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In this study, the efects of magnetic feld on the Jefery–Hamel problem is studied using a powerful numerical method called the
spectral Adomian decomposition method (SADM). Te traditional Navier–Stokes equation of fuid mechanics and Maxwell’s
electromagnetism governing equations are reduced to nonlinear ordinary diferential equations to model the problem. Com-
parisons with the numerical solutions are made to demonstrate the validity and high accuracy of the present approach. Te
velocity profle of the inner part of the divergent channel is studied for various values of magnetic feld parameter and angle of
channel. It was found that an increase in the magnetic feld parameter leads to increase in the velocity profle.Te results indicated
that this technique is more efcient and converges faster than the standard Adomian decomposition method.

1. Introduction

Many problems of physical phenomena are formulated in
several types of linear or nonlinear diferential equations,
and most natural models in physics, biology, or sciences are
highly nonlinear in their nature. Finding solutions of dif-
ferential equations is highly interesting for researchers and
scientists, and there are available studies to fnd analytical or
numerical solutions for linear or nonlinear diferential
equations. Finding an exact solution of diferential equations
is one of the most challenging problems. For this reason, the
feld of approximate techniques has been investigated ex-
tensively. Tere are many numerical methods for obtaining
analytical and approximate solutions which include, among
others, the Runge–Kutta methods, fnite diference, cubic
Hermite fnite element, pseudospectral, Chebyshev-collo-
cation, and fnite element method. Some of these methods
are facing a limitation in their accuracy, efciency, and
stability. To remove these limitations, several researchers
used many perturbation or nonperturbation methods such
as the Lyapunov artifcial small parameter method [1],
homotopy perturbation method [2, 3], homotopy analysis
method [4], numerical methods of diferent type fuzzy

equations [5–9], Volterra–Fredholm integral equations
[10, 11], fractional diferential equations (12) and (13), and
Adomian decomposition method [14–16].

Te Adomian decomposition method (ADM) was frst
reported in the 1980s, and it has been efciently used to solve
linear and nonlinear problems of diferential and integral
equations. An advantage of this method is that it can provide
us the solution in terms of infnite series, which can be easily
determined. Te convergence of the series of solution has
been discussed by [17]. Tere are many modifcations of
ADMwhich have been done by several authors in [18–24] in
an attempt to improve the accuracy or expand the appli-
cation of the original method.

However, the ADM was based on the assumptions that
the main diferential equation can be divided into linear and
nonlinear parts, and the success of this technique depends
mainly on the selection of the linear part. Some of the main
limitations of the ADM are that it has limited choice of
accepted linear operators (linear part) and initial approxi-
mations and it must be chosen to be simple in order to
ensure that the higher order diferential equations can be
easily integrated. Complicated initial approximations and
linear operators may result in higher order deformation
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equations that are difcult to integrate under the ADM. For
some problems, the method of highest-order diferential
matching in which an auxiliary linear operator matching the
highest derivative of the linear part of the governing non-
linear diferential equation is prescribed.

In this paper, a modifcation the Adomian decomposi-
tion method has been obtained in order to address some of
the limitations of the standard ADM. Te modifcation
suggests a standard way of choosing the linear operator and
initial guess of the diferential equation. Te proposed
method herein is referred to as the spectral Adomian de-
composition method (SADM). Te new technique was frst
studied by Yassir and Khidir [25], and they applied the new
modifcation on the problem of boundary layer convective
heat transfer over plate, and they showed that the new
modifcation is more efcient than the standard ADM. Tis
technique is based on the blending of the Chebyshev
pseudospectral methods (see [26–35]) and the Adomian
decomposition method. In this method, they expressed the
linear operator in terms of the Chebyshev spectral difer-
entiation matrix. Using this method, any selected initial
guess can be used as long as it satisfes the boundary con-
ditions. Te application of the SADM leads the nonlinear
diferential equation to a system of algebraic linear equations
that are easy to solve when compared to a system of ordinary
diferential equations obtained by ADM.

Te advantages of this approach over the standard
same ADM are as follows. (i) Te current technique
suggests a standard way of choosing the auxiliary linear
operator of the diferential equation which is the main
motivation behind the selection of the current algorithm,
whereas the other methods choose a linear operator to be
simple in order to ensure that the diferential equations
can be easily integrated. (ii) It gives an excellent results in
terms of convergence and accuracy of solutions. Some of
the disadvantages of this method are that it cannot be
applied for solving partial diferential equations in the
current form and that it cannot be applied directly on
nonlinear diferential equations; therefore, we need frst to
linearize the nonlinear diferential equation using any
available method.

We applied the new modifcation of ADM to fnd the
approximate solution of nonlinear diferential equation
governing nonlinear MHD Jefery–Hamel fow to show the
efciency of the SADM in comparison with the ADM. Te
mathematical model of Jefery–Hamel fow was frst in-
troduced by Jefery [36] and Hamel [37]. Te Jefer-
y–Hamel model can be described by an exact similarity
solution of the Navier–Stokes equations in the special case
of two-dimensional fow. On the contrary, the term of
MHD was frst introduced by Bansal [38] in 1994. Te
classical Jefery–Hamel problem was extended in [39] to
include the efects of an external magnetic feld on an
electrically conducting fuid. Te theory of MHD is in-
ducing current in a moving conductive fuid in the presence
of magnetic feld, and such induced current results in force
on ions of the conductive fuid. Te theoretical study of
MHD channel has been a subject of great interest due to its
extensive applications in designing cooling systems with

liquid metals, MHD generators, accelerators, pumps, and
fow meters. Te fow of various fuid types between
converging/diverging channels have been extensively
studied by many researchers. Adnan et al. [40, 41] studied
the efects of cross difusion for second grade fuids.
Mohyud-Din et al. [42] investigated the MHD fow con-
taining nano-sized metallic particles between nonparallel
walls in the existence of stretching and shrinking. Noor
et al. [43] explored the infuence of thermophoretic pa-
rameters and presented graphical results for heat and mass
transfer. Te Jefery and Hamel problem became very
popular among the research community and authors fo-
cused on the study of Jefery–Hamel fow from various
aspects and studied the behavior of fuid fow character-
istics. Tese applications included mechanical, environ-
mental, and chemical engineering. Te applications of
Jefery–Hamel fow were also applied on biomedical
sciences.

In the present work, we applied SADM to solve MHD
Jefery–Hamel fow, and we made a comparison with the
numerical solution. Tis paper is organized as follows. Te
mathematical formulation is given in Section 2. Te de-
scriptions of the standard and modifed Adomian decom-
position methods are given in Sections 3 and 4, respectively.
Te results are discussed and investigated in Section 5.
Finally, the conclusions are given in Section 6.

2. Mathematical Formulation

We consider a system of cylindrical polar coordinates u(r, θ)

in which steady two-dimensional fow of conducting viscous
fuid from a source or sink at the intersection between two
rigid plane walls that the angel between them is 2α is shown
in Figure 1. Te grid walls are considered to be divergent if
α> 0 and convergent if α< 0. We assume that the velocity is
only along radial direction and depends on r and θ so that
v � (u(r, θ), 0) only, and further, we assume that there is no
magnetic feld in the z-direction. Te reduced forms of
continuity, Navier–Stokes, and Maxwell’s equations (44) are
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where P is the fuid pressure, B0 is the electromagnetic
induction, and σ is the conductivity of the fuid.

Continuity (1) implies that

u(r, θ) �
f(θ)

r
. (4)
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Using the following dimensionless parameters,

F(η) �
f(θ)

fmax
,

η �
θ
α

,

(5)

and with eliminating P from (2) and (3), we obtain the
following third order nonlinear ordinary diferential equa-
tion for the normalized function profle F(η):

F
‴

(η) + 2αReF′(η)F(η) + α2(4 − H)F′(η) � 0. (6)

Subject to the boundary conditions,

F(0) � 1,

F′(0) � 0,

F(1) � 0,

(7)

where Re is the Reynolds number given by

Re �
Umaxrα

υ
�

divergent chanel: α> 0, fmax > 0

convergent chanel: α< 0, fmax < 0
⎛⎝ ⎞⎠, (8)

whereUmax is the velocity at the center of the channel (r � 0)

and H �
������
σB2

0/ρυ


is the Hartmann number.
In this study, we use the spectral Adomian decompo-

sition method (SADM) to fnd an approximate solution of
MHD Jefery–Hamel (6) together with the boundary con-
ditions (6). For the convenience of the reader, we frst
present a brief review of the standard Adomian decompo-
sition method; this is then followed by a description of the
algorithm of the proposed spectral Adomian decomposition
method diferential equations.

3. Standard Adomian Decomposition
Method (ADM)

In this section, the review of the standard Adomian de-
composition method [45–48] is presented. We start by
considering the following diferential equation:

Lu(x) + Ru(x) + N(u(x)) � g(x), (9)

where L is the highest-order derivative which is assumed to
be invertible, R is a linear diferential operator of less order
than L, Nu represents the nonlinear terms, and g(x) is

known analytic function. Te method is based on applying
the inverse operator L− 1 formally to the expression:

Lu(x) � g(x) − Ru(x) − Nu(x). (10)

So, by using the given conditions, we obtain

u(x) � f(x) − L
− 1

(Ru) − L
− 1

(Nu), (11)

where the function f(x) represents the terms arising from
integrating the source term g(x), and from using the given
conditions, all are assumed to be prescribed. Te standard
Adomian decomposition method defnes the solution u(x)

by the series as follows:

u(x) � 
∞

n�0
un(x), (12)

where the components u0, u1, u2, . . ., are usually determined
recursively by using the relation:

uk+1(x) � −L
− 1

Ruk(  − L
− 1

Nuk( , k≥ 0. (13)

It is important to note that the decomposition method
suggests that the zeroth component u0 is usually identifed
by the function f described above. For nonlinear equations,
the nonlinear operator Nu � F(u) is usually represented by
an infnite series of the so-called Adomian polynomials:

F(u) � 
∞

k�0
Ak, (14)

where Adomian s polynomials An may be computed by the
formula:

An �
1
n!

dn

dλn N 
n

i�0
λi

ui
⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

λ�0

. (15)

4. Spectral Adomian Decomposition
Method (SADM)

In this section, we present the modifed Adomian decom-
position method [25], this technique is based on the
blending of the Chebyshev pseudospectral methods and the
standard ADM. We start by transforming the domain of the
problem from [0, 1] to the domain [−1, 1] on which the
Chebyshev spectral method can be implemented, using the
algebraic mapping as follows:

x � 2η − 1, x ∈ [−1, 1]. (16)

It is also convenient to make the boundary conditions
homogeneous by making use of the transformation:

F(η) � f(x) + fm(η), (17)

where f0(η) is chosen to satisfy boundary conditions (6).
Substituting (10) and (11) in (5) gives

a1f
‴

(x) + a2f′(x) + a3f(x) + 4αRef(x)f′(x) � R. (18)

B

Source or

Sink

u (r, θ)θ

α

Figure 1: Geometry of the MHD Jefery–Hamel fow.
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Subject to conditions, we obtain

f(−1) � f(1) � f′(−1) � 0, (19)
where

a1 � 8a2(η) � 4αRefm + 8α2 − 2α2Ha3(η) � 2αRefm
′

R � − fm
‴

+ 2αRefmfm
′ + 4α2fm

′ − α2Hfm
′ .

(20)

Te initial approximation f0(x) for the solution of (18)
is obtained from the solution to the linear part of (18):

a1f′′0″(x) + a2f0′(x) + a3f0(x) � R. (21)

Subject to the boundary conditions, we have

f0(−1) � f0(1) � f0′(−1) � 0. (22)

Equation (21) solved using the Chebyshev pseudo-
spectral method where the unknown function f0(x) is
approximated as truncated series of Chebyshev polynomials
is of the form as follows:

fi(x) ≈ 
N

k�0
fi xk( Tk xj , j � 0, 1, . . . , N, (23)

where Tk is the kth Chebyshev polynomial defned as

Tk(x) � cos k cos− 1
(x) . (24)

Te derivatives of the variables at the collocation points
are represented as

d
r
fi

dx
r � 

N

k�0
D

r
kjfi xk( , j � 0, 1, . . . , N, (25)

where r is the order of diferentiation and D being the
Chebyshev spectral diferentiation matrix whose entries are
defned as (see, for example, [49])

Djk �
cj

ck

(−1)
j+k

ξj − ξk

j≠ k; j, k � 0, 1, . . . , N,

Dkk � −
ξk

2 1 − ξ2k 
k � 1, 2, . . . , N − 1,

D00 �
2N

2
+ 1

6
� −DNN.
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (26)

Here, c0 � cN � 2 and cj � 1 with 1≤ j≤ N−1, xj are the
Chebyshev-collocation points defned by

xj � cos
jπ
N

, j � 0, 1, 2 . . . , N. (27)

Substituting equations (15)–(19) in (21) yields an
equation of the form,

Af0 � R0, (28)

where

A � a1D
3

+ diag a2 D + diag a3 ,

R0 � − fm
‴ ηi(  + 2αRefm ηi( fm

′ ηi(  + 4α2fm
′ ηi(  − α2Hfm

′ ηi(   
T

,
(29)

where T denotes transpose and diag[ ] is a diagonal matrix
of size (N + 1) × (N + 1). Te matrix A has dimension
(N + 1) × (N + 1), while matrices f0 and R0 have di-
mensions (N + 1) × 1. To implement the boundary con-
ditions (14) into systems (20), we delete the frst and the last
rows and columns of A and delete the frst and last elements
of f0 and R0; also, we replace the resulting of last row of the
modifed matrix A by the last row of the matrix D and set
the resulting last row of the modifed matrix R0 to be zero.

Te solution of the linear algebraic (21) is obtained by

f0 � A
− 1

R0, (30)

which is the frst approximation. To fnd highest approxi-
mations of (18), we begin by defning the following linear
operator:

L � a1
d
3

dx
3 + a2

d

dx
+ a3. (31)

According to (7), equation (12) must be written as
follows:

Lfk+1(x) � − Nfk(  � 
k

i�0
Bk, k≥ 0, (32)

where Bk are the Adomian polynomials. In matrices form,
(32) can be written as

Afk+1 � Rk+1. (33)

With the boundary conditions, we have

fk+1(−1) � fk+1(1) � fk+1(−1) � 0, (34)

where

A � a1D
3

+ diag a2 D + diag a3 ,

Rk+1 � −4αRe 

k

i�0
fi Dfk− i( ⎡⎣ ⎤⎦

T

.
(35)

To implement the boundary conditions (25) to system
(24), we delete the frst and the last rows and columns of A

and delete the frst and last elements of fk+1 and Rk+1; also,
we replace the resulting of last row of the modifed matrix A

by the last row of the matrix D and set the resulting last
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element of the modifed matrix Rk+1 to be zero. Te fnal
solution of (24) is given by

fk+1 � A
− 1

Rk+1. (36)

Tus, starting from the frst approximation f0, which is
obtained by (30), higher order approximations fk+1, k �

0, , 1, 2 . . . can be obtained through recursive formula (36).
Now, the fnal solution of the MHD Jefery–Hamel

problem is obtained as

F(η) � fm + 
∞

i�0
fi. (37)

5. Results and Discussion

In this study, the objective was to apply the spectral Ado-
mian decomposition method to obtain a numerical solution
of the MHD Jefery–Hamel problem in order to test the
applicability, accuracy, and efciency of SADM. Here, we
use a personal computer of 2.5GHz CPU speed including
MATLAB 2007 − 7.5 package to perform the simulation
results and also used the inbuilt MATLAB boundary value
problem solver bvp4c for the numerical solution approach.
In generating the presented results, it was determined
through numerical experimentation that N � 40 gave suf-
fcient accuracy for the method. We also generated the
computational times of the results to show the computa-
tional efciency of the solution.

A comparison between absolute errors of ADM [50] and
SADM results for velocity F(η) at diferent values of H when
Re � 25 and α � 5 is shown in Table 1 to illustrate the ac-
curacy of SADM.Te table shows a high accuracy of SADM,
and it is more accurate than the standard ADM which
confrms the validity and convergence of this method. We
also observed that inTable 1, the presented algorithm
computationally is very fast which needs a fraction of a
second to be generated, and the results are shown in the
bottom of the table.

Errors of ADM and SADM for F(η) at diferent iterations
can be seen in Figure 2. It can be noticed that the errors
becomes minimized after 12 iterations for ADM solution,

while the error gets minimized after only 4 iterations for
SADM. As we can see, the SADM has a high accuracy, and it
has faster convergence than the standard ADM. In Table 2, we
give a comparison of the SADM varied at diferent orders of
approximation against the numerical results for diferent
values of H, Re, and α. It can be seen from the table that the
results of the SADM are comparable and converge to the
numerical solution. Again, we note that the SADM results
seem to have converged at the 4th order of approximation for
seven decimal places.

Tables 3 and 4 gave a comparison of the SADM results at
diferent orders of the solution series against the numerical
results for convergent and divergent channels. Te SADM
give the same level of accuracy as the numerical results at the
3rd order of the solution series approximation for only six
decimal places.

Figure 3 shows, frstly, a comparison between the
numerical results at the 3rd order of SADM approxi-
mations and, secondly, the efect of magnetic feld on

Table 1: Comparison of absolute errors between the ADM [50] and SADM results with the numerical solution of F(η) for diferent values of
H when α � 50 and Re � 25.

H � 0 H � 100 H � 250 H � 500
η ADM SADM ADM SADM ADM SADM ADM SADM
0.1 3.2e− 5 7.9e− 10 7.2e− 4 2.8e− 10 1.6e− 3 7.3e− 11 2.5e− 3 2.9e− 11

0.2 1.2e− 4 3.1e− 9 2.7e− 3 1.1e− 9 5.9e− 3 2.9e− 10 9.6e− 3 1.2e− 10

0.3 2.3e− 4 6.7e− 9 5.3e− 3 2.4e− 9 1.2e− 2 6.4e− 10 1.4e− 5 2.6e− 10

0.4 3.3e− 4 1.1e− 8 7.7e− 3 3.9e− 9 9.6e− 3 1.1e− 9 1.2e− 2 4.4e− 10

0.5 3.8e− 4 1.5e− 8 9.2e− 3 5.3e− 9 1.0e− 2 1.5e− 9 1.4e− 2 6.2e− 10

0.6 3.7e− 4 1.6e− 8 9.2e− 3 5.9e− 9 6.1e− 3 1.7e− 9 6.9e− 3 7.5e− 10

0.7 2.9e− 4 1.4e− 8 7.6e− 3 5.4e− 9 4.2e− 3 1.7e− 9 8.6e− 3 7.7e− 10

0.8 1.7e− 4 9.8e− 9 4.7e− 3 3.8e− 9 4.8e− 3 1.2e− 9 1.4e− 2 6.3e− 10

0.9 4.5e− 5 4.5e− 9 1.6e− 3 1.8e− 9 1.3e− 3 6.2e− 10 7.4e− 3 3.6e− 10

Time/Sec — 1.19 — 0.86 — 0.81 — 0.82

SADM
ADM

0

1

2

3

4

5

6

Er
ro

r

2 3 4 5 6 7 8 9 10 11 12 13 141
Iterations

×10–3

Figure 2: Comparison between the ADM (flled circles) and SADM
(white circles) error at diferent steps of F(η) when H � 100, α � 5o

and Re � 50.
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the velocity profles for convergent and divergent
channels for fxed Reynolds numbers. We note that the
SADM technique is able to match the accuracy of the
numerical results at the third order showing the efciency

and reliability of this technique. Figure 3 also shows
moderate increases in the velocity with increasing with
Hartmann numbers for both convergent and divergent
channels.

Table 2: Comparison of the values of the SADM for F″(0) with the numerical solution for various values of H, Re, and α.

H 2nd order 3rd order 4th order 5th order Numerical Time/sec

Re � 50
α � 5

0 −3.4952323 −3.5393850 −3.5394156 −3.5394156 −3.5394156 0.00046
50 −3.4283287 −3.4285241 −3.4285241 −3.4285241 −3.4285241 0.00084
100 −3.3213169 −3.3214993 −3.3214993 −3.3214993 −3.3214993 0.00119
250 −3.0208444 −3.0222270 −3.0222270 −3.0222270 −3.0222270 0.00156
500 −2.5856085 −2.5884479 −2.5884481 −2.5884481 −2.5884481 0.00191

Re � 50
α � −5

0 −1.1337278 −1.1219917 −1.1219891 −1.1219891 −1.1219891 0.00052
50 −1.0891656 −1.0891429 −1.0891429 −1.0891429 −1.0891429 0.00093
100 −1.0574854 −1.0574643 −1.0574643 −1.0574643 −1.0574642 0.00130
250 −0.9691038 −0.9689408 −0.9689408 −0.9689408 −0.9689408 0.00166
500 −0.8408516 −0.8405132 −0.8405132 −0.8405132 −0.8405132 0.00201

Re � 100
α � 5

0 −5.0430609 −5.8509930 −5.8691587 −5.8691651 −5.8691651 0.00047
50 −5.6994848 −5.7001821 −5.7001821 −5.7001821 −5.7001821 0.00085
100 −5.5352801 −5.5359433 −5.5359433 −5.5359433 −5.5359433 0.00121
250 −5.0655255 −5.0706222 −5.0706229 −5.0706229 −5.0706229 0.00157
500 −4.3691447 −4.3800940 −4.3800972 −4.3800972 −4.3800972 0.00193

Re � 100
α � −5

0 −0.6962841 −0.6402980 −0.6401781 −0.6401781 −0.6401781 0.00046
50 −0.6229102 −0.6228964 −0.6228964 −0.6228964 −0.6228964 0.00084
100 −0.6061917 −0.6061788 −0.6061788 −0.6061788 −0.6061788 0.00119
250 −0.5592927 −0.5591913 −0.5591913 −0.5591913 −0.5591913 0.00154
500 −0.4904798 −0.4902632 −0.4902632 −0.4902632 −0.4902632 0.00189

Table 3: Comparison of the numerical results against the SADM approximate solutions for F(η) when α � 5, Re � 25, andH � 500.

η 1st order 2nd order 3rd order 4th order Numerical
0.0 1.000000 1.000000 1.000000 1.000000 1.000000
0.1 0.990221 0.990222 0.990221 0.990221 0.990221
0.2 0.960937 0.960941 0.960939 0.960939 0.960939
0.3 0.912283 0.912290 0.912287 0.912287 0.912287
0.4 0.844398 0.844412 0.844405 0.844405 0.844405
0.5 0.757307 0.757327 0.757317 0.757317 0.757317
0.6 0.650745 0.650771 0.650758 0.650758 0.650758
0.7 0.523938 0.523967 0.523953 0.523953 0.523953
0.8 0.375318 0.375344 0.375331 0.375331 0.375331
0.9 0.202146 0.202161 0.202153 0.202153 0.202153
1.0 0.000000 0.000000 0.000000 0.000000 0.000000
Time/Sec 0.000688 0.001305 0.001867 0.002480 —

Table 4: Comparison of the numerical results against the SADM approximate solutions for F(η) when α � −5, Re � 25, andH � 500.

η 1st order 2nd order 3rd order 4th order Numerical
0.0 1.000000 1.000000 1.000000 1.000000 1.000000
0.1 0.994438 0.994378 0.994409 0.994409 0.994409
0.2 0.977299 0.977052 0.977177 0.977177 0.977177
0.3 0.947182 0.946624 0.946907 0.946907 0.946907
0.4 0.901649 0.900681 0.901172 0.901172 0.901172
0.5 0.837077 0.835677 0.836387 0.836387 0.836387
0.6 0.748480 0.746761 0.747633 0.747633 0.747633
0.7 0.629347 0.627585 0.628478 0.628478 0.628478
0.8 0.471546 0.470122 0.470844 0.470844 0.470844
0.9 0.265394 0.264636 0.265020 0.265020 0.265020
1.0 0 0 0 0 0

6 Mathematical Problems in Engineering



6. Conclusions

In this study, we applied the spectral Adomian decom-
position method to solve the 3rd order nonlinear dif-
ferential equation that governs the MHD Jefery–Hamel
equation. Also, this problem is solved by a numerical
method of the inbuilt MATLAB boundary value problem
solver bvp4c. We made comparisons between the SADM,
andADM, and numerical results show the efciency of
SADM. We summarized our results as follows:

(i) Te SADM has been shown to have certain ad-
vantages over the ADM; for example, the SADM
has a standard way of choosing the auxiliary
linear operators and initial approximations, but
in the ADM, we have limited choices of accept-
able linear operators which is a limitation of the
ADM

(ii) Te comparisons between ADM, SADM, and nu-
merical results show that SADM is highly accurate,
efcient, and converges rapidly with only three or
four iterations required to achieve the accuracy of
the numerical results

(iii) Te results indicate that an increase in the Hart-
mann number leads to an increase in the velocity
profle.

Generally, the results show that the SADM is an efective
tool for solving nonlinear diferential equation that arises in
nonlinear sciences. In future, we intend to show that the
SADM can be extended to coupled nonlinear partial

diferential equations in place of the traditional methods
such as Runge–Kutta, fnite diferences, fnite element, or
Keller-Box methods.

Nomenclature

Re : Reynolds number
B0 : Electromagnetic induction
H : Hartmann number
P : Pressure
r : Cylindrical coordinates
f : Nondimensional velocity
u : Velocity component in radial direction
r : Cylindrical coordinates
η : Nondimensional angle

Greek symbols

ρ : Density of the fuid
σ : Conductivity of the fuid
α : Angle between two plates
θ : Cylindrical coordinates.

Data Availability

No data were used to support the fndings of this study.

Conflicts of Interest

Te authors declare that they have no conficts of interest.

H = 50
H = 1000

H = 2000
H = 5000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
F 

(η
)

0.2 0.4 0.6 0.8 10
η

(a)

H = 50
H = 1000

H = 2000
H = 5000

0.2 0.4 0.6 0.8 10
η

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F 
(η

)
(b)

Figure 3: Comparing the numerical solution (flled circles) with the 3rd order SADM approximation for the velocity profle F(η) varying H

for (a) α � 5o, Re � 25 and (b) α � −5o, Re � 25.
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