping from the n-dimensional decision space Ω to the
objective space Rm. As a specific category of MOPs, many-
objective optimization problems (MaOPs) refer to MOPs
with more than three objectives (m≥ 4). The reason for sep-
arating this single category is that a large number of multi-
objective evolutionary algorithms (MOEAs) encounter sub-
stantial difficulties when solving MaOPs. For example, two

representative Pareto-based methods, NSGA-II [4], and
SPEA2 [5] have shown to be very effective in handling MOPs
but degraded drastically in addressing MaOPs due to domi-
nance resistance [6]. Specifically, the proportion of nondo-
minated solutions increases significantly in higher objective
space, and the strictly defined dominance relationship can-
not discriminate between these solutions.

As the weakest preferred structure for the decision-
makers, Pareto dominance can be defined as follows: a vector
x¼ðx1; x2; …; xmÞT is said to dominate another vector y¼
ðy1; y2; …; ymÞT , represents as x ≺ y, if 8i2f1; 2;…;mg;
xi ≤ yi and 9j2f1; 2;…;mg; xj<yj. In order to address the
issues caused by dominance resistance, there are a number of
methods to improve the Pareto-based method for MaOPs.
The most intuitive attempt is to relax the original dominant
relationship, making solutions more comparable in a higher
objective space. Some studies, such as ϵ-dominance [7],
fuzzy-dominance [8], and θ-dominance [9], were proposed.
By enlarging the dominated area of a solution, these new
dominances can increase the convergence ability to some
extent. Nevertheless, setting a proper value for the parameters
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in these methods is not an easy task since it varies over pro-
blems and relies on the number of objectives.

Objective reduction is a direct way to handle dominance
resistance by converting a MaOP into a MOP. For some real-
life MaOPs, their objectives can be highly correlated. Thus,
the basic idea behind these methods is to keep the essential
objectives and discard the redundant ones. After object reduc-
tion, if the remaining number of objectives is lower than four,
any state-of-the-art MOEA can be directly introduced. Vari-
ous machine learning algorithms, such as principal compo-
nent analysis (PCA), maximum variance unfolding (MVU)
[10], and feature selection [11], can be considered tools for
objective reduction.

Additionally, even MOEA can be used to remove redun-
dant objectives by considering different kinds of errors
simultaneously [12]. The advantage of the objective-reduc-
tion-based method is that we intend to do something other
than any extra ways to promote the scalability of existing
MOEAs. Yet, these reduction strategies may only be valid
when more redundant objectives exist.

Indicator-based methods combine convergence and
diversity performance into a single indicator as the selection
criteria in environmental selection. Theoretically, they can
avoid the dominance resistance phenomenon, but in prac-
tise, it is doubtful that they will be able to maintain popula-
tion coverage and diversity effectively when dealing with
MaOPs. The hypervolume estimation (HypE) [13] and the
indicator-based evolutionary algorithm (IBEA) [14] can be
considered as two representatives in this category. Because of
its strong theoretical qualities, the HypE are commonly uti-
lized in solving MaOPs, but their computing complexity
grows exponentially as the number of objectives grows.
The Iϵþ indicator in IBEA and its variant [15] are gaining
popularity in MaOPs as Iϵþ does not require a reference
point or other prior knowledge of the real PF and has a
relatively low-computational complexity. However, Iϵþ
only exhibits good performance in termes of convergence,
whereas diversity tends to be poor; combing both conver-
gence and diversity performance into a single indicator is not
a easy task.

Another promising method for MaOPs is to decompose
a MOP into several subproblems by using a series of aggre-
gation functions, and then solve these subproblems simulta-
neously. These methods can be referred to as decomposition-
based or aggregation-based algorithms. The MOEA based on
decomposition (MOEA/D) can be considered the most rep-
resentative of this class of methods [16]. Although the
MOEA/D is not originally proposed for MaOPs, it is still
competitive to handle in the many-objective scenario. So
far, many variants based on MOEA/D have been proposed
from different aspects. e.g., adaptively adjusting weight vec-
tors [17], exploiting the perpendicular distance from solution
to weight vectors [18], enhancing diversity by a hybrid
method [19].

The basic principle for designing an MOEA is to find a
set of nondominated solutions that are distributively close to
the Pareto front (PF), reflecting two goals of the search pro-
cess: convergence and diversity. Thus, some literature begins

to separate these two basic goals into different subpopula-
tions; this strategy begins to focus on the structure of selection
instead of a specific selection procedure. Two-archive based
method can be considered as a representative method follow-
ing this idea [20]. As one of hybrid methods [21], typically, in
two-archive-basedmethod, the convergence archive (CA) tar-
gets the solutions with good convergence, and the diversity
archive searches for the solutions with good diversity. Both of
these evolutionary processes have occurred separately. The
original two-archive algorithm is unsuitable forMaOPs, since,
in the absence of any restrictions, the number of nondomi-
nated solutions in CA would increase dramatically, failing to
provide sufficient selection pressure [20]. In Two Archive 2
(Two_Arch2), the structure and survival strategies were
updated significantly: the size of two archives are fixed, and
dominance-based methods are not directly utilized to avoid
dominance resistance [22]. Cai et al. [23] proposed a new two-
archive method based on an aggregation-based framework
that combines the benefits of two archive and aggregation-
based methods. Besides, as the demands of convergence and
diversity are decoupled in two different archives, two-archive
techniques are better suited for tackling multimodel MOPs
[24] and constrained MOPs [25].

Although the two-archive methods have been extensively
used for MaOPs, they still suffer many deficiencies when
applied to the other cases. First, the two archives evolve their
populations according to their distinct standards, and there
is no interaction between these two archives. Second, differ-
ent problems have different characteristics; some MOPs con-
verge quickly, while others may necessitate an emphasis on
diversity. As a result, the two-archive method with separate
yet fixed evolutionary strategies fails to balance convergence
and diversity in some cases.

To address such issues, we propose an interactive two-
archive method for aggregation-based MOEA, termed
iTwoArch. The main contributions of this work are summa-
rized as follows:

(i) In iTwoArch, unlike its predecessor, replacement
information on subproblems in DA can be transmit-
ted to CA, thereby avoiding redundant searches to
some extent.

(ii) A mating selection is carefully designed according to
the evolutionary speed of these two archives, which
effectively enhances the capability of balancing con-
vergence and diversity in iTwoArch.

(iii) Different kinds of test problems are used to verify
the performance of the proposed method, compared
with several state-of-the-art peer algorithms.

The remainder of this paper is organized as follows: the
proposed algorithm is described in detail in the next section.
The third section presents the experimental design, test pro-
blems, and performance indicators for investigating the
performance of the proposed iTwoArch, followed by experi-
mental results and relevant discussions. Finally, the conclu-
sion and some possible future research directions are given in
the last section.
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2. The Proposed Method

2.1. Main Idea. Algorithm 1 gives the general framework of
the proposed iTwoArch; like many other steady-state algo-
rithms [16, 23]. First, a series of uniformly spread weight
vectors are generated in advance. Das and Dennis [26] sys-
tematic approach is used, and the two-layer method is
adopted for the number of objectives over seven [23].
Then, two populations are initialized separately. The ideal
point set z∗, which is defined as the best scalar value for each
objective in the current state, is obtained from two popula-
tions (Step 3). Next, the neighborhood for each subproblem
is determined in Step 4. After that, every vector in B stores
the indexes of T closet weight vectors, i.e., BðiÞ¼ fii; i2;…;
iTg, where {λi1; λi2;…; λiTg2Λ indicates T closet weight vec-
tors to current λi. Steps 6–16 are iterated until the termina-
tion criterion is fulfilled. Specifically, in each iteration, two
mating solutions are chosen according to the replacement
status of two archives. Once parents are determined, simu-
lated binary crossover (SBX) and polynomial mutation are
executed sequentially to generate a new solution s. Finally, s
is used to update the ideal point set and two different
populations.

After presenting the framework of the proposed algo-
rithm, we would like to discuss the main similarities and
differences between the improved version and the original
TwoArchA [23]. For the similarities, both introduce a set of
weight vectors to guide the search behavior in two archives
separately. Besides, both of them use the steady-state method
to update two archives, which means that once an offspring s
is produced, it directly goes through twin archives to deter-
mine whether or not to replace a specific solution. However,
compared with its predecessor, the characteristic procedure
of the proposed algorithm mainly lies in two updating steps
and mating selection. In our design, CA and DA’s evolution

is based not only on different aims but also on interaction.
The results of updating DA are considered necessary for the
evolution of CA. Additionally, the mating selection in this
study intends to address two issues: (1) to prevent two dis-
tant solutions from being combined; (2) to balance the con-
vergence and diversity according to the state of the two
archives. In the following subsection, we would like to pres-
ent the two updated mechanisms and mating selection in
detail.

2.2. Diversity Archive. The update mechanism of the DA is
presented in detail in Algorithm 2. As we know, the main
goal of DA is to select well-diversified solutions. The solu-
tions in this archive should be distributed in the PF with
large diversified degrees. For that, some characteristic proce-
dures are designed.

Specifically, when the new solution s is created, we first
find the most suitable weight λ for s via association (Step 1 of
Algorithm 2). The procedure of association is presented in
the Algorithm 3. For each weight vectors λi 2Λ, we compute
perpendicular distance from s to λi as follows:

d?i ¼ bf sð Þ − λi bf sð Þ ⋅ λi =k kλ2i
  ; ð2Þ

where bf ðsÞ is translated objectives: bf jðsÞ¼ fjðsÞ− z∗j (z∗j 2 z∗;
j¼ 1;…;m). After the appropriate weight λi is determined,
the original solution associated to this weight xi competes
with s, and the operation of replacement happens in two
cases:

(1) s dominates xi (Step 3 in Algorithm 2).
(2) if s and xi are nondominated with each, but s has

lower perpendicular distance to λi (Step 7 in Algo-
rithm 2).

1: Λ← weightVectorsGenerator()

2: ðPCA;PDAÞ← initializePopulation()

3: z∗← initializeIdealPoint(PCA;PDA)
4: B← initializeNeighborhood()

5: ϵCA ← 0; ϵDA ← 0

6: while termination criterion is not fulfilled do

7: for i← 1 to N do

8: (xi,yi)← matingSelection(B; ϵCA; ϵDA)
9: s← crossoverðxi; yiÞ
10: s← mutation(s)

11: updateIdealPoint(s; z∗)
12: k0 ← updateDA(s; z∗;Λ,PDA; ϵDA)
13: updateCA(s; z∗;Λ; PCA; ϵCA; k0)
14: end for

15: ϵCA ← 0; ϵDA ← 0

16: end while

17: return all the non-dominated solutions in PDA

ALGORITHM 1: Framework of the proposed algorithm.

Input: offspring solution s, ideal point set z∗, weight vector
set Λ, diversity archive PDA, count of replacement in current
generation ϵDA
Output: index of matched sub-problem i

1: i← associate(s; z∗;Λ)
2: if s ≺ xi then

3: PDA ← PDA \ fxig, PDA ← PDA ∪ fsg; ϵDA ← ϵDA þ 1

4: else

5: if s and xi are nondominated with each other then

6: if d?ðs; λi; z∗Þ<d?ðxi; λi; z∗Þ then
7: PDA ← PDA \ fxig, PDA ← PDA ∪ fsg; ϵDA ← ϵDA þ 1

8: end if

9: else

10: i← − 1

11: end if

12: end if

13: return i

ALGORITHM 2: Update procedure for diversity archive.
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The replacement count ϵDA increases once a replacement
happens.

2.3. Convergence Archive. The main idea of the update mech-
anism in CA is to evaluate the convergence in the ith sub-
problem: for each solution, yi in the neighborhood E, replace
yi if s is better than yi in terms of convergence. The update
procedure for convergence archive is shown in Algorithm 4.
Similar to the mechanism of DA, we still use two standards
to evaluate the ability of convergence. First, if s dominates yi,
s can be considered as a substitute for yi. In addition to that,
if s has a smaller aggregation function value, i.e., FiðsÞ
<FiðyiÞ, s can also be considered as a winner.

Like TwoArchA, we still use a modified version of the
Tchebycheff function as the aggregation function in this
study. A smaller Tchebycheff function value of a solution
implies its better convergence performance. The aggregation
function for j-th weight vector can be defined as follows:

Fj xð Þ ¼max
m

k¼1

1
λj;k

bf k xð Þ
( )

; ð3Þ

where bf kðxÞ is the translated objective value for k-th objec-

tive value bf kðxÞ¼ fkðxÞ− z∗k .

It is worth noting that the index of the best-matched sub-
problem k0 is passed by the update procedure of DA, which
means that we use perpendicular distance to confirm the most
suitable subproblem for the replacement scheme in CA.

2.4. Mating Selection. Algorithm 5 provides the pseudocode
of the whole mating selection. Commonly, mating selection
aims at selecting better solutions for variation. In two-archive-
based methods, the different solutions generally come from
two archives independently, based on the assumption that
combining them could generate a better solution by inheriting
all abilities from their parents. Based on this idea, the mating
selection in this work contains two stages.

First, taking advantage of the subregion defined by
weight vectors, we restrict the solutions to be selected within
some regions. This restriction may help alleviate issues in
MaOPs, where recombining two distance solutions is not
likely to generate good offspring. Additionally, to enhance
the exploration ability, we also allow selection from the
whole population rarely happens in the entire population
(Step 4 in Algorithm 5).

The second stage is the collaborative process (Steps 7–12).
Typically, twomating parents are picked up from CA and DA
separately when two archives have a similar status. However,
in some cases, the evolution of DA is faster than CA, which
means there is an imbalance between convergence and diver-
sity. Therefore, we need to control the speed of the evolution-
ary process in two archives. To make the collaboration work,
there are two issues that need to be adequately attended to.
First, estimating the state of two archives is necessary. In our
design, we use replacement frequency as a criterion for state
estimation. ϵCA and ϵDA, which count the replacement in CA
and DA, respectively, can be directly considered as the indi-
cators for the evolutionary state. Second, the control of the
evolutionary process should be adequate. Here, we use a
straightforward strategy: when DA has a higher proportion

Input: offspring solution s, ideal point set z∗, weight vector
set Λ

Output: index of matched sub-problem i

1: for each λi 2Λ do

2: Compute the perpendicular distance d?ðs; λi; z∗Þ
3: end for

4: Assign bλi ¼ λi : argminλi2Λd
?ðs; λi; z∗Þ

5: return i

ALGORITHM 3: Association.

Input: offspring solution s, ideal point set z∗, weight vector
set Λ, convergence archive PCA, count of replacement in
current generation ϵCA, k0 the index of sub-problem

1: E← Bðk0Þ
2: for each i2 E do

3: if s ≺ yi then

4: PCA ← PCA \ fyig, PCA ← PCA ∪ fsg; ϵCA ← ϵCAþ 1

5: else

6: if FiðsÞ<FiðyiÞ then
7: PCA ← PCA \ fyig, PCA ← PCA ∪ fsg; ϵCA ←

ϵCA þ 1

8: end if

9: end if

10: end for

11: return

ALGORITHM 4: Update procedure for convergence archive.

Input: i index of sub-problem, δ probability of selection in
neighbourhood, ϵCA, ϵDA, PCA, PDA
Output: the selected two solutions x; y
1: if rand()<δ then

2: E← BðiÞ
3: else

4: E← f1; 2;…;Ng
5: end if

6: Randomly select two indexes k1 and k2 from E

7: ϵ← ϵDA
ϵDAþϵCA

8: if rand()<ϵ then

9: x← PCA½k1�, y ← PCA½k2�
10: else

11: x← PCA½k1�, y ← PDA½k2�
12: end if

13: return x, y

ALGORITHM 5: Mating selection.
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of replacement, the mating selection is more likely carried in
CA only (Step 9 in Algorithm 5).

2.5. Discussion. This subsection is devoted to discussing the
main similarities and differences between the proposedmethod
and its predecessors.

iTwoArch vs. TwoArch2 [22]: Despite the fact that they
both use the two-archive frames to lead the solution set to the
PF, the updating procedure in each archive is distinct. In
TwoArch2, CA is maintained by an indicator-based method,
whereas DA is maintained using a Pareto-based method,
necessitating a new Lp-norm based diversity management
strategy. For the proposed iTwoArch, both CA and DA are
maintained by the decomposition-based selection method.

iTwoArch vs. TwoArchA+ [23]: both employ a steady-
state decomposition-based approach to updating two archives,
but their detailedmaintenancemethods are quite different. The
updating of two archives is done independently in TwoArchA
+, with no interaction. However, with the proposed iTwoArch,
the updated solution information in the DAwould be passed to
the CA update process to better assist the selection. In addition,
there is no specific mating selection designed for TwoArchA+,
yet in our iTwoArch, the mating selection is based on the
frequency of updates for two archives, keeping the two updat-
ing procedures more balanced.

3. Experimental Design

This section introduces test problems, performance metrics,
algorithms in comparison, and parameter settings for the
experimental studies.

3.1. Test Problems. To test the effectiveness of the proposed
iTwoArchD, two well-known continuous benchmark suites,
DTLZ1-4 [27] and WFG1-9 [28], are involved in our empirical
studies. In particular, the number of objectives for each problem
is set asm2f3; 5; 8; 10; 15g. For theDTLZ problems, the num-
ber of decision variables is set to n¼mþ k− 1, where k¼ 5 for
DTLZ1, and k¼ 10 for DTLZ2-4. As forWFG problems, we set
the number of decision variables n¼ 24, and the position-related
parameter is m− 1. For a fair comparison, we apply the same
conditions to each test problem.

3.2. Parameter Settings. For a fair comparison, we utilize
the same parameter settings with common parameters for
the proposed iTwoArch and its rivals. First, in this research,
we employ SBX and polynomial mutation to determine the
parameters for the reproduction processes. The crossover
and mutation probabilities are set to 1 and 1=n, respectively.
Besides, the the crossover and mutation distribution index
has been set at 30 and 20, respectively. Following the sugges-
tion of its original works, the neighborhood size for the
decomposition-based method is set to 20, and the probability
is set to 0.9. Furthermore, the population size is kept the
same to ensure a fair comparison, and it is controlled by
two parameters (H1 and H2) since the two-layer weight vec-
tor method is used in this works [29]. The detailed popula-
tion size is summarized in Table 1.

3.3. Algorithms in Comparisons. Here, we choose five state-of-
the-art many-objective optimization algorithms to comprehen-
sively study the performance of the proposed algorithm. These
algorithms have covered different categories ofMaOPs, includ-
ing two decomposition-based algorithms (MOEA/D and
MOEA/D-M2M), an algorithm that combines Pareto-based
and decomposition-based selection together (NSGAIII), and
two algorithms based on two archives (TwoArchA+ and
TwoArch2). Some brief reviews and comments are listed as
follows:

(i) MOEA/D [16]: MOEA/D can be considered a rep-
resentative algorithm of the decomposition-based
method. This study chooses the original MOEA/D
with a modified version of the Tchebycheff function
for a fair comparison.

(ii) MOEA/D-AM2M [30]: lacking prior knowledge of the
PF, aggregation-based methods are hard to initialize an
applicable set of weight vectors for a specific problem.
To address this issue, MOEA/D-AM2M assumes that
the current evolutionary population can be an approxi-
mation to the PF, and periodically resets the subregion
setting and weight vectors. This practice of resetting
makes MOEA/D-AM2M suitable for some degener-
ated MaOPs.

(iii) NSGAIII [29]: in NSGAIII, the maintenance of diver-
sity is also aided by a series of weight vectors (or called
reference lines in NSGAIII). Based on that, a niche-
preservation operation was employed to identify the
promising candidates. Overall, NSGAIII prefers some
solutions that are nondominated but close to a set of
well-distributed reference lines.

(iv) TwoArch2 [22]: TwoArch2 maintains two archives
according to indicator-based selection and an
Lp-norm-based diversity maintenance method. Dif-
ferent solutions are picked up from two archives
containing different characteristics.

(v) TwoArchA+ [23]: a new two-archive method to deal
withMaOPs. Similar to TwoArch2, the updatingmech-
anism of CA and DA is based on different rules yet
under the same decomposition-based framework. To
further control the diversity, each subproblem’s neigh-
borhood has been extended to the whole population.

All algorithms, including the proposed iTwoArch, are
implemented using Java and the jMetal framework [31],
and all experiments are conducted on a Lenovo ThinkCentre
computer with an Intel(R) Core i5-8400 (2.8 GHz) processor

TABLE 1: The population size.

No. of objectives H1 H2 Population size

3 12 – 91
5 6 – 210
8 3 3 240
10 3 2 275
15 2 1 135
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and 64-GB RAM. Each algorithm is independently executed
30 times on each test instance, and the average values of the
evaluation metrics are recorded. Furthermore, the Wilcoxon
[32] signed-rank test at 5% significance level is performed
on the metric values generated by two competing algorithms
in order to examine the difference for statistical significance
in different instances.

3.4. Performance Metrics. We used a hypervolume indicator
(HV) as a performance indicator in the experiment. The
good theoretical qualities of HV make it relatively fair to
evaluate the performance of algorithms. And it can simulta-
neously measure an algorithm’s convergence and diversity
ability. The larger the HV value, the better the quality of
obtained solutions to approximate the whole PF. Mathemat-
ically, the exact definition of HV is defined by Equaion (4) as
follows:

HV Sð Þ ¼ ⋃volume v; rð Þ v 2 S; r 2 zj ;f g ð4Þ

where r¼fr1; …; rmgT is a reference point set which is
dominated by all Pareto-optimal objective vectors. Thus,
before calculating HV, a reference point is to be assigned.
In our experiment, the setting of reference points for each
test instance is the same as the experiments on TwoArchA
[23], and the presented HV values in this paper are all nor-
malized by dividing the corresponding ∏m

i¼1ri. As for the
problem with 15 objectives, the HV value is approximated
by Monte Carlo simulation, and 10,000,000 points are sam-
pled to ensure accuracy.

4. Empirical Result and Discussion

4.1. PerformanceComparisononDTLZProblems.For theDTLZ1
problem, it has a linear PF with a large number of optima, arous-
ing a challenge for an algorithm to converge toward PF. Accord-
ing to the results in Table 2, iTwoArch shows better performance
than the other algorithms in almost all instances. For the three-
objective instance, TwoArch2 reaches the best result.

As a relatively simple question, DTLZ2 is used to test a
specific algorithm’s diversity ability. It is clear that iTwoArch
can achieve the best performance. For the rest of the pro-
blems, all the performance of algorithms appears similar
except for the five-objective problem. Thus, in order to
give more comparison, Figure 1 plots the 3-dimensional
radial coordinate visualization (3D-RadVis) to present the
same results on five-objective instances [33]. As shown, the
proposed iTwoArch and MOEA/D-AM2M have a better
performance in terms of both convergence and diversity.
MOEA/D can archive a good convergence but struggle to
maintain a set of well-distributed individuals. Last, solutions
obtained by TwoArch2 fail to get the boundary on the PF,
and some of its solutions are far from the optimal front.

The PF of DTLZ3 is exactly the same as DTLZ2, yet it con-
tains too many local optima in its search space. The proposed
iTwoArch obtains medium performance in all these instances.
TwoArch2 get the worst performance on this problem, its
indicator-based convergence mechanism may lose efficiency in
higher-dimensional problems. In contrast, MOEAD-AM2M
performs better on 8- and 10-objective instances, which means
that a suitable mechanism of adaptive weight adjustment may
also help in escaping the local optima.

TABLE 2: Performance comparison on DTLZ1-4 problems with respect to the average HV values.

Problem Obj. iTwoArch TwoArchA+ TwoArch2 MOEAD MOEADAM2M NSGAIII

DTLZ1

3 0.973505 0.973558 0.975170 0.973651 0.970025† 0.972512†
5 0.998961 0.988324† 0.997340† 0.996220† 0.998330† 0.998628†
8 0.999931 0.999914† 0.999242† 0.999560† 0.999926 0.999604†
10 0.999999 0.999775† 0.998868† 0.999957† 0.999988† 0.999731†
15 0.999997 0.999991† 0.974723† 0.999227† 0.988791† 0.999710†

DTLZ2

3 0.926717 0.926697† 0.929175 0.926730 0.926001† 0.926643†
5 0.990526 0.990386† 0.983421† 0.986239† 0.990349† 0.990434†
8 0.999321 0.999302† 0.993856† 0.998597† 0.999246† 0.999259†
10 0.999918 0.999901† 0.992931† 0.999772† 0.999875† 0.999876†
15 0.999996 0.999998 0.981044† 0.999624† 0.999506† 0.999996

DTLZ3

3 0.978073 0.997819 0.972712 0.978151 0.976368† 0.977728†
5 0.998658 0.960642 0.992559† 0.997989† 0.998381† 0.990501†
8 0.999954 0.996681 0.817973† 0.999784† 0.999956 0.993984†
10 0.999668 0.969624 0.000000† 0.999886 0.999994 0.946079
15 0.999965 0.999999 0.691400† 0.999417† 0.997129† 0.999696†

DTLZ4

3 0.926715 0.909868† 0.929180 0.918331 0.926035† 0.926660†
5 0.990541 0.990522† 0.985053† 0.985951† 0.990448† 0.990503†
8 0.999370 0.999297 0.994405† 0.999350 0.999420 0.999355†
10 0.999925 0.999913† 0.993294† 0.999916 0.999932 0.999919†
15 0.999999 0.999995† 0.983069† 0.999992 0.999997† 0.999999

Note. “†” means that the result is significantly outperformed by iTwoArch.
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Similar to DTLZ2, themain challenge of DTLZ4 is also on
the maintaining diversity of the population. From the statisti-
cal results, it can be observed that iTwoArch and NSGA-III
have equivalent performances and both algorithms are better
than their competitors on 15-objective instance. We can also
find that both weight-based and dominance-based algorithms
can archive good performance on this problem, which means
that only considering DTLZ does not provide sufficient infor-
mation. Next, other comparison results are devoted to the
WFG problems, concerning more analysis of the behavior
of our algorithm.

4.2. Performance Comparisons on WFG Problems. WFG test
suits pose some powerful challenges for the algorithm by
introducing several complexities [28]. Table 3 illustrates
the comparison results of iTwoArch with other peer algo-
rithms in terms of HV values.

WFG1 to WFG3 problems have mixed PFs, and it has
been empirically proven that the aggregation-based algo-
rithms itself not be suitable for this kind of problem with
irregular PF. However, for the WFG1 problem, iTwoArch

performs better than the other five algorithms in three- to
eight-objective test instances. TwoArch2 is found to archive
the best overall performance on 10-objective problems, and it
also shows remarkable performance on some instances in
WFG2 and WFG3. The diversity mechanism in TwoArch2,
which is likely to fail to find boundary solutions in DTLZ,
shows relatively competitive performance in WFG1-3 pro-
blems. By introducing the adaptive subregion division,
MOEA/D-AM2M obtains the best performance on 8- and
10-objective WFG2 problems, which is composed of some
disconnected convex. As a connected version of WFG2,
WFG3 has a linear and degenerate PF shape. It is worth noting
that the aggregation-based methods (iTwoArch, TwoArchA+,
MOEA/D, and MOEA/D-AM2M) are significantly outper-
formed by the NSGA-III in the scope of WFG3 problems.
One possible reason for this occurrence is that the mechanism
of normalization in NSGA-III can effectively drive the popula-
tion toward the PF.

Despite WFG4-9 problems having the same hyper-ellipse
PF shape, they have different characteristics. For such pro-
blems, the observation is similar. The proposed iTwoArch
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FIGURE 1: 3D-RadVis plots showing obtained results for five-objective DTLZ2 test problem. (a) iTwoArch, (b) MOEA/D, (c) MOEA/D-
AM2M, and (d) TwoArch2.
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has a clear advantage over other algorithms. But the performance
of algorithms varies not only over problem characteristics but
also over the number of objectives. The WFG4 problem, which
has a multimodel, is designed for assessing algorithms’ ability to

escape from the local optima. iTwoArch can win two cases in
this problem. TwoArchA+ gives the highest performance on 3-
and 50-objective issues. Interestingly, all aggregation-based algo-
rithms are very competitive in this group of problems; only

TABLE 3: Performance comparison on WFG problems with respect to the average HV values.

Problem Obj. iTwoArch TwoArchA+ TwoArch2 MOEAD MOEADAM2M NSGAIII

WFG1

3 0.926901 0.856271† 0.867731† 0.911308† 0.915450† 0.819699†
5 0.948594 0.737199† 0.819418† 0.847980† 0.902880† 0.670358†
8 0.816376 0.718838† 0.741628† 0.686077† 0.801972† 0.739105†
10 0.796913 0.857521 0.777469 0.762214† 0.833262 0.742918†
15 0.711188 0.820765 0.986308 0.918149 0.914750 0.952438

WFG2

3 0.952058 0.934914† 0.960704 0.926123† 0.948581† 0.956676
5 0.994906 0.993320† 0.993009† 0.957989† 0.987057† 0.988425†
8 0.987309 0.981483† 0.994552 0.989272 0.996225 0.979909†
10 0.995084 0.990506† 0.995044 0.994259 0.997953 0.986114†
15 0.994858 0.993955 0.997924 0.993435 0.951768† 0.995440

WFG3

3 0.695192 0.687666† 0.716139 0.705539 0.705136 0.703835
5 0.660971 0.649774† 0.658714 0.584767† 0.625069† 0.673299
8 0.526521 0.490723† 0.636992 0.485826† 0.580795 0.531304
10 0.505360 0.458569† 0.622333 0.425440† 0.499074 0.636623
15 0.452146 0.324792† 0.604605 0.243627† 0.374232† 0.605925

WFG4

3 0.726491 0.715394† 0.737768 0.698283† 0.718604† 0.729026
5 0.875610 0.867630† 0.806952† 0.744254† 0.819480† 0.860951†
8 0.917326 0.906253† 0.820707† 0.822711† 0.923953 0.859924†
10 0.958477 0.939936† 0.800069† 0.844913† 0.952985† 0.896477†
15 0.941565 0.966244 0.715636† 0.749120† 0.735066† 0.963551

WFG5

3 0.693701 0.686129† 0.708057 0.675991† 0.695819 0.698574
5 0.833103 0.831710† 0.795315† 0.712879† 0.837515 0.835516
8 0.870247 0.869837 0.799887† 0.757722† 0.869645 0.858166†
10 0.902923 0.899994† 0.776144† 0.798187† 0.889022† 0.888981†
15 0.894864 0.908233 0.670493† 0.783439† 0.636881† 0.918765

WFG6

3 0.700455 0.684049† 0.713969 0.672674† 0.697281† 0.705634
5 0.837602 0.833408† 0.787224† 0.704609† 0.735872† 0.830531†
8 0.868866 0.860966† 0.785815† 0.758439† 0.872055 0.849389†
10 0.901661 0.886148† 0.749615† 0.772267† 0.887966† 0.880136†
15 0.865854 0.868941 0.657703† 0.750781† 0.635003† 0.896825

WFG7

3 0.726702 0.714129† 0.739790 0.704927† 0.717896† 0.730001
5 0.873202 0.868793† 0.825695† 0.736929† 0.810010† 0.872547†
8 0.921806 0.916877† 0.854173† 0.811058† 0.919822† 0.900116†
10 0.962508 0.954990† 0.827919† 0.875988† 0.947103† 0.939205†
15 0.952157 0.969923 0.723336† 0.750785† 0.693370† 0.974412

WFG8

3 0.687804 0.671980† 0.694747 0.667656† 0.677682† 0.695647
5 0.818049 0.805905† 0.726794† 0.664497† 0.708814† 0.813213†
8 0.787465 0.783934 0.685914† 0.676467† 0.804487 0.778344†
10 0.871625 0.828460† 0.622675† 0.688680† 0.788674† 0.820759†
15 0.839984 0.777011† 0.562198† 0.385052† 0.613180† 0.904617

WFG9

3 0.706828 0.684670† 0.721881 0.675983† 0.691046† 0.704539†
5 0.841536 0.811042† 0.790622† 0.712429† 0.790458† 0.820898†
8 0.833432 0.813514† 0.804324† 0.777175† 0.872163 0.806365†
10 0.835911 0.872345 0.759983† 0.730805† 0.879867 0.859226
15 0.725454 0.775216 0.604799† 0.540458† 0.633879† 0.882199

Note. “†” means that the result is significantly outperformed by iTwoArch.
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FIGURE 2: The final solution set of the eight algorithms on the 10-objective WFG6 instance, shown by parallel coordinates. (a) iTwoArch, (b)
MOEA/D-AM2M, (c) MOEA/D, (d) NSGAIII, (e) TwoArch2, and (f ) TwoArchA+.
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MOEA/D finds it hard to show a clear advantage. WFG5 is a
deceptive problem. The performance of two-archive based
methods andNSGA-III demonstratedmuch better performance
than the other algorithms. Conversely, MOEA/D still scale
poorly on the high-dimensional objective instances. Similar to
the observations before, for WFG6-9 problems, the proposed
iTwoArchD averagely wins twice and NSGAIII dose once in
50-objective instances. The deterioration of HV in MOEA/D
indicates that applying a single aggregation-based method may
struggle to solve high-dimensional WFG problems. Yet, any
hybrid strategy may help to alleviate this disadvantage. For
example, aided by subregion division and adaptive allocating
strategies, MOEA/D-AM2M shows more competitiveness on
WFG6-9. The primary reason could be that the subregions in
MOEA/D-AM2M protect some solutions to be easily replaced
and enhance diversity. Besides, the balance between convergence
and diversity could be efficiently archived by incorporating two
archives with different purposes. It makes iTwoArch and
TwoArch+ behave quite well on WFG problems.

To intuitively investigate the effectiveness of the proposed
iTwoArch, the parallel coordinates of the nondominated

fronts with median metric value with other compared algo-
rithms are plotted in Figure 2, reflecting the distributions of
the solutions obtained by the iTwoArch and five compared
algorithms on the 10-objective WFG6. ITwoArchA has a
good performance on both convergence and diversity since
it can reach the upper and lower boundaries and obtain a
better distribution for all 10 objectives.

4.3. Summary of Performance Comparison. In this subsec-
tion, we compared the proposed iTwoArch with all the state-
of-the-art algorithms mentioned in Section 3.3. Table 4
summarizes the significant test on HV results between the
proposed iTwoArch and the peer algorithms. For a specific
row on this table, “B”(“W”) at the second column of a row
means the number of instances on which the results of the
proposed algorithm are significantly better (or worse) than
the compared one, and “E” means the number of results
where there is no statistical significance between two com-
pared algorithms.

To better qualify the overall performance of algorithms
in the aspect of test problem as well as the number of

TABLE 4: Summary of the significance test of HV between the proposed algorithm and other algorithms.

TwoArchA+ TwoArch2 MOEA/D MOEADAM2M NSGAIII

iTwoArch vs.
B 46 44 52 45 41
W 11 17 6 15 19
E 8 4 7 5 5

“B” (“W”) means that the number of instances on which the results proposal are significantly better (worse) than other algorithms. “E”means that the number
of instances without detected differences between the results of two algorithms.
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FIGURE 3: Ranking of average performance score: (a) average performance score over all dimensions for different test cases; (b) average
performance score over all test instances for different number of objectives. The values of the proposed ITwoArchA connected by a solid line
for clarity.
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objectives, we introduce Conover-Inman [34] procedure to
evaluate performance scores. Specially, suppose l algorithms
are included for evaluation fA1;A2;…;Alg. An score for an
algorithm Ai is obtained by PðAiÞ¼∑l

j¼1:j≠iδi; j, where δi; j ¼ 1
means that Aj is significantly better than Ai, and 0 otherwise.
The score of PðAiÞ can reveal how many other algorithms
outperform the current one on all test instances. Thus, an
algorithm is said to be good if it has a lower score.

At first glance of these summary results (Figure 3), we
can get some initial observations: (1) considering the sum-
mary of comparison, the proposed iTwoArch gets the most
winning times on all the problem instances considered in this
study. (2) The proposed algorithm performs best on DTLZ1-
2, DTLZ4, WFG1, WFG4, and WFG6-9 problems. (3)
iTwoArch performs best on 5- and 10-objective instances
and it remains competitive on 8- and 15-objective test
problems.

5. Conclusion

This paper aims to propose an improved two-archive evolu-
tionary optimization algorithm, where convergence and
diversity are addressed in two separate archives for effec-
tively solving MaOPs. To archive this, we first create two
independent archiving procedures using a steady-state man-
ner. The newly created offspring can go through these two
archives, which determine whether or not they will survive.
We then design an interactive mechanism between these two
archives: the index of the best-matched subproblem in CA is
directly acquired by updating DA. This interaction may
allow producing comparatively higher-quality offspring. A
matting selection is carefully designed to balance the conver-
gence and diversity in these two archives. The frequency of
replacement in these two archives is counted as an indicator
to represent the speed of the evolutionary process. According
to this indicator, two individuals for crossover are restricted to
distinct situations. Thus, the evolutionary speed of these two
archives can be controlled collaboratively through quantita-
tive comparisons on different test problems with five different
scales of objective numbers vs. five state-of-the-art peer algo-
rithms. The proposed iTwoArch performs considerably better
in addressing MaOPs.

One major future work is to further investigate the pro-
posed iTwoArch in more problems with different character-
istics since the performance of MaOPs is also restricted to
specific problem features by virtue of the “no free lunch”
theorem. In addition, it is also interesting to study how to
deal with the problems with irregular PF. This will probably
call for the development of new environmental selection
mechanisms.
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