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Components play a pivotal role in component-based software, with certain components being crucial in realizing the software’s
overall functionality. The importance of component is usually characterized using the weight value of component. How to get the
weight value is a problem that needs to be studied. Traditionally, the weight value can be denoted by an expert’s evaluation.
However, the importance of components can vary depending on their interactions within different combination structures.
Therefore, it becomes necessary to consider the mutual influence resulting from component interactions when determining
component weights, in addition to expert evaluations. In this study, we first establish an influence value model that captures
the interactions between components within various combinations. Subsequently, we propose a comprehensive weight allocation
method for components by integrating expert evaluations with the influence values obtained from the component interactions,
using an evidence-based information fusion approach. Finally, we validate the effectiveness of our method by implementing a
scenic spot ticket purchase system. This approach is more reasonable than the single method and can provide software developers
with a more comprehensive analysis of component importance, enabling them to make informed decisions.

1. Introduction

With the increasing complex of software systems, there is a
significant need for software adaptability. Early software sys-
tems faced challenges in effectively adapting to dynamic
environments and meeting user needs [1–4]. Consequently,
there has been a significant increase in research interest in
component-based software, which provides wide applicabil-
ity and high reusability. The concept of component-based
software engineering was first introduced by McIlroy [5] in
1968, advocating the division of complete and intricate soft-
ware systems into smaller components to enhance system
comprehensibility. In 2002, Szyperski et al. [6] explored the
definition, current state, and research trends of components.
However, the discussion at that time was limited by the
immaturity of component thinking. Over the years, extensive
research has been conducted in the field of component-based
software engineering (CBSE), which has yielded a top-down
approach to software architecture decomposition [7]. The
development of CBSE has provided a systematic framework

for organizing software systems into manageable compo-
nents, enhancing adaptability and facilitating comprehension.
By leveraging the benefits of component-based software engi-
neering, software systems can better adapt to changing envir-
onments and meet the diverse needs of users. As software
systems grow in scale to meet increasing user demands, the
adoption of component-based software development meth-
ods becomes more prevalent [8]. A component-based soft-
ware system comprises a collection of individual components,
each with its internal structure and the ability to interact with
other components in various combinations to fulfill software
functionalities [9]. In complex systems, specific components
play a vital role in ensuring the smooth operation of the
software system [10, 11]. Therefore, it becomes essential to
quantify the importance of these components.

Bertrand proposed the “ABCDE” quality classification
model, which categorizes components into five classes, pro-
viding a basis for their classification and importance [12].
However, this classification only focuses on the class of com-
ponents and does not distinguish the importance of the
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single component in great detail. To convey the importance
of a component, it is necessary to assign weight to the com-
ponent. Commonly, the analytic hierarchy process (AHP)
[13] and entropy methods [14] are employed for weight allo-
cation. In the classical AHP model, the importance between
elements is denoted by a pairwise comparison matrix. The
AHP method is subjective and heavily relies on expert’s eva-
luations, leading to uncertain information. Wang et al. [15]
used the AHP method for weight allocation in software com-
ponents and developed a multivalued model for allocating
software component development costs based on different
software system structures. Zhou et al. [16] combined com-
ponent weights with user feedback to establish trustworthi-
ness measurement models based on component construction,
using the Dempster–Shafer (D–S) evidence theory to fuse
fuzzy and uncertain information obtained through the AHP
method. Lozano-Tello and Gomez-Perez [17] utilized AHP to
facilitate multicriteria decision-making for reused software
components, assisting software engineers in evaluating suit-
able components for adoption. Comparing AHP with the
weighted scoring method (WSM) and the hybrid knowledge-
based system (HKBS), Jadhav and Sonar [18] found that HKBS
performed more better than AHP and WSM in evaluating
and selecting software packages. To simplify the AHP process
in component quality evaluation and reduce subjectivity,
Ren [19] proposed a software component quality evaluation
model based on group decision-making. To characterize the
uncertain information in more detail, D-AHP has been pro-
posed, which considers the impact of information credibility
[20]. To tackle the challenges arising from imprecise and
incomplete information, van Laarhoven and Pedrycz [21]
introduced a new method called fuzzy analytic hierarchy pro-
cess (FAHP), which combines fuzzy set theory with AHP.
FAHP builds upon AHP, aiming to align the judgment results
with human thinking and capture the complexities of real-
world scenarios. It offers significant advantages over tradi-
tional AHP in dealing with fuzzy and difficult-to-quantify
problems, making it suitable for various nondeterministic
situations where clear and systematic outcomes are desired.
In FAHP, the use of fuzzy numbers for pairwise comparison
accounts for the high degree of fuzziness and uncertainty
inherent in human judgments in real-world contexts [22].
Recently, scholars have extended the application of fuzzy
sets to T-spherical fuzzy sets and employed T-spherical fuzzy
matrices to express expert’s evaluations of risk factors. They
obtained the weights of risk factors from risk assessment
matrices [23, 24]. However, as the AHP, D-AHP, FAHP
methods are prone to subjective bias and may not fully cap-
ture the internal information that reflects the importance,
relying solely on expert evaluation may not be sufficient for
weight allocation. Consequently, several objective weight allo-
cation methods have been developed.

The entropy method is a widely used approach for weight
allocation [14]. It is an objective method that calculates the
weight based on the amount of information carried by the
data, yielding a relatively objective index weight. Recently,
the entropy method has been extended to the cross-entropy
of discrete Z-numbers method [25], which describes the

ambiguity and reliability of the information. However, it
primarily applies to multiresponse systems. Certain software
systems do not exist multiple response characteristics. For
instance, some computational software simply requires the
input to generate the output, without requiring user responses
during the computation process. Hence, the entropy method
is not suitable for weight allocation in general component-
based software. Kim et al. [26] addressed the design optimiza-
tion problem objectively and proposed the feasible improved
weight allocation (FIWA) method. In FIWA, the significant
input variables that violate constraints will obtained the
more weight to achieve a feasible design. This method is
more appropriate for multiresponse systems with multiple
input variables. But, it may not be applicable to software
systems that lack multiple input variables. CRiteria Impor-
tance Through Intercriteria Correlation (CRITIC) method
is another objective method for weight allocation [27], which
is based on the quantification of the contrast intensity and the
conflicting character of the evaluation criteria. In the context
of component-based software, different components have
diverse functions and characteristics, and it is difficult to
obtain the data of the conflict between components. Huang
et al. [28] classified components into critical and noncritical
components based on their varying importance and proposed
a credibility measurement model considering different com-
ponent combination modes. However, this model does not
present a specific method for calculating the importance of
weight.

To overcome the limitations of subjective and objective
methods, combination weight allocation methods have been
studied. For example, the entropy-AHP weighted method
[29] was developed to compensate the disadvantage of single
method and to boost their advantages. The software systems
include many attributes, and the conflict often happened
between these attributes. To allocate weights to attributes
more reasonably, Gao et al. [30] proposed a novel weight
allocation method for software attributes by combining the
FAHP method with the CRITIC method. This approach con-
siders the conflict between attributes by using the CRITIC
method. In the context of component-based software systems,
each component comprises multiple attributes, and the com-
bination of components can influence trustworthiness.
Recently, Ma et al. [31] employed the FAHP method and
the correlation between trustworthy attributes and defects
to determine the attribute weights for components.

The methods discussed above can provide a mean to
analyze the weight or importance of a specific object. How-
ever, when dealing with complex component-based software
systems, it is insufficient to determine the importance of
components based solely on a single method, such as expert
evaluation or component attributes [32–34]. The reason
mainly arises there exists internal interaction information
that objectively reflects the importance of components. For
example, in a train ticket purchasing system, the “ticket”
component must transmit data to the “payment” compo-
nent. If the “ticket” component fails to execute successfully,
then the performance of “payment” will be affected. There-
fore, the “ticket” component is more important than the

2 Mathematical Problems in Engineering



“payment,” which also indicates that there exists a mutual
influence on the importance of components. Therefore, it is
essential to comprehensively consider expert evaluations and
the mutual influence between components to evaluate com-
ponent importance. Moreover, different combinations of
components lead to varying interactions and levels of mutual
influence. Therefore, in this paper, we establish an influence
value model based on a directed diagram model and propose
an objective weight allocation method. Additionally, a com-
prehensive weight allocation approach for components is
proposed by combining the FAHP method with the objective
weight allocation method.

The structure of this paper is as follows: Section 2 pro-
vides an overview of relevant work, including the FAHP
method and evidence theory fusion method. In Section 3,
we construct the influence value model based on combina-
tion structures. Section 4 presents the objective weight allo-
cation method, considering the mutual influence between
components. In Section 5, we propose a comprehensive
weight allocation method for components. A case study is
presented in Section 6. Finally, Section 7 concludes the paper.

2. Related Work

2.1. The Weight Allocation of Components Based on FAHP.
Due to the importance of each component in the software
system being different, experts need to compare each other
according to the different importance of the components and
give a relatively fuzzy and nondeterministic evaluation. Then,
the weight of each component is determined by integrating the
opinions of multiple experts. Additionally, the behavior of
components can be influenced by various factors, such as the
environment and hardware. Generally, experts cannot thor-
oughly consider all possible situations, leading to uncertainty
and incomplete information. Thus, it is more appropriate to
allocate the weight of components based on expert evaluations
using the simplified FAHPmethod. The specific steps are given
as follows, and detailed contents can be found in [21].

Step 1. Suppose there are n components, and g experts com-
pare each component pairwise to provide the corresponding
fuzzy importance evaluation. These fuzzy evaluations are
then converted into triangular fuzzy numbers, denoted as

h1i j ¼ l1i j;
�

m1
i j; u

1
i jÞ; …; hgi j ¼ lgi j;

�
mg

i j; u
g
i jÞ, i; j ¼ 1; 2;…; n,

where lki j, m
k
i j, and u

k
i j 1 ≤ k ≤ gð Þ represent the lowest possible

value, the most possible value, and the highest possible value of
the relative importance of component Ci and Cj evaluated by
the kth expert, respectively. These values are determined based
on the integer scale from 1 to 9 adopted in the AHP method,
as shown in Table 1. Therefore, the fuzzy judgment matrix

Hk ¼ hki j
h i

n×n
is constructed based on the fuzzy evaluation

given by the kth expert as follows, where n is the number of
components:

Hk ¼
lk11;m

k
11; u

k
11

À Á
⋯ lkn1;m

k
n1; u

k
n1

À Á
⋮ ⋱ ⋮

lk1n;m
k
1n; u

k
1n

À Á
⋯ lknn;mk

nn; uknn
À Á

2
64

3
75: ð1Þ

Step 2. The fuzzy judgment matrices provided by g experts are
fused to obtain a comprehensive fuzzy judgment matrix Hcom,
where the elements in the matrix are represented as compre-

hensive triangular fuzzy numbers hcomi j ¼ lcomi j ;
�

mcom
i j ; ucomi j Þ.

The specific calculation process is given as follows:

hcomi j ¼ l1i j þ⋯þ lgi j
g

;
m1

i j þ⋯þmg
i j

g
;
u1i j þ⋯þ ugi j

g

 !
:

ð2Þ

Then, the comprehensive fuzzy judgment matrix Hcom is
given as follows:

Hcom ¼
lcom11 ;mcom

11 ; ucom11ð Þ ⋯ lcomn1 ;mcom
n1 ; ucomn1ð Þ

⋮ ⋱ ⋮
lcom1n ;mcom

1n ; ucom1nð Þ ⋯ lcomnn ;mcom
nn ; ucomnnð Þ

2
64

3
75:

ð3Þ

Step 3. Calculating the fuzzy weight α̃i of the ith component:

α̃i ¼ α̃li ; α̃
m
i ; α̃

u
i

� �

¼ ∑n
j¼1l

com
i j

∑n
i¼1∑

n
j¼1l

com
i j

;
∑n

j¼1m
com
i j

∑n
i¼1∑

n
j¼1m

com
i j

;
∑n

j¼1u
com
i j

∑n
i¼1∑

n
j¼1u

com
i j

 !
:

ð4Þ

TABLE 1: Integer scales meaning table.

Scale Definition

1 Ci is as important as Cj

3 Ci is important than Cj

5 Ci is more important than Cj

7 Ci is very important than Cj

9 Ci is absolutely more important than Cj

2, 4, 6, and 8 The scale value corresponding to the intermediate state between judgments
Reciprocal If Ci is important than Cj, and the judgment value is aij ¼ 3, then aji ¼ 1=3.
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Step 4. According to the method proposed by Kaufmann and
Gupta [35], the fuzzy weight obtained in Step 3 is defuzzified
and the subjective weight of each component is calculated. The
specific calculation process is given as follows:

αi ¼
α̃li þ 2α̃mi þ α̃ui

4
; ð5Þ

where αi expresses the subjective weight of the ith compo-
nent, and the subjective weight of all components can be
written as a n-dimensional vector, α ¼ α1;ð α2;…; αnÞ.
2.2. Evidence Theory Fusion Method. Evidence information
fusion methods have distinct advantages in handling uncer-
tain information and are commonly used to combine infor-
mation from multiple independent sources [36, 37]. A
recognition frame Θ is usually a nonempty finite set, where
a subset of the recognition frame Θ is called a proposition Z.
m Zð Þ is the basic probability assignment function on the
recognition frame Θ, which represents the probability that
the evidence information supports the occurrence of propo-
sition Z. Suppose that w independent evidences on the same
recognition frame Θ have basic probability assignment func-
tions of m1, …, mw, and the D–S evidence fusion rule for
fusing w evidences is defined as:

m1⊕⋯⊕mwð Þ Zeð Þ ¼ m1 Zeð Þ⋯mw Zeð Þ
1 − K

K ¼ ∑

⋂
w

e¼1
Ze¼;

m1 Z1ð Þ⋯mw Zwð Þ; 1 ≤ e ≤ w;

8>>><
>>>:

ð6Þ

where 1−K is a normalized coefficient, it is used to avoid
assigning nonzero probabilities to the null set ∅, and the
meaning of K 2 0;½ 1Þ is the conflict between evidence infor-
mation. The closer the value of K is to 1, the greater the
conflict between evidence information [38].

3. The Influence Value Model of Components
Based on the Combination Structure

As the weight allocation of components based on FAHP
mainly relies on expert evaluation, it may be too subjective
to fully reflect the importance. In complex software systems,
there is also objective information that can reflect the impor-
tance of components. During the component-based system,
the component often interacts with other components
through the various combination structures, such as
sequence, branch, andmore. If a critical function of a system
can be realized by a component interacting with other com-
ponents, then the corresponding component plays a pivotal
role, and the weight of this component allocated is increased
accordingly. At the same time, the weight of the interacted
component should not be disregarded. Hence, the interac-
tion information between components should be taken into
consideration when determining the component’s impor-
tance. Different combinations involve various interaction

actions. For instance, in the sequence structure, the execu-
tion of a later component relies on the execution data of a
previous component. This implies that the previous compo-
nent influences the later component. The degree of influ-
ence between components also determines the component’s
importance. During this section, we will try to establish the
influence value model based on the combination structure
by using the directed diagram.

Generally, component-based software consists of numer-
ous components. There exists a mutual influence between
components when the components are linked by some com-
bination structure. Similar to the approach in [39], we con-
sider the component as the node and the links between
components as the directed edges. If the component Ci influ-
ences component Cj, then there exists a directed edge from
component Ci to component Cj. In [39], the author uses
unweighted directed edge to express the influence between
components. Suppose there are n components, the influence
matrix was established in [39]. If the component Ci influ-
ences component Cj, then the element in the i-th row and
j-th column of the matrix is 1. However, component Ci may
not only affect component Cj, but also have an impact on
several other components. Therefore, the importance of
component Ci should be comprehensively determined by
considering all the outedges that originate from it and point
to other components. To quantify the degree of influence
between components conveniently and understand the influ-
ence relationship between components intuitively, we intro-
duce an influence value eij for every directed edge of the
component, as shown in Figure 1.

The value of eij belongs to the scale range proposed in
[40], which is defined as e ¼ 0;f 1; 2; 3g. Here, elements 0; 1;
2, and 3 represent no impact, small impact, medium impact,
and great impact, respectively.

The links between components are typically established
through various combinations of components. The influence
value eij should be analyzed according to the different com-
binations of components. Next, we will introduce seven basic
component combinations that are frequently used in soft-
ware system architecture research: sequence, branch, parallel,
interrupt fault-tolerant, noninterrupt fault-tolerant, callback,
and loop structure. According to the characterization of the
combination structure, the influence value between compo-
nents will be established.

3.1. Sequential Structure. Suppose the software system S is
composed of n components through a sequential structure.
According to the characterization of sequence structure, the
later component can continue to be executed only when the
previous component has been successfully executed. There-
fore, the successful execution of the previous component has
a significant impact on the execution of the later component.
Moreover, the failure of any component in the sequential

Ci
eij

Cj

FIGURE 1: Component influence diagram.
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structure will lead to the collapse of the whole software sys-
tem, so that the corresponding task objectives cannot be
performed. Therefore, each component of the software sys-
tem in the sequential structure is critical and cannot be over-
looked, and thus the influence values among each component
in the sequential structure will be attached with 3 to express
the importance. This is illustrated in Figure 2.

3.2. Branch Structure. Let the software system S be composed
of n components through branch structure. Each component
will be executed with a certain probability pi ∑n

i¼1pi ¼ð 1Þ,
and the influence value among each component under the
branch structure will be determined by the probability pi.
Therefore, the component with the highest probability p1 is
assigned an influence value of 3, the component with the
lowest probability pn is assigned an influence value of 1, and
the other component influence values are assigned an influ-
ence value of 2, as shown in Figure 3.

3.3. Parallel Structure. In a parallel structure, components are
executed simultaneously. When all components in the paral-
lel structure run successfully, the entire parallel structure can
run successfully. Under this structure, all components are
required to run successfully, and the failure of any compo-
nent will lead to subsequent processes failing. Therefore, the
influence values among each component in the parallel
structure will be attached with 3, as shown in Figure 4.

3.4. Interrupt Fault-Tolerant Structure. Suppose the software
system S comprises n components through an interrupt
fault-tolerant structure. If the main component fails due to

external factors (e.g., virus attacks, changes in the experi-
mental environment, etc.) or internal conflicts (e.g., code
conflicts, etc.), the system will immediately stop the opera-
tion of the main components. Then, the software system
switches to redundant backup components, allowing the sys-
tem to recover from errors and ensure the normal operation
of the software system. The system is considered to have
failed only if both the main component and its redundant
backup components have failed. In an interrupt fault-
tolerant structure, only one of the n components needs to
execute successfully. Therefore, the influence value of the
precomponent on each component will be assigned a value
of 3, and the influence value of each component on the
postcomponent will be assigned a value of 1, as shown in
Figure 5.

Where the solid part of the arrows represents the main
operational components, while the dashed part represents
the redundant backup components.

3.5. Noninterrupt Fault-Tolerant Structure. In a noninterrupt
fault-tolerant structure, the same function in the software
system is simultaneously performed by multiple identical
components. The successfully executed component will be
used as the redundant backup of the unsuccessfully executed
component and will be executed at any time. Generally
speaking, as long as at least l ¼ n=2½ � þ 1 components are
successfully executed, the software system is considered to
have no failures. Therefore, the influence value of the pre-
component on each component will be assigned a value of 3,
and the influence value on each component on the postcom-
ponent will be assigned a value of 2, as shown in Figure 6.

C1
3 3

C2 Cn–1 Cn

FIGURE 2: Sequence structure diagram with influence values.

Cpre

pn (1) …
…

pi (2)

p1 (3)

Ci

Cn

C1

FIGURE 3: Branch structure diagram with influence values.

Cpre

3 …
…

3 3

3 3

3

Ci

Cn

C1

Cpost

FIGURE 4: Parallel structure diagram with influence values.

Cpre

3 …
…

3 1

3 1

1

Ci

Cn

C1

Cpost

FIGURE 5: Interrupt fault-tolerant structure diagram with influence
values.

Cpre

3 …
…

3 2

3 2

2

Ci

Ci

Ci

Cpost

FIGURE 6: Noninterrupt fault-tolerant structure diagram with influ-
ence values.
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3.6. Callback Structure. When the currently running compo-
nent cannot perform a specific task itself, it is possible to call
other components to assist in its completion. This situation
is regarded as a callback structure. In this structure, the soft-
ware system can only be regarded as successfully executed
when the called component is successfully executed, and the
control right is called back to the postcomponent. Therefore,
the influence values among each component in the callback
structure will be assigned a value of 3, as shown in Figure 7.

3.7. Loop Structure. The loop structure is composed of a loop
body that completes the task assigned by the software system
through repeated operations. Suppose there is a loop body R.
When the loop condition is satisfied, the loop is repeated
t times until the loop condition is no longer satisfied, at
which point the loop is exited. The internal structure of
the loop body can be sequence, branch, interrupt fault-
tolerant, and so on. Therefore, the influence value among
each component in this structure will be determined by the
structure of the loop body, and will not be described in detail
here, as shown in Figure 8.

4. The Objective Weight Allocation Method of
Component Based on Mutual Influence

Section 3 discusses the existence of mutual influence between
components. This mutual influence information reflects the
importance of the component from an objective view. Next,
we will try to analyze the component importance from the
objective view based on the mutual influence information.

Suppose that there are n components. Based on the
mutual influence information discussed in Section 3, we
can obtain the influence value between each pair of compo-
nents. Therefore, the influence relationship between compo-
nents can be represented as a matrix, denoted as the direct

influence matrix G ¼ gij
h i

n×n
, where gij ¼ eij indicates an

influence from component Ci to Cj, and the influence value
is eij. If there is no effect between Ci and Cj, then gij ¼ 0.
Additionally, gii ¼ 0 is defined. It is important to note that
the influence between components can be transitive. For
example, during the sequence structure, the precomponent
Ci has an impact on the component Cj, and Cj has an impact

on the component Ck, then Ci can indirectly influence Ck to
some content, even though Ci cannot directly influence Ck.
Therefore, the indirect influence between components
should be considered to quantify the influence between com-
ponents. To do this, the indirect influence between the com-
ponents can be calculated using the self-multiplication of the
direct influence matrix, based on the relevant definition of
the reachability matrix. Subsequently, the comprehensive
influence matrix between the components can be obtained
by combining the direct influence matrix and the indirect
influence matrix. Finally, the objective weight allocation of
components can be determined following these specific steps:

Step 5. Normalizing the direct influence matrix G by dividing
the maximum value of the sum of the elements in the row of
the matrix and the normalized influence matrix is obtained,
written as Gsta, i.e.,

Gsta ¼
1
A
G; ð7Þ

where A ¼maxi2 1;⋯; nf g ∑n
j¼1gij:

Step 6. Adding the normalized influence matrix’s power to
obtain the comprehensive influence matrix, denoted as Gt ¼
gti j
h i

n×n
, where the power exponent is from 1 to n, the formula

is given as follows:

Gt ¼ Gsta þ G2
sta þ⋯þ Gn

sta: ð8Þ

Step 7. Analyzing the comprehensive influence matrix Gt , the
influence degree of the ith component Ci is defined as the sum
of all elements in the ith row of matrix Gt , i.e.,

In fi ¼ ∑
n

j¼1
gti j; 1 ≤ i ≤ n: ð9Þ

And the influenced degree of the ith component Ci is
defined as the sum of all elements in the ith column of matrix
Gt , i.e.,

In fedi ¼ ∑
n

j¼1
gt
ji; 1 ≤ i ≤ n: ð10Þ

Step 8. The comprehensive influence degree of the ith compo-
nent, denoted as Inf comi , can be obtained by adding the influ-
ence degree and the influenced degree, i.e.,

Inf comi ¼ In fi þ In fedi; 1 ≤ i ≤ n: ð11Þ

Step 9. The objective weight allocation of the ith component
Ci is obtained by normalizing the comprehensive influence
degree of the ith component, i.e.,

C1 3

3

C3

C2

FIGURE 7: Callback structure diagram with influence values.

R

t

FIGURE 8: Loop structure diagram with influence values.
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βi ¼
In f comi

∑n
i¼1in f

com
i

; 1 ≤ i ≤ n; ð12Þ

where βi expresses the objective weight of the ith component
and the objective weight of all components can be written as
a n-dimensional vector, β ¼ β1;ð β2;⋯; βnÞ:

5. The Comprehensive Weight Allocation
of Components

To comprehensively consider the weight allocation of com-
ponents from different perspectives, it is necessary to fuse the
subjective and objective weights to obtain a comprehensive
weight allocation. This approach effectively reduces subjec-
tive arbitrariness and objective ideality, making the compo-
nent weight allocation results more aligned with the actual
situation of software system development. The evidence
theory method has distinct advantages in dealing with the
fusion of uncertain information. Therefore, the evidence
fusion method is used to make the final result of fusion
information more realistic, which is beneficial to improve
the evaluation personnel decision accuracy.

Since the allocated weight values sum up to 1, and the
weight allocation of each component is independent of the
others, we can define a basic probability assignment function
(i.e., BPA function) to allocate the weight to each compo-
nent. Based on the subjective and objective weight allocation
methods proposed in the above two sections, we can repre-
sent two BPA functions as follows: m1 Cið Þ¼ αi, m2 Cið Þ¼ βi
for every i ¼ 1;⋯; n, where ∑n

i¼1αi ¼ 1;∑n
i¼1βi ¼ 1. These

satisfy the definition in D–S (in short) evidence theory,
where the sum of the basic probability assignments must
be 1. Therefore, we can use the D–S evidence information
combination rule to fuse the subjective and objective weights,
and the formula is given as follows:

m1 ⊕m2ð Þ Cið Þ ¼ m1 Cið Þ ×m2 Cið Þ
1 − K

;

1 − K ¼ 1 − ∑i≠jm1 Cið Þ ×m2 Cj

À Á
;

8<
: ð13Þ

where 1−K is the normalization factor and the meaning of
K 2 0;½ 1Þ is the conflict between evidence information. The
closer the value of K is to 1, the greater the conflict between
evidence information; the closer K is to 0, the smaller the
conflict between evidence information.

However, the allocation method of the objective weight
proposed above may lead to the objective weight allocated to
a component is 0 (i.e., 0 trust conflict). The traditional DS
evidence theory fusion method cannot effectively eliminate
the impact of 0 trust conflict between evidence bodies.
Therefore, this section adopts a fusion method proposed
by Murphy [41] to eliminate the “bad value” between the
evidence, which can obtain the comprehensive weight of the
component based on the average reliability. The specific
steps are shown as follows:

Step 10. The two different BPA functions m1 Cið Þ, m2 Cið Þ are
averaged to obtain the comprehensive BPA function m Cið Þ.

m Cið Þ ¼ 1
2
m1 Cið Þ þm2 Cið Þ½ �; 1 ≤ i ≤ n: ð14Þ

Step 11. The comprehensive weight of the ith component,
denoted as γi, can be obtained by combining the comprehen-
sive BPA function m Cið Þ according to the DS combination
rule, i.e.,

γi ¼
m Cið Þ2
1 − K

; 1 ≤ i ≤ n; ð15Þ

where the comprehensive weight of all components can be
written as a n-dimensional vector, γ ¼ γ1;ð γ2;⋯; γnÞ:

To state our method more clearly, the framework to
compute the comprehensive weight is designed, as shown
in Figure 9. From the framework, it is easy to understand
the comprehensive weight of the component is achieved by
considering the subjective and objective weight of compo-
nents, which balanced the imperfection of the single method.

6. Case Study

Suppose there is the scenic spot ticket purchase system S,
including login, personal authentication, ticket query, ticket
booking, ticket cancellation, payment, and exit seven func-
tions. The personal authentication function can be further
divided into certificate authentication, health code authenti-
cation, and mobile phone authentication. The system con-
sists of 12 components C1, C2, C3, C4, C5, C6, C7, C8, C9, C10,
C11, and C12, where component C1 performs the login func-
tion; components C2, C3, and C4 perform the personal
authentication function through a combination of noninter-
rupt fault-tolerant structure; component C5 performs the
ticket query function; component C6 performs the ticket
booking function; components C7 and C11 perform the ticket
cancellation function through a combination of callback
structure; components C8, C9, and C10 perform the payment
function through a combination of interrupt fault-tolerant
structure; and component C12 performs the exit function.
Through the proposed method of attaching influence values
between components based on software architecture, the
influence values attached between 12 components under
this system are shown in Figure 10.

6.1. Calculating the Subjective Weights α of Components

(1) Suppose two experts have fuzzy evaluations on the
12 components in the ticketing software, and the
transformed fuzzy values are chosen from the [1, 9]
integer scales mentioned in Subsection 2.1. Then, the
fuzzy judgment matrix H1, H2 given by the two
experts is shown as follows:

Mathematical Problems in Engineering 7
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FIGURE 10: Mutual influence diagram of components in ticketing system.

The comprehensive weight of component

Step 1: Average the comprehensive BPA function

Step 2: Combine the comprehensive BPA functions
according to the DS combination rule to obtain

the comprehensive weight of component 

Step 1: Construct the fuzzy judgment matrix for
each component 

The subjective weight of component

Step 2: Fuse the fuzzy judgment matrix to get the
comprehensive fuzzy judgment matrix 

Step 3: Calculate the fuzzy weight of every
component 

Step 4: Defuzzy the fuzzy weight and obtain the
subjective weight of each component 

The objective weight of component

Step 1: Obtain the direct influence matrix based on
the construction of component 

Step 2: Normalize the direct influence matrix

Step 3: Add the normalized influence matrix’s
power to get the comprehensive influence matrix 

Step 4: Compute the influence and influenced
degree of component 

Step 5: Add the influence and influenced degree to
get the comprehensive influence degree 

Step 6: Normalize the comprehensive influence
degree to get the objective weight  

FIGURE 9: The computation framework of comprehensive weight.
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H1 ¼

1; 1; 1ð Þ 1=4; 1=3; 1=2ð Þ 1=4; 1=3; 1=2ð Þ 1=4; 1=3; 1=2ð Þ 1; 2; 3ð Þ 1; 2; 3ð Þ 1; 2; 3ð Þ 1=4; 1=3; 1=2ð Þ 1=4; 1=3; 1=2ð Þ 1=4; 1=3; 1=2ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ
2; 3; 4ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 2; 3; 4ð Þ 2; 3; 4ð Þ 2; 3; 4ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 1; 2; 3ð Þ 1; 2; 3ð Þ
2; 3; 4ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 2; 3; 4ð Þ 2; 3; 4ð Þ 2; 3; 4ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 1; 2; 3ð Þ 1; 2; 3ð Þ
2; 3; 4ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 2; 3; 4ð Þ 2; 3; 4ð Þ 2; 3; 4ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 1; 2; 3ð Þ 1; 2; 3ð Þ

1=3; 1=2; 1ð Þ 1=4; 1=3; 1=2ð Þ 1=4; 1=3; 1=2ð Þ 1=4; 1=3; 1=2ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 1=4; 1=3; 1=2ð Þ 1=4; 1=3; 1=2ð Þ 1=4; 1=3; 1=2ð Þ 1=3; 1=2; 1ð Þ 1=3; 1=2; 1ð Þ
1=3; 1=2; 1ð Þ 1=4; 1=3; 1=2ð Þ 1=4; 1=3; 1=2ð Þ 1=4; 1=3; 1=2ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 1=4; 1=3; 1=2ð Þ 1=4; 1=3; 1=2ð Þ 1=4; 1=3; 1=2ð Þ 1=3; 1=2; 1ð Þ 1=3; 1=2; 1ð Þ
1=3; 1=2; 1ð Þ 1=4; 1=3; 1=2ð Þ 1=4; 1=3; 1=2ð Þ 1=4; 1=3; 1=2ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 1=4; 1=3; 1=2ð Þ 1=4; 1=3; 1=2ð Þ 1=4; 1=3; 1=2ð Þ 1=3; 1=2; 1ð Þ 1=3; 1=2; 1ð Þ
2; 3; 4ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 2; 3; 4ð Þ 2; 3; 4ð Þ 2; 3; 4ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 1; 2; 3ð Þ 1; 2; 3ð Þ
2; 3; 4ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 2; 3; 4ð Þ 2; 3; 4ð Þ 2; 3; 4ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 1; 2; 3ð Þ 1; 2; 3ð Þ
2; 3; 4ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 2; 3; 4ð Þ 2; 3; 4ð Þ 2; 3; 4ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 1; 2; 3ð Þ 1; 2; 3ð Þ
1; 1; 1ð Þ 1=3; 1=2; 1ð Þ 1=3; 1=2; 1ð Þ 1=3; 1=2; 1ð Þ 1; 2; 3ð Þ 1; 2; 3ð Þ 1; 2; 3ð Þ 1=3; 1=2; 1ð Þ 1=3; 1=2; 1ð Þ 1=3; 1=2; 1ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ
1; 1; 1ð Þ 1=3; 1=2; 1ð Þ 1=3; 1=2; 1ð Þ 1=3; 1=2; 1ð Þ 1; 2; 3ð Þ 1; 2; 3ð Þ 1; 2; 3ð Þ 1=3; 1=2; 1ð Þ 1=3; 1=2; 1ð Þ 1=3; 1=2; 1ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ

2
66666666666666666666666664

3
77777777777777777777777775

:

ð16Þ

H2 ¼

1; 1; 1ð Þ 1=3; 1=2; 1ð Þ 1=3; 1=2; 1ð Þ 1=3; 1=2; 1ð Þ 1; 2; 3ð Þ 1; 2; 3ð Þ 1; 2; 3ð Þ 1=3; 1=2; 1ð Þ 1=3; 1=2; 1ð Þ 1=3; 1=2; 1ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ
1; 2; 3ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 1; 2; 3ð Þ 1; 2; 3ð Þ 1; 2; 3ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 1; 2; 3ð Þ 1; 2; 3ð Þ
1; 2; 3ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 1; 2; 3ð Þ 1; 2; 3ð Þ 1; 2; 3ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 1; 2; 3ð Þ 1; 2; 3ð Þ
1; 2; 3ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 1; 2; 3ð Þ 1; 2; 3ð Þ 1; 2; 3ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 1; 2; 3ð Þ 1; 2; 3ð Þ

1=3; 1=2; 1ð Þ 1=3; 1=2; 1ð Þ 1=3; 1=2; 1ð Þ 1=3; 1=2; 1ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 1=3; 1=2; 1ð Þ 1=3; 1=2; 1ð Þ 1=3; 1=2; 1ð Þ 1=3; 1=2; 1ð Þ 1=3; 1=2; 1ð Þ
1=3; 1=2; 1ð Þ 1=3; 1=2; 1ð Þ 1=3; 1=2; 1ð Þ 1=3; 1=2; 1ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 1=3; 1=2; 1ð Þ 1=3; 1=2; 1ð Þ 1=3; 1=2; 1ð Þ 1=3; 1=2; 1ð Þ 1=3; 1=2; 1ð Þ
1=3; 1=2; 1ð Þ 1=3; 1=2; 1ð Þ 1=3; 1=2; 1ð Þ 1=3; 1=2; 1ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 1=3; 1=2; 1ð Þ 1=3; 1=2; 1ð Þ 1=3; 1=2; 1ð Þ 1=3; 1=2; 1ð Þ 1=3; 1=2; 1ð Þ
1; 2; 3ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 1; 2; 3ð Þ 1; 2; 3ð Þ 1; 2; 3ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 1; 2; 3ð Þ 1; 2; 3ð Þ
1; 2; 3ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 1; 2; 3ð Þ 1; 2; 3ð Þ 1; 2; 3ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 1; 2; 3ð Þ 1; 2; 3ð Þ
1; 2; 3ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 1; 2; 3ð Þ 1; 2; 3ð Þ 1; 2; 3ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 1; 2; 3ð Þ 1; 2; 3ð Þ
1; 1; 1ð Þ 1=3; 1=2; 1ð Þ 1=3; 1=2; 1ð Þ 1=3; 1=2; 1ð Þ 1; 2; 3ð Þ 1; 2; 3ð Þ 1; 2; 3ð Þ 1=3; 1=2; 1ð Þ 1=3; 1=2; 1ð Þ 1=3; 1=2; 1ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ
1; 1; 1ð Þ 1=3; 1=2; 1ð Þ 1=3; 1=2; 1ð Þ 1=3; 1=2; 1ð Þ 1; 2; 3ð Þ 1; 2; 3ð Þ 1; 2; 3ð Þ 1=3; 1=2; 1ð Þ 1=3; 1=2; 1ð Þ 1=3; 1=2; 1ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ

2
66666666666666666666666664

3
77777777777777777777777775

:

ð17Þ

(2) The fuzzy judgment matrix H1 and H2 of the two
experts are fused through Equation (2) to obtain the

comprehensive fuzzy judgment matrix Hcom, as
follows:

Hcom ¼

1; 1; 1ð Þ 7=24; 5=12; 3=4ð Þ 7=24; 5=12; 3=4ð Þ 7=24; 5=12; 3=4ð Þ 1; 2; 3ð Þ 1; 2; 3ð Þ 1; 2; 3ð Þ 7=24; 5=12; 3=4ð Þ 7=24; 5=12; 3=4ð Þ 7=24; 5=12; 3=4ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ
3=2; 5=2; 7=2ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 3=2; 5=2; 7=2ð Þ 3=2; 5=2; 7=2ð Þ 3=2; 5=2; 7=2ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 1; 2; 3ð Þ 1; 2; 3ð Þ
3=2; 5=2; 7=2ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 3=2; 5=2; 7=2ð Þ 3=2; 5=2; 7=2ð Þ 3=2; 5=2; 7=2ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 1; 2; 3ð Þ 1; 2; 3ð Þ
3=2; 5=2; 7=2ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 3=2; 5=2; 7=2ð Þ 3=2; 5=2; 7=2ð Þ 3=2; 5=2; 7=2ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 1; 2; 3ð Þ 1; 2; 3ð Þ
1=3; 1=2; 1ð Þ 7=24; 5=12; 3=4ð Þ 7=24; 5=12; 3=4ð Þ 7=24; 5=12; 3=4ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 7=24; 5=12; 3=4ð Þ 7=24; 5=12; 3=4ð Þ 7=24; 5=12; 3=4ð Þ 1=3; 1=2; 1ð Þ 1=3; 1=2; 1ð Þ
1=3; 1=2; 1ð Þ 7=24; 5=12; 3=4ð Þ 7=24; 5=12; 3=4ð Þ 7=24; 5=12; 3=4ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 7=24; 5=12; 3=4ð Þ 7=24; 5=12; 3=4ð Þ 7=24; 5=12; 3=4ð Þ 1=3; 1=2; 1ð Þ 1=3; 1=2; 1ð Þ
1=3; 1=2; 1ð Þ 7=24; 5=12; 3=4ð Þ 7=24; 5=12; 3=4ð Þ 7=24; 5=12; 3=4ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 7=24; 5=12; 3=4ð Þ 7=24; 5=12; 3=4ð Þ 7=24; 5=12; 3=4ð Þ 1=3; 1=2; 1ð Þ 1=3; 1=2; 1ð Þ
3=2; 5=2; 7=2ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 3=2; 5=2; 7=2ð Þ 3=2; 5=2; 7=2ð Þ 3=2; 5=2; 7=2ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 1; 2; 3ð Þ 1; 2; 3ð Þ
3=2; 5=2; 7=2ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 3=2; 5=2; 7=2ð Þ 3=2; 5=2; 7=2ð Þ 3=2; 5=2; 7=2ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 1; 2; 3ð Þ 1; 2; 3ð Þ
3=2; 5=2; 7=2ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 3=2; 5=2; 7=2ð Þ 3=2; 5=2; 7=2ð Þ 3=2; 5=2; 7=2ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ 1; 2; 3ð Þ 1; 2; 3ð Þ

1; 1; 1ð Þ 1=3; 1=2; 1ð Þ 1=3; 1=2; 1ð Þ 1=3; 1=2; 1ð Þ 1; 2; 3ð Þ 1; 2; 3ð Þ 1; 2; 3ð Þ 1=3; 1=2; 1ð Þ 1=3; 1=2; 1ð Þ 1=3; 1=2; 1ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ
1; 1; 1ð Þ 1=3; 1=2; 1ð Þ 1=3; 1=2; 1ð Þ 1=3; 1=2; 1ð Þ 1; 2; 3ð Þ 1; 2; 3ð Þ 1; 2; 3ð Þ 1=3; 1=2; 1ð Þ 1=3; 1=2; 1ð Þ 1=3; 1=2; 1ð Þ 1; 1; 1ð Þ 1; 1; 1ð Þ

2
66666666666666666666666664

3
77777777777777777777777775

:

ð18Þ

(3) The fuzzy weight α̃ of each component is calculated
using Equation (4) based on the comprehensive fuzzy
matrix Hcom, and the calculation result is accurate to
three decimal places. The specific calculation proce-
dure is shown as follows:

(i) The fuzzy weight of component C1:

α̃1 ¼
∑
12

j¼1
lcom1j

∑
12

i¼1
∑
12

j¼1
lcomi j

;

∑
12

j¼1
mcom

1j

∑
12

i¼1
∑
12

j¼1
mcom

i j

;

∑
12

j¼1
ucom1j

∑
12

i¼1
∑
12

j¼1
ucomi j

0
BBB@

1
CCCA

¼ 0:063; 0:065; 0:069ð Þ:

ð19Þ
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(ii) The fuzzy weight of component C2:

α̃2 ¼
∑
12

j¼1
lcom2i

∑
12

i¼1
∑
12

j¼1
lcomi j

;

∑
12

j¼1
mcom

2i

∑
12

i¼1
∑
12

j¼1
mcom

i j

;

∑
12

j¼1
ucom2i

∑
12

i¼1
∑
12

j¼1
ucomi j

0
BBB@

1
CCCA

¼ 0:114; 0:113; 0:108ð Þ:
ð20Þ

(iii) The fuzzy weight of component C3:

α̃3 ¼
∑
12

j¼1
lcom3i

∑
12

i¼1
∑
12

j¼1
lcomi j

;

∑
12

j¼1
mcom

3i

∑
12

i¼1
∑
12

j¼1
mcom

i j

;

∑
12

j¼1
ucom3i

∑
12

i¼1
∑
12

j¼1
ucomi j

0
BBB@

1
CCCA

¼ 0:114; 0:113; 0:108ð Þ:
ð21Þ

(iv) The fuzzy weight of component C4:

α̃4 ¼
∑
12

j¼1
lcom4i

∑
12

i¼1
∑
12

j¼1
lcomi j

;

∑
12

j¼1
mcom

4i

∑
12

i¼1
∑
12

j¼1
mcom

i j

;

∑
12

j¼1
ucom4i

∑
12

i¼1
∑
12

j¼1
ucomi j

0
BBB@

1
CCCA

¼ 0:114; 0:113; 0:108ð Þ:
ð22Þ

(v) The fuzzy weight of component C5:

α̃5 ¼
∑
12

j¼1
lcom5i

∑
12

i¼1
∑
12

j¼1
lcomi j

;

∑
12

j¼1
mcom

5i

∑
12

i¼1
∑
12

j¼1
mcom

i j

;

∑
12

j¼1
ucom5i

∑
12

i¼1
∑
12

j¼1
ucomi j

0
BBB@

1
CCCA

¼ 0:047; 0:040; 0:044ð Þ:
ð23Þ

(vi) The fuzzy weight of component C6:

α̃6 ¼
∑
12

j¼1
lcom6i

∑
12

i¼1
∑
12

j¼1
lcomi j

;

∑
12

j¼1
mcom

6i

∑
12

i¼1
∑
12

j¼1
mcom

i j

;

∑
12

j¼1
ucom6i

∑
12

i¼1
∑
12

j¼1
ucomi j

0
BBB@

1
CCCA

¼ 0:047; 0:040; 0:044ð Þ:
ð24Þ

(vii) The fuzzy weight of component C7:

α̃7 ¼
∑
12

j¼1
lcom7i

∑
12

i¼1
∑
12

j¼1
lcomi j

;

∑
12

j¼1
mcom

7i

∑
12

i¼1
∑
12

j¼1
mcom

i j

;

∑
12

j¼1
ucom7i

∑
12

i¼1
∑
12

j¼1
ucomi j

0
BBB@

1
CCCA

¼ 0:047; 0:040; 0:044ð Þ:
ð25Þ

(viii) The fuzzy weight of component C8:

α̃8 ¼
∑
12

j¼1
lcom8i

∑
12

i¼1
∑
12

j¼1
lcomi j

;

∑
12

j¼1
mcom

8i

∑
12

i¼1
∑
12

j¼1
mcom

i j

;

∑
12

j¼1
ucom8i

∑
12

i¼1
∑
12

j¼1
ucomi j

0
BBB@

1
CCCA

¼ 0:114; 0:113; 0:108ð Þ:
ð26Þ

(ix) The fuzzy weight of component C9:

α̃9 ¼
∑
12

j¼1
lcom9i

∑
12

i¼1
∑
12

j¼1
lcomi j

;

∑
12

j¼1
mcom

9i

∑
12

i¼1
∑
12

j¼1
mcom

i j

;

∑
12

j¼1
ucom9i

∑
12

i¼1
∑
12

j¼1
ucomi j

0
BBB@

1
CCCA

¼ 0:114; 0:113; 0:108ð Þ:
ð27Þ

(x) The fuzzy weight of component C10:

α̃10 ¼
∑
12

j¼1
lcom10i

∑
12

i¼1
∑
12

j¼1
lcomi j

;

∑
12

j¼1
mcom

10i

∑
12

i¼1
∑
12

j¼1
mcom

i j

;

∑
12

j¼1
ucom10i

∑
12

i¼1
∑
12

j¼1
ucomi j

0
BBB@

1
CCCA

¼ 0:114; 0:113; 0:108ð Þ:
ð28Þ

(xi) The fuzzy weight of component C11:

α̃11 ¼
∑
12

j¼1
lcom11i

∑
12

i¼1
∑
12

j¼1
lcomi j

;

∑
12

j¼1
mcom

11i

∑
12

i¼1
∑
12

j¼1
mcom

i j

;

∑
12

j¼1
ucom11i

∑
12

i¼1
∑
12

j¼1
ucomi j

0
BBB@

1
CCCA

¼ 0:057; 0:068; 0:075ð Þ:
ð29Þ
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(xii) The fuzzy weight of component C12:

α̃12 ¼
∑
12

j¼1
lcom12j

∑
12

i¼1
∑
12

j¼1
lcomi j

;

∑
12

j¼1
mcom

12j

∑
12

i¼1
∑
12

j¼1
mcom

i j

;

∑
12

j¼1
ucom12j

∑
12

i¼1
∑
12

j¼1
ucomi j

0
BBB@

1
CCCA

¼ 0:057; 0:068; 0:075ð Þ:
ð30Þ

(4) The fuzzy weight of each component is defuzzified by
Equation (5), and the subjective weight αi of each
component is calculated, as shown in Table 2.

6.2. Calculating the Objective Weights β of Components

(1) According to Figure 10, the direct influence matrix G
between the components can be obtained, and the
matrix G divides the maximum value of the sum of
the elements of each row in the matrix, A ¼ 9, to get
the normalized influence matrix Gsta.

G ¼

0 3 3 3 0 0 0 0 0 0 0 0

0 0 0 0 2 0 0 0 0 0 0 0

0 0 0 0 2 0 0 0 0 0 0 0

0 0 0 0 2 0 0 0 0 0 0 0

0 0 0 0 0 2 1 0 0 0 0 0

0 0 0 0 0 0 0 3 3 3 0 0

0 0 0 0 0 0 0 0 0 0 3 3

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 3 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

2
66666666666666666666666664

3
77777777777777777777777775

:

ð31Þ

Gsta ¼

0
1
3

1
3

1
3

0 0 0 0 0 0 0 0

0 0 0 0
2
9

0 0 0 0 0 0 0

0 0 0 0
2
9

0 0 0 0 0 0 0

0 0 0 0
2
9

0 0 0 0 0 0 0

0 0 0 0 0
1
3

1
9

0 0 0 0 0

0 0 0 0 0 0 0
1
3

1
3

1
3

0 0

0 0 0 0 0 0 0 0 0 0
1
3

1
3

0 0 0 0 0 0 0 0 0 0 0
1
9

0 0 0 0 0 0 0 0 0 0 0
1
9

0 0 0 0 0 0 0 0 0 0 0
1
9

0 0 0 0 0 0
1
3

0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

2
6666666666666666666666666666666666666666664

3
7777777777777777777777777777777777777777775

:

ð32Þ

(2) The normalized influence matrix Gsta is added to the
indirect influence matrix G2

sta;…;G12
sta, and the com-

prehensive influence matrix Gt is calculated by
Equation (8). The calculation process is given as
follows:

Gt ¼ Gsta þ G2
sta þ⋯G12

sta: ð33Þ

Due to a large amount of calculation, the matrix
power addition software is used to automatically calcu-
late the result, as shown in matrix Gt .

TABLE 2: The subjective weight of components.

Subjective weight C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

αi 0:065 0:112 0:112 0:112 0:043 0:043 0:043 0:112 0:112 0:112 0:067 0:067
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Gt ¼

0
1
3

1
3

1
3

2
9

2
27

14762
531441

2
81

2
81

2
81

14762
1594323

27884
1594323

0 0 0 0
2
9

2
27

132860
4782969

2
81

2
81

2
81

14762
1594323

27884
1594323

0 0 0 0
2
9

2
27

132860
4782969

2
81

2
81

2
81

14762
1594323

27884
1594323

0 0 0 0
2
9

2
27

132860
4782969

2
81

2
81

2
81

14762
1594323

27884
1594323

0 0 0 0 0
1
3

66430
531441

1
9

1
9

1
9

66430
1594323

125479
1594323

0 0 0 0 0 0 0
1
3

1
3

1
3

0
1
9

0 0 0 0 0 0
66430
531441

0 0 0
66430
177147

66430
177147

0 0 0 0 0 0 0 0 0 0 0
1
9

0 0 0 0 0 0 0 0 0 0 0
1
9

0 0 0 0 0 0 0 0 0 0 0
1
9

0 0 0 0 0 0
66430
177147

0 0 0
66430
531441

66430
531441

0 0 0 0 0 0 0 0 0 0 0 0

2
6666666666666666666666666666666666666666664

3
7777777777777777777777777777777777777777775

: ð34Þ

(3) According to the comprehensive influence matrixGt ,
the influence degree and the influenced degree of
each component can be obtained according to Equa-
tions (7) and (8), and the calculation result is accu-
rate to three decimal places. The specific calculation
process is given as follows.

The influence degree of component C1 is computed by:

Inf1 ¼ ∑12
j¼1g

t
1j ¼ 1:424: ð35Þ

The influenced degree of component C1 is computed by:

In fed1 ¼ ∑12
j¼1g

t
j1 ¼ 0: ð36Þ

By using the similar method, the influence and influenced
degree of Ci, i ¼ 2;…; 12 can be obtained, as shown in
Table 3.

(4) The comprehensive influence In f com of the compo-
nent can be obtained based on Equation (11), and
then the normalization operation is performed to
obtain the objective weight βi of all component by
Equation (12); the weight value of Ci is shown in
Table 4.

6.3. Calculating the Comprehensive Weights γ of Components

(1) Considering the above calculated subjective and
objective weights α, β as two mutually independent

TABLE 4: The objective weight of components.

Objective weight C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

βi 0:109 0:058 0:058 0:058 0:137 0:132 0:123 0:050 0:050 0:050 0:092 0:083

TABLE 3: The influence degree and the influenced degree of each component.

Degree C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

Influence degree 1:424 0:425 0:425 0:425 0:912 1:110 0:875 0:111 0:111 0:111 0:625 0
Influenced degree 0 0:333 0:333 0:333 0:888 0:629 0:737 0:544 0:544 0:544 0:578 1:091
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bodies of evidence, and the corresponding BPA func-
tions are defined as m1 Cið Þ, m2 Cið Þ, i ¼ 1; 2;…; 12.
Then, the comprehensive BPA (for short CBPA)
function m Cið Þ is obtained by averaging the func-
tions m1 Cið Þ and m2 Cið Þ according to the Equation
(14) for i ¼ 1; 2;…; n, the value of comprehensive
BPA function is obtained, as shown in Table 5.

(2) The comprehensive weight γ of components is calcu-
lated by combining the comprehensive BPA function
m Cð Þ based on the D–S combination rule by Equa-
tion (15). The specific calculation process is given as
follows:

1 − K ¼ 1 − ∑
i≠j

m Cið Þ ×m Cj

À Á ¼ 0:084: ð37Þ

γ1 ¼
m C1ð Þf g2
1 − K

¼ 0:090; γ2 ¼
m C2ð Þf g2
1 − K

¼ 0:087;

γ3 ¼
m C3ð Þf g2
1 − K

¼ 0:087; γ4 ¼
m C4ð Þf g2
1 − K

¼ 0:087;

γ5 ¼
m C5ð Þf g2
1 − K

¼ 0:097; γ6 ¼
m C6ð Þf g2
1 − K

¼ 0:092;

γ7 ¼
m C7ð Þf g2
1 − K

¼ 0:082; γ8 ¼
m C8ð Þf g2
1 − K

¼ 0:079;

γ9 ¼
m C7ð Þf g2
1 − K

¼ 0:079; γ10 ¼
m C10ð Þf g2
1 − K

¼ 0:079;

γ11 ¼
m C11ð Þf g2
1 − K

¼ 0:074; γ12 ¼
m C12ð Þf g2
1 − K

¼ 0:067:

ð38Þ

Therefore, the comprehensive weight γi of the 12 compo-
nents in this ticketing system is achieved, as shown in
Table 6.

6.4. Comparison. We observed that the component’s weight
can be determined using either the FAHP method based on
experts’ evaluation or the objective influence value model.

However, the experts’ evaluation exists the arbitrariness and
the influence value model tends to be overly idealized. In
contrast, our proposed method strikes a balance between
these approaches, resulting in a component weight allocation
that better reflects the actual situation of software system
development.

Compared to FAHP, the results presented in Table 7
indicate that the weights of components C2, C3, C4,C8, C9,
and C10 are 0:112, which represents the highest weight
obtained using the FAHP method among all components.
Conversely, the weights of components C11;C12 are 0:067,
and the weight of C1 is 0:065. Furthermore, the weights of
C5;C6;C7 are 0:043, representing the lowest weights
achieved by the FAHP method. Notably, C5 is the successor
component of C2;C3;C4, and the precursor component of
C6;C7, as shown in Figure 10. Consequently, the execution of
C2;C3;C4 can significantly affect the execution of C5, the
execution of C5 can affect the performance of C6, meaning
that the weight difference between C2;C3;C4, and C5 should
not be excessively large. In the comprehensive weight model,
the weights of C2;C3;C4 are 0:087, while the weight of C5 is
0:097, resulting in a reduced weight difference between C2;
C3;C4, and C5. Additionally, as shown in Figure 11, the

TABLE 5: The comprehensive BPA function.

CBPA function C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

m Cið Þ 0:087 0:085 0:085 0:085 0:090 0:088 0:083 0:081 0:081 0:081 0:079 0:075

TABLE 6: The comprehensive weight of components.

Comprehensive weight C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

γi 0:090 0:087 0:087 0:087 0:097 0:092 0:082 0:079 0:079 0:079 0:074 0:067

TABLE 7: The comparison between comprehensive weight and FAHP.

Method C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

FAHP 0:065 0:112 0:112 0:112 0:043 0:043 0:043 0:112 0:112 0:112 0:067 0:067
Comprehensive weight 0:090 0:087 0:087 0:087 0:097 0:092 0:082 0:079 0:079 0:079 0:074 0:067

0.12

0.1

0.08

0.06

0.04

0.02

0
C1 C2 C3

The FAHP method
The comprehensive weight

The comparison between the FAHP and the
comprehensive weight

C4 C5 C6 C7 C8 C9 C10 C11 C12

FIGURE 11: The comparison between comprehensiveweight and FAHP.
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FAHP method exhibits relatively significant fluctuations on
the weight of component, which also showed the arbitrari-
ness of the experts’ evaluation.

In comparison with the objective weight allocation
method that we proposed based on the influence value, we
notice that the weights of C8;C9;C10 are 0:050, which is the
least weight among all components. These components,
referred to as the ”payment” components, as shown in Fig-
ure 10, are crucial for the software as their failure can influ-
ence the entire system. Therefore, their weights should not be
too small. In the comprehensive weight model, the weights of
C8;C9;C10 have been improved to 0:079, as shown in Table 8.
Additionally, Figure 12 demonstrates that the objective
weight allocation method based on the influence value exhi-
bits a relatively large fluctuation.

The detailed comparison is presented in Figure 13. As
depicted in Figure 13, the comprehensive weight shows a low

fluctuation, while the FAHP and influence value methods
exhibit relatively large fluctuations. The main reason behind
this observation is their deficiency in accurately capturing
component weights. Through our computation, we noticed
that the comprehensive weight allocation effectively reduces
subjective arbitrariness and objective ideality, resulting in a
component weight allocation that better aligns with the
actual situation of software system development.

Compared to the method introduced in [30], to obtain
the weight of component, the volatility of the component
attribute should be calculated according to the standard devi-
ation of attributes. Compared to the method in [31], to com-
pute the weight of the component, the attribute value and
defect data should be collected. But, in our case, we only have
the data of influence value, lacking the data relating to the
attribute of component. In fact, we can also use many meth-
ods to obtain the weight of components, but the different
method depends on the different data set. In our case, our
aim is to show the comprehensive weight method of com-
bining the FAHP and influence value is more reasonable
than the single method. Therefore, we only have the com-
parison with FAHP and influence value model.

7. Conclusions and Future Works

This study focused on the problem of allocating weight for
the components to evaluate the importance of components
during component-based software. The method of allocation
weight proposed in this paper not only considers the expert’s
evaluation of the importance of components but also the
interaction relationship between components. The frame-
work of the weight allocation method is designed by the
flow diagram. Our method can help software developers to
produce a reasonable evaluation of component importance
and develop highly trustworthy software. The contributions
of this paper are shown as follows:

(i) For the complexity software, there exist many inter-
actions between components. The mutual influence
between components can reflect the importance of
the component. In this paper, based on the combi-
nation structure of components, the influence value
model between the components was proposed to
characterize the degree of mutual influence between
components.

(ii) For the weight of the researched object, the popular
method is to get the value by the expert’s evaluation.
Though there exist some objective weight computa-
tion methods, the mutual influence between compo-
nent didn’t be considered. In this paper, the objective
weight allocationmethod of components is presented

TABLE 8: The comparison between comprehensive weight and influence value method.

Method C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

Influence value method 0:109 0:058 0:058 0:058 0:137 0:132 0:123 0:050 0:050 0:050 0:092 0:083
Comprehensive weight 0:090 0:087 0:087 0:087 0:097 0:092 0:082 0:079 0:079 0:079 0:074 0:067

0.16
0.14
0.12

0.1
0.08
0.06
0.04
0.02

0
C1 C2 C3

The influence value method
The comprehensive weight

The comparison between the influence value method
and the comprehensive weight

C4 C5 C6 C7 C8 C9 C10 C11 C12

FIGURE 12: The comparison between comprehensive weight and
influence value.

C8 C9 C10 C11 C12

0.16
0.14
0.12

0.1
0.08
0.06
0.04
0.02

0
C1 C2 C3

The FAHP method
The influence value method

The comparison of the different methods

C4 C5 C6 C7

The comprehensive weight

FIGURE 13: The comparison of the different methods.
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to reflect the importance of the component based on
mutual influence. During this method, the direct
influence and indirect influence between compo-
nents is established based on the matrix’s power.

(iii) To obtain the importance of components more rea-
sonably, it is necessary to consider the importance
from the subjective and objective views to achieve
the weight. In this paper, a new weight allocation
method of components is built by combining the
experts’ evaluation with the influence value between
components based on the evidence information
fusion method. By comparing with the other meth-
ods, it is more reasonable to consider the mutual
influence.

The method proposed in this paper can effectively allo-
cate the weight of components, but the expert’s evaluation is
based on the triangular fuzzy set to express the evaluation
information. For the triangular fuzzy set, there are some
deficiencies in many situations. Generally, the fuzzy value
of evaluation depends on experts’ subjective perceptions
and preferences. There exist several types of uncertainty,
such as interpersonal perception ambiguousness, personal
judgment reliability, interpersonal preference inconsistency
[42, 43], and so on. However, previous studies, such as the
triangular fuzzy set, didn’t consider these uncertainties com-
prehensively, usually just considering one of the various
uncertainties, which may affect their effectiveness. In [42],
the authors developed an integrated design alternative
assessment model by fully considering the various uncertain-
ties. In the future, we will try to combine the method in [42]
with the mutual influence model and find a more effective
weight allocation method of the component.
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