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By integrating the physical and time domains with the Galerkin method and adopting approximate solutions satisfying the
boundary conditions, a set of algebraic equations of nonlinear nature is obtained from the nonlinear differential equation of an
elastic beam for the undetermined coefficients of solutions of the deflection. These coefficients are to be used with the approximate
basis functions for the asymptotic and explicit solutions of the nonlinear differential equation of flexure of a beam widely known as
an elastica. Taking advantage of powerful tools for the symbolic manipulation of algebraic equations, such a novel method and
procedure offer a new and efficient approach and option with known linear solutions in dealing with increasingly complex
nonlinear problems in practical applications of both static and dynamic nature.

1. Introduction

The large deformation of a beam is frequently encountered
in mechanical and structural engineering with critical impor-
tance in guaranteeing the safety and proper functioning of
such essential components. The analysis based on the beam
equations has been done with many methods and techniques
for the deformation, stress, and vibration frequencies of an
elastica [1–4]. In addition, many techniques have been devel-
oped and improved in solving problems with nonlinear
equations, and the applications can be found in many fields
and subjects with rich histories [5–7]. On the other hand, the
deformation and vibration of beams are of great interest to
researchers because of the signatory roles and extensive results
for comparisons and validation of solution methods and tech-
niques [8–16]. The method and procedure can be used for the
analysis of nonlinear wave propagation in homogeneous and
functionally graded materials [5, 17].

Particularly, with this classical problem of flexure of a beam
under a point load at the tip, the Galerkinmethod is used with
a modification for good approximation and demonstration of

the newly proposed and demonstrated extended Galerkin
method (EGM) for nonlinear problems with asymptotic solu-
tions [18, 19]. The newly revitalized Galerkin method with
such amodification is capable and efficient for both linear and
nonlinear problems from structural analysis, vibrations, and
wave propagation as a new technique applicable to a wide
class of nonlinear problems with a novel, simple, and efficient
procedure for approximate and explicit solutions with novel
forms. From a comparison, it is clear that the proposed pro-
cedure for solutions of nonlinear differential equations should
be the preferred choice in solving such problems because of
the simple process and less time in the iteration.

2. The Large Deformation of an Elastic Beam

Elastic beams with variations and complications of structure
and supports are widely used as structural elements for load-
ing resistance and proper functions with allowed deforma-
tion, primarily flexure but can also be combinations of other
forms, usually infinitesimal in the magnitude of deformation
as the basic assumption of solid mechanics. In this case, the
classical beam theory is adequate in the analysis of deformation
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under static and dynamic loadings with the linear formulation,
equations, and methods presented in textbooks. In case of large
deformation or with special configurations, modifications of
the classical beam theory, which is also known as the Euler–
Bernoulli beam theory, are available to accommodate additional
requirements of analyses. The nonlinear beam theory with the
options for both physical and kinematic linearities is certainly
the choice for large deformation, but the nonlinear equations
have to be solved with approximate methods, as shown in a
recent study of the flexure of a cantilever beam under a point
load [16, 20–24]. It is highly nonlinear differential equation
for the classical problem of an elastica, and the accurate solu-
tions can be given in elliptic functions through extensive
studies in history [1–3, 25–27]. To obtain practical solutions
to nonlinear differential equations, many approximate tech-
niques have been tried for improved solutions and simpler
procedures including the finite-element method and alterna-
tive formulation [16, 28–39]. These extensive efforts, includ-
ing the recent innovative work with the EGM and Rayleigh–
Ritz method, demonstrated the needs and efforts in obtain-
ing effective solutions to nonlinear equations arising from
many research fields and problems.

As it was solved with the homotopy analysis method
(HAM) in earlier studies [40–43], the EGM is now used
for the approximate solutions as a new and effective alterna-
tive with great potential for the same problem [4, 5, 44]. It is
found that using the sine function as the basis function in
this study, relatively accurate solutions with explicit expres-
sions of a few lower-order terms can be obtained in a simple
and efficient procedure based on the Galerkin method with
integration over the physical domain for the coefficients of
series solutions with accuracy and efficiency [43, 44]. In this
paper, a different basis function is chosen to demonstrate
the versatility and options in utilizing the popular Galerkin
methodwith amodification or extension. Particularly, explicit
solutions with fewer terms of basis functions would be more
intuitive for the evaluation of solutions in comparison with
the asymptotic solutions of larger numbers of terms.

With the cantilever beam under a point load at the tip in
Figure 1, the rotation angle of the beam is given by [43, 45]

dθ
ds

¼ P
EI

l1 − xð Þ; θ 0ð Þ ¼ 0; θ0 lð Þ ¼ 0; ð1Þ

where θ; s; P; EI; l1; x; andl are rotation angle, arc length,
force, flexural stiffness, the position of load, coordinate,
and length, respectively.

By introducing a new dimensionless variable z ¼ s=l,
Equation (1) will be modified to

θ00 þ α cos θ ¼ 0; α ¼ Pl2

EI
; θ 0ð Þ ¼ 0; θ0 1ð Þ ¼ 0 : ð2Þ

The exact solution to Equation (2) can be given in elliptic
functions known as the analytical solution of an elastica [26, 27],
as has been shown in earlier solutions [43, 45, 46]. The vibra-
tions of such a beam has been studied with the EGM also in a
similar procedure [4].

With an infinitesimal θ in Equation (2), the linear solu-
tion is

θ zð Þ ¼ α

2
2 − zð Þz; θB ¼ θ 1ð Þ ¼ α

2
: ð3Þ

Let the solution of Equation (2) is a power series in the
form of

θ zð Þ ¼ ∑
1

n¼0
Anznþ1; ð4Þ

with the consideration of boundary conditions θ 0ð Þ ¼
0 and θ 0 1ð Þ ¼ 0, the expression in Equation (4) will be mod-
ified to

θ zð Þ ¼ ∑
1

n¼0
An znþ1

− nþ 2ð Þ½ �z; ð5Þ

where coefficients An are to be determined. Apparently, this
is a basis function which has not been tried, but another
study with the sine functions also yield good results [45].

By applying the standard Galerkin method

Z
1

0

d2θ
dz2

þ α cos θ

� �
δ θdz ¼ 0; ð6Þ

with cos θ ≈ 1− θ2

2 and Equations (5) and (6) will be written
as

Z
1

0
∑
N

n¼0
An nþ 2ð Þ nþ 1ð Þzn þ α 1 −

θ2

2

� �� �
zmþ1

− mþ 2ð Þ½ �zdz ¼ 0;N ≥m ¼ 0; 1; 2;…;
ð7Þ

By evaluating the above integration with different integers m
and N, a set of nonlinear algebraic equations can be obtained
for the coefficients An. Then there are approaches for the
determination of these coefficients systematically. One pro-
cedure is to set m ¼ N , then there will be a set of nonlinear
algebraic equations of An to be solved simultaneously from
the system of undetermined coefficients. Another approach
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FIGURE 1: A cantilever beam under a point load.
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is the iterative process by the successive determination of
coefficients one at each time for the successive approxima-
tion. Both approaches have been demonstrated as part of the
solution procedures of the EGM [4, 5, 44–46].

In this study, the approximation starts from the linear
solution

θ zð Þ ¼ A0 z − 2ð Þz; ð8Þ

with only one equation for the coefficient from Equation (7),
it is easily obtained that

A0 ¼ −
35
24α

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16α2

105
þ 4
9

r
− 2

 !
: ð9Þ

Then the rotation angle at the end of beam is compared
with the exact solution in Figure 2. It is clear that the first-order
approximation is quite good with the given parameter α.

The second-order approximation is now

θ zð Þ ¼ A0 z − 2ð Þz þ A1 z2 − 3ð Þz; ð10Þ

and with known coefficient A0, the solution of coefficient A1

can be obtained from Equation (7) with m ¼ 1 after integra-
tion. The iterative procedure is adopted in this study for the
coefficient of the asymptotic solution, and the simultaneous
solution to the problem is left to future study. With the non-
linear algebraic equation for the amplitude A1, the solution is

A1 ¼ −
2

8253α
2137αA0 − 6048þ 1260 ×

391αA0

4200
þ 131α2

16
−
1193α2A2

0

254016
þ 576

25

� �
1
2

� �
; ð11Þ

and the exact solution of rotation angle at the end of the
beam is compared again in Figure 3. It is clear that the
approximation is improved significantly with the second-
order approximation. The advantages and disadvantages of
the procedure here will be left for future studies as the accu-
racy of this example is satisfactory so far.

For the third-order approximation with

θ zð Þ ¼ A0 z − 2ð Þz þ A1 z2 − 3ð Þz þ A2 z3 − 4ð Þz : ð12Þ
Using the same procedure demonstrated above with

Equation (7) by setting m ¼ 2, the unknown amplitude A2
in two known coefficients A0 and A1 is

A2 ¼
13

1849716α
13860 ×

84078α2

2275
−
1558A1α

3185
−
109188A0α

175175
−
207741A2

0α
2

3853850
−
6746713A2

1α
2

227026800
−
1013A0A1α

2

12740
þ 5184

49

� �1
2

�
þ50220A0αþ 97163A1α − 142560;Þ

ð13Þ
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FIGURE 2: A comparison of the first-order approximation and exact
solution of rotation angle at the end of the beam.
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FIGURE 3: A comparison of the second-order approximation and
exact solution of rotation angle at the end of the beam.
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and the comparison of solutions is shown in Figure 4.
It is clear that the approximate solutions from the Galer-

kin method are actually very good as comparisons shown in
Figures 2–4. The procedure to obtain these accurate coeffi-
cients and solutions are simple and straightforward. The
procedure is based on the popular Galerkin method and
can be modified and optimized with choices of basis func-
tions in conjunction with the equations and boundary con-
ditions, furtherly using the orthogonality property to
simplify the calculation. An additional comparison of solu-
tion strategies for iterative or systematic determination of the
coefficients is largely dependent on the algorithms and com-
puting cost, and the preferences can be made with a detailed
investigation of both approaches with Equation (7).

Furthermore, additional properties of the beam deforma-
tion and stress can be obtained accordingly with the solu-
tions and essential equations from the beam theory.

For the cantilever beam under a point load at the tip, as
shown in Figure 1, the vertical displacement, or the deflec-
tion, of the beam at the free end is given by

fB
l
¼
Z

1

0
sin θ dz: ð14Þ

Returning to Equation (1), it is clear

d
ds

dθ
ds

� �
¼ −

P
EI

dx
ds

¼ −
P
EI

cos θ: ð15Þ

Then multiplying both sides of Equation (15) by dθ and
integrating over z will give

1
2

dθ
dz

� �
2
¼ −α sin θ þ C; ð16Þ

where C is a constant to be determined. With the consider-
ation of boundary condition θ0 1ð Þ ¼ 0, the integral constant
is obtained as

C ¼ α sin θB; ð17Þ

where θB is the angle of rotation at the free end of the canti-
lever beam. Finally with Equations (14), (16), and (17) will be
rewritten as

fB
l
¼
Z

1

0
sin θdz ¼

Z
1

0
sin θB −

1
2α

dθ
dz

� �
2

� �
dz: ð18Þ

Approximating sin θB ≈ θB −
θ3B
6 for a simple evaluation,

Equation (18) will be written as

fB
l
¼
Z

1

0
θB −

θ3B
6
−

1
2α

dθ
dz

� �
2

� �
dz; ð19Þ

then it is obtained with the third-order approximation that

fB
l
¼ A3

0

6
þ A2

0A1 þ
3A2

0A2

2
−
2A2

0

3α
þ 2A0A2

1 þ 6A0A1A2 −
5A0A1

2α

þ 9A0A2
2

2
−
18A0A2

5α
− A0 þ

4A3
1

3
þ 6A2

1A2 −
12A2

1

5α

þ9A1A2
2 −

7A1A2

α
− 2A1 þ

9A3
2

2
−
36A2

2

7α
− 3A2:

ð20Þ

Finally, the comparison of deflection at the end of the
beam with an exact solution is shown in Figure 5. Again, the
accuracy of such an approximation is satisfactory.

For the cantilever beam under a point load at the tip as
shown in Figure 1, the horizontal length of the beam at free

end is given by

l1
l
¼
Z

1

0
cos θ zð Þdz; ð21Þ
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FIGURE 4: A comparison of the third-order approximation and exact
solution of rotation angle at the end of the beam.
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and with cos θ ≈ 1− θ2

2 , Equation (21) will be written as

l1
l
¼
Z

1

0
1 −

θ2

2

� �
dz; ð22Þ

then from Equation (22) it can be obtained with the third-
order approximation that

l1
l
¼ 1 −

4A2
0

15
−
61A0A1

60
−
31A0A2

21
−
34A2

1

35
−
113A1A2

40
−
37A2

2

18
:

ð23Þ

Finally, the comparison of horizontal length at the end of
beam with an exact solution is shown in Figure 6.

The above procedure completed the full calculation of
the deflection of a cantilever beam under a point load at
the free end including the movement of the free end. The
asymptotic solutions with the terms satisfying the boundary
conditions are reasonably accurate in comparison with the
exact solutions by other methods. It demonstrates that the
Galerkin method can be effective in solving the static and
dynamic deformation of elastic beams.

3. Results and Discussion

An approximate procedure based on the Galerkin method
has been demonstrated with the analysis of the large defor-
mation of an elastic beam with the nonlinear differential
equation, which is also widely known as the elastica problem.
By solving the equation with the Galerkin method with basis
functions satisfying the boundary conditions, a set of non-
linear equations of coefficients of basic functions are solved
with the aid of symbolic software tools such as Matlab® for
an efficient evaluation by an iterative procedure. Of course, it

can be done by solving the nonlinear system of algebraic
equations also. Eventually, the procedure as an extension
of the classical Galerkin method is capable to provide accu-
rate solutions to nonlinear differential equations with an
efficient computational procedure. It is also apparent that
such a procedure is more versatile and flexible in accommo-
dating the variety of differential equations arising from sci-
entific and engineering problems. The Galerkin method and
the equivalent Rayleigh–Ritz method have been modified for
a series of typical nonlinear equations of vibrations and wave
propagation as the EGM and Rayleigh–Ritz method [4–6, 14,
44–46]. It is obvious that using the extension of both Galer-
kin and Rayleigh–Ritz methods, the nonlinear analysis of
structures under static and dynamic loadings can be done
with the popular methods widely covered in textbooks and
utilized in calculations. The effort will unify the popular and
powerful Galerkin method for more convenient implemen-
tations and applications with more nonlinear differential
equations. The advantage of such a procedure is the quick
convergence with appropriate basis functions. Consequently,
the beam deflection and elongation from the approximate
solutions of successive orders also show great accuracy.
Clearly, the simple procedure demonstrates a practical and
reliable technique for accurate solutions of some nonlinear
equations. In fact, the advantage of the Galerkin method in
solving nonlinear differential equations is the coefficients
which are the combination of many terms of power series.
The current process is reduced significantly with the combi-
nation in comparison to the single term of the iterative pro-
cedure with other methods and algorithms. A possible
improvement with the optimal choices of the coefficients
in a global sense with the Galerkin method can also be tried
for comparisons with the results from this study.
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FIGURE 6: A comparison of the approximation and exact solution of
horizontal length at the end of the beam.
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4. Conclusions

The advantages of the Galerkin method for nonlinear equa-
tions can be clearly seen from the simple procedure that
produces accurate solutions more efficiently in comparison
with some known popular asymptotic methods. Since the
symbolic tools of mathematical manipulation are widely
available and powerful in solving nonlinear algebraic equa-
tions, the adoption of the Galerkin method should be more
preferable to avoid the tedious iterative procedure in solving
the nonlinear equations. The procedure shown in this study
is definitely more attractive in finding the solutions to non-
linear problems with similar features through the adoption of
the Galerkin method and solving nonlinear algebraic equa-
tions with powerful symbolic mathematical tools.
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