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A fnite volume method is a well-known and appropriate approach for numerical approximation of governing problems. Tis
article proposes a fnite volume approach to simulate the one-dimensional convection–difusion transport problem. New ex-
pressions for interface approximation are constructed by combining the assumption of step-wise profle and piece-wise linear
profle. In addition, a new numerical technique is developed based on these new interface approximations. Tis new numerical
algorithm produces consistent results for numerical approximation of the governing problem and gives second-order accuracy
along space and time. In order to justify the efectiveness of our numerical technique, numerical experiments are conducted for
various magnitudes of convection and difusion coefcients.Te numerical results of the proposed algorithm are also compared to
the fnite volume method and the fnite diference method. Based on this comparison, our numerical scheme presents stable and
highly accurate results compared to the alternatives.

1. Introduction

Te convection–difusion equation is a basic governing
problem to represent the transport phenomena of any
property.Tese transport phenomena have been observed in
a variety of felds, including industry, agriculture, biology,
meteorology, and petrochemistry. Te numerical solution of
convection–difusion model involves the mathematical
modeling and simulation of pollutants and suspended
matter in water and soil [1–7]. Mathematical models rep-
resenting any transport phenomena are given by systems of
second-order partial diferential equations that contain
terms describing convection and difusion of a fuid in
medium. Te convection is defned by frst-order terms,
while the second-order term describes the difusion of
property. Te convection–difusion equation can be driven
straightforwardly from the equation of continuity, which
states that the rate of change for a scalar quantity in a dif-
ferential control volume is given by convection and difusion
in and out along with any source or sinks inside the control

volume [8, 9]. Tese governing equations cannot be solved
using any analytical approach. Due to this reason, it is es-
sential to apply diferent numerical methods to fnd out the
numerical solution for such problems. Te fnite diference,
fnite element, and fnite volume approaches are the three
most popular and widely used numerical techniques for
approximation of such governing problems.

Te fnite diference method (FDM) studied by [10–16] is
a domain discretizing technique that converts the governing
problem into a diference equation.Te functional values are
approximated at the nodes of the network. In [17], fnite
diference approach was applied to simulate the basic
conservation equations. It concludes that, convergence rate
of fnite diference approach is based over the conditions in
liquid region. An efcient parallel characteristic scheme of
fnite diference method was proposed for numerical sim-
ulation of convection–difusion equation (18). Te advan-
tage of the numerical approach of this study is that
minimum iterations are required to get the optimal accuracy
at each time level. In [19], the fnite diference method is
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applied to a system of simultaneous nonlinear model rep-
resenting the transport phenomena. Tis study concludes
that a constraint is needed on the physical parameters of the
problem to achieve the existence of a solution to the steady-
state problem. A fnite diference approach with high order
accuracy is proposed for solving the convection–difusion
equation in [20]. For a limiting case where mesh-size and
viscosity approach zero, a numerical algorithm based on the
fnite diference approach is discussed for numerical sim-
ulation of singularly perturbed convection problem [21]. A
numerical simulation is discussed to study the convection
and difusion mechanism using the fnite diference tech-
nique. Based on this study, the transport phenomena in the
cylinder husk furnace is convection-dominated as treated by
[22]. A compact form of fnite diference is applied to solve
the time-dependent convection–difusionmodel [23]. In this
new approach, the convection–difusion equation is frst
transformed into the reaction-difusion equation, and then it
is solved by a proposed unconditionally stable numerical
method. As we have studied in [24], a nine-point compact
discretization strategy has been used in conjunction with the
multigrid approach to get more accurate numerical ap-
proximation of the convection–difusion equation. Finite
diference techniques using spreadsheets are applied to
approximate the one-dimensional advection-difusion
equation (see [25] the details). Te numerical approxima-
tion of diferent fnite diference schemes is compared with
the analytical solution of the problem.

Te fnite element approach, which is discussed in
[26–30] is another numerical method used for the numerical
approximation of the governing problems. For the ap-
proximation of transport problem using the fnite element
approach, local error estimates are derived [31]. In the study
[32] with polynomials of degree n≥ 2, an explicit form of the
fnite element technique is presented for the time-dependent
convection–difusion problem. Te proposed method em-
ploys space–time elements and allows the numerical solu-
tion to be computed one element at a time. A technique
based on the fnite element method is introduced for hy-
perbolic problems, which is also extended to steady-state
convection-dominated problem [29]. Te constructed
method can be applied explicitly, which is stable for smaller
mesh-size (h) and complements to Galerkin method in the
convection-dominant regime. For the one-dimensional
transport problem, convergence of fnite element ap-
proach is discussed [33]. Linear and nonlinear problems are
focused. For linear elements, optimal rates of convergence
order with diferent norms are studied. Te fnite element
technique is applied to discretized unsteady transport
equation [34]. Te resultant matrix system is solved by using
the conjugate gradient method, which improve computa-
tional time and memory size. A form of weak fnite element
method is applied to the approximate convection–difusion
equation implemented [35]. Te optimal error estimates are
discussed in diferent discrete norms. Finite element ap-
proximation [36] for a singularly perturbed one-
dimensional transport model is constructed. For the con-
vection–difusion boundary value problem, Galerkin piece-
wise linear fnite element approach is considered, which is

second-order accurate. By considering boundary layer
character of solution, special formulae are applied to gen-
erate a discrete linear algebraic system [37]. A new fnite
volume approach with some novel feature for all variables is
discussed [38]. Te formulation proposed in this study
shows fexibility in geometry and boundary conditions. Te
results obtained from this fnite element formulation il-
lustrate its ability to accurately predict the fuid properties in
both forced and free convection fows. In [39], a fnite el-
ement formulation for numerical modeling of porous me-
dium fow is presented. In this study, both the semi- and
quasi-implicit schemes are used to solve many problems.
Mostly, the results presented are highly accurate and con-
sistent with the experimental and other numerical data.

In fow simulation, it is essential to maintain conser-
vation laws, which is not guaranteed in the fnite diference
method (FDM) and fnite element method (FEM).Te fnite
volume method (FVM) [40–44] is evolved from the fnite
diferences method, which is fexible and widely employed in
fuid dynamics. Te fnite volume technique is an
integration-based approach in which volume integrals with
divergence terms are converted to surface integrals. Tis
integration is a basic key step to ensure conservation of
relevant property at each control volume level. Tis control
volume integration gives a semidiscretize equation that
involves interface fuxes which are needed to approximate.
Tis interface approximation converts partial diferential
equations into a set of algebraic equations. In the past, based
on diferent choices to these interface approximations,
several numerical techniques of fnite volume method
(FVM) formulation are developed [45–50]. Te con-
vection–difusion equation can be either convection-
dominated or difusion-dominated its depending on the
rate of convection and difusion. Convection-dominated
difusion equations govern many phenomena in engineer-
ing and science. In many applications based on convection-
dominated problems, difusion rate will be smaller than that
of convection. In such cases, standard numerical methods
give unstable solution. To deal with this unstability issue,
multiple numerical approaches have been proposed [51–53].
An exponentially ftted form of fnite volume technique is
applied to approximate the convection-dominated difusion
problem [54]. After simple coordinate transformation, the
resulting problem is approximated by using the exponen-
tially ftted fnite volume method. Te adaptive mesh
method is also a valuable technique for solving convection-
dominated problems. Adaptive mesh refnement method
and moving mesh refnement method are the most popular
adaptive mesh approaches. A self-adaptive mesh is proposed
to address the convection dominancy [55].

In our previous research article [45], Taylor series for-
mulation is applied for the approximation of variable at the
interface of the computational domain, and a new upwind
numerical formulation is proposed for numerical simulation
of the convection–difusion problem. In the current study,
new expressions are obtained using Lagrange interpolation
for the approximation of variables at spatial interfaces of the
control volume. Subsequently, a numerical scheme based on
the upwind approach formulation is constructed using these
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interface approximations. One of the most common and
widely used techniques, the Crank–Nicolson method, is
applied for temporal approximation. Te numerical results
produced by our new algorithm are compared with some
other numerical schemes of fnite volume approach and
fnite diference technique. Te obtained numerical results
indicate that our new upwind approach gives highly accurate
and stable results compared to other numerical algorithms.

Te format of this article is organized as follows: A brief
about the mathematical model of convection–difusion and
domain discretization using fnite volume method is shown
in Section 2. In Section 3, some numerical experiments are
carried out to validate our theoretical algorithm, and the
conclusion of this study is presented in Section 4.

2. Finite Volume Based Formulation

Te basic principle of all fnite volume methods is to study
the diferential equation in conservative form, integrate it
over small regions (called cells or control volumes), and
convert each such integral into an integral over the boundary
of the cell using Gauss’s theorem. In order to have the nodes
of the grid at the centres of cells, we introduced a new
rectangular grid whose nodes are the cell centres of the
original grid, which is shown in Figure 1. Nodal points are
used within these control volumes for interpolating the feld
variable. Usually, the single node at the center of the control
volume is used for each control volume. Te fnite volume
method is a discretization of the governing equation in
integral form, in contrast to the fnite diference method,
which is unusually applied to the governing equation in
diferential form.

In order to obtain a fnite volume discretization, the
domain Ω will be subdivided to M subdomains
Ωi, i � 1, 2, . . . , M such that the collection of all those
subdomains forms a partition of Ω, i.e., as in [56],

(i) Each of the domain Ωi is an open, connected, and
bounded set without slits.

(ii) Tere is no common point between each sub-
domains (i.e.,Ωi ∩Ωj � ∅ for i≠ j).

(iii) Te union of all the subdomains gives the domain of
the region (i.e., ∪M

i�1Ωi � Ω). Tese subdomains Ωi

are called control volumes (CVs) or control do-
mains (see Figure 2). In the fnite volume formu-
lation the frst step is to divide the whole

computational domain into fnite number of sub-
domain also called control volumes Ωi. When we
are talking about one-dimensional problems, we are
considering the CVs as subintervals of the problem
and the nodes can be the midpoints or the edges of
the subintervals (see Figure 3).

Assume that Ω ⊂ Rd, d≥ 1 be a bounded polygonal
domain and let T> 0 be given, then the following initial-
boundary value problem is written as follows.

Te analysis and discretization of these problem is
treated by using upwind fnite volume method. Te work is
discussed in the analysis of fnite volumemethod for coupled
systems in which transport similar to equation play a great
role. Te one-dimensional convection–difusion transport
phenomena are governed by the following equation:

zϕ(x, t)

zt
+ v

zϕ(x, t)

zx
� k

z
2ϕ(x, t)

zx
2 + Q(x, t), (x, t) ∈ Ω ×(0, T],

ϕ(x, 0) � f(x), 0≤ x≤L,

ϕ(0, t) � ϕ1(t), u(L, t) � ϕ2(t), 0≤ t≤T,
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Figure 1: Adjustment of interfaces and computational node inside
control volume.
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Figure 2: Profle of central diferencing scheme.
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where k≥ 0, v≥ 0 represents the coefcients of difusion and
convective velocity, respectively, where as ϕ(x, t) is un-
known feld variable, which needs to compute over one-
dimensional domain Ω � (0, L).

Governing equation (1) is the mathematical model for
the convection–difusion physical transport phenomena.
Te terms vzϕ/zx and kz2Φ/zx2 represents convection and
difusion process, respectively.

We have restricted to cell centred and uniform dis-
cretization of computational domain Ω � (0, L). For each

control volume, the grid point or computational node is
adjusted at the centre xi of the control volume.

Te interface Γ or common boundary of ith control
volume with its adjacent control volumes Ωi− 1 and Ωi+1 are
mostly positioned at the midposition between their centres,
i.e., Γi− 1/2 � xi + xi− 1/2 and Γi+1/2 � xi + xi+1/2. Te spatial
domain [0, L] is divided into M equal control volumes of
uniform length h. Te partition of spatial and temporal
domain are, respectively, defne as ∆x � h � xi+1 − xi and
∆t � tj+1 − tj. By integrating governed equation (1) over the
control volume [xi− ∆x/2, xi+∆x/2] × [tj− 1, tj] around node xi,
we get the following equation.


i+∆x/2

i− ∆x/2


j+∆t/2

j− ∆t/2

zΦ
zt

dt dx + v 
j+∆t/2

j− ∆t/2


i+∆x/2

i− ∆x/2

zΦ
zx

dx dt

� k 
j+∆t/2

j− ∆t/2


i+∆x/2

i− ∆x/2

z
2Φ

z
2
x
dx dt.

(2)

Te frst term is approximated by using trapezoidal rule
for numerical integration, as follows:

∆x

2
ϕi+∆x/2,j+∆t/2 +Φi− ∆x/2,j+∆t/2  −

∆x

2
ϕi+∆x/2,j− ∆t/2 +Φi− ∆x/2,j− ∆t/2 

+ v 
j+∆t/2

j− ∆t/2
Φi+∆x/2,j − Φi− ∆x/2,j dt,

� k 
j+∆t/2

j− ∆t/2

zΦ
zx

 
i+∆x/2,j

−
zΦ
zx

 
i− ∆x/2,j

⎛⎝ ⎞⎠dt.

(3)

Expression (3) represents our semidiscretized equation.
In the past, based on diferent interface approximation
techniques, numerous numerical schemes have been con-
structed. In the fnite volume method, the most and well
known interface approximation approaches are central
diferencing approach and upwind diferencing approach.

Te interface approximation by central diferencing
approach is defned as follows:

Φf � fxΦi− 1 + 1 − fx( Φi. (4)

Here, for uniform discretization of domain fx � 1/2 and
the interface approximation becomes as follows

Φf �

ϕi + ϕi+1

2
, at right interface xi+∆x/2,

ϕi− 1 + ϕi

2
at lef t interface xi− ∆x/2.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(5)

Figure 2 represents the central diferencing profle for the
interface approximation computed as follows.

Remark 1. Te Peclet number (Pe � v∆x/k) is a di-
mensionless number, it helps to calculate the trans-
portiveness property of any numerical approach.Te central

diferencing ignores the transportiveness property and gives
unstable solution for greater values of Pe.

While calculating convective fux at the interfaces,
central diferencing scheme is equally treated with the
neighbouring nodes of the interface. Tis approach do not
consider the fow direction and just takes the average of
neighbouring nodes for interface approximation. Tis
central diferencing scheme has the major disadvantage of
ignoring the infuence of convection at the interfaces while
approximating the variable.

ϕf � Φi− ∆x/2 �
Φi− 1 for v> 0,

Φi for v< 0,
 (6)

Φf � Φi+∆x/2 �
Φi for v> 0,

Φi+1 for v< 0.
 (7)

Te above expressions (6) and (7) represent the upwind
approach based approximation of convective fux at the
interfaces. In the upwind approach, the interface approxi-
mation depends on fow direction. Te value of variable at
any interface is equal to the value at its upstream node.
Figure 3 shows the interface approximation profle of up-
wind approach. Te upwind approach addresses the
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Figure 3: Profle of upwind diferencing scheme.
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transportiveness of any property in a better way. So, in this
proposed study, the blending factor (α) is introduced to
merge the central diferencing approach and upwind ap-
proach. In our proposed approach, we have combined the
central diferencing and upwind approach for the approx-
imation of convective fux at the interfaces of control vol-
ume. Te introduced blending factor (α) take values
α ∈ (0, 1) and combine both interface approximation ap-
proaches as follows:

Φf � Φi+∆x/2 � α
ϕi + ϕi+1

2
  +(1 − α)ϕi. (8)

Expression (8) represents our new expression for ap-
proximation of convective fux at the right interface
(Φi+∆x/2) of the control volume. Te new expression for the
approximation at left interface (Φi− ∆x/2) will be as follows:

Φf � Φi− ∆x/2 � α
ϕi + ϕi− 1

2
  +(1 − α)ϕi− 1. (9)

For α � 0 and α � 1, this new approach gives same
approximation expressions as upwind approach and central
diferencing approach, respectively.

Based on the central diferencing approach, the gradients
at the east and west interfaces of the control volume are
approximated as follows:

zϕ
zx

 
i+∆x/2

�
ϕi+1 − ϕi

∆x
  + O ∆x

2
 , (10)

zϕ
zx

 
i− ∆x/2

�
ϕi − ϕi− 1
∆x

  + O ∆x
2

 . (11)

Now by substituting equations (8)–(11) in equation (3),
it becomes as follows:

∆x

2
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α
2
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α
2
ϕi+1,j+1  −

∆x

2
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α
2

 ϕi− 1,j + ϕi,j +
α
2
ϕi+1,j 

+ v 
j+∆t/2

j− ∆t/2

α
2

− 1 ϕi− 1,j +(1 − α)ϕi,j +
α
2
ϕi+1,j dt �

k

∆x


j+∆t/2

j− ∆t/2
ϕi− 1 − 2ϕi + ϕi+1( dt,

(12)

∆x

2
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α
2

 ϕi− 1,j+1 + ϕi,j+1 +
α
2
ϕi+1,j+1 

+
vα
2

−
k

δx
  

j+∆t/2

j− ∆t/2
ϕi− 1,jdt + v(1 − α) +

2k

δx
  

j+∆t/2

j− ∆t/2
ϕi,jdt +

vα
2

−
k

δx
  

j+∆t/2

j− ∆t/2
ϕi+1,jdt

� −
∆x

2
1 −

α
2

 ϕi− 1,j + ϕi,j +
α
2
ϕi+1,j .

(13)

Now, θ scheme is applied to evaluate the temporal in-
tegral as follows:


j+∆t/2

j− ∆t/2
ϕi,jdt � θϕi,j+1 +(1 − θ)ϕi,j ∆t,where, θ ∈ (0, 1).

(14)

Applying this temporal approximation (14) over each
spatial node in (13) and taking θ � 1/2 for Crank-Nicolson
temporal approximation, the expression (13) becomes as
follows:

(2 − α)

4
+

v∆t

2∆x

α
2

− 1  −
k∆t

2∆x
2 ϕi− 1,j+1 +

1
2

+
v∆t

2∆x
(1 − α) +

k∆t

∆x
2 ϕi,j+1 +

α
4
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vα∆t
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2∆x
2 ϕi+1,j+1
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(2 − α)

4
−

v∆t

2∆x

α
2
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k∆t

2∆x
2 ϕi− 1,j +

1
2

−
v∆t
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(1 − α) −

k∆t
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2 ϕi,j +

α
4

−
vα∆t

4∆x
+

k∆t

2∆x
2 ϕi+1,j.

(15)

Expression (15) represents our fully discretized equation
valid for interior nodes from node 2 to node n − 1.

Remark 2. Tis new proposed algorithm utilises consistent
expressions to calculate fuxes through cell interfaces.
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Terefore it can be easily shown that this new formulation is
conservative. Tis new discretised equation is diagonally
dominant and satisfes the requirements for boundedness of
the solution.

2.1. Boundary Conditions. Te discretization of the problem
at left boundary node φ1,j and right boundary node φn,j.
Tere is no node at the left of φ1,j and also at right side of
node φn,j. For the treatment of boundary nodes, we have
adjusted imaginary nodes or mirror nodes out side the

computational domain at a distance of ∆x/2 as shown in
Figure 4.

Te approximation of left imaginary node φi− ∆x,j is as
follows:

Φ1− ∆x/2 � ΦL �
ϕ1 + ϕ1− ∆x

2
⟹ ϕ1− ∆x � 2ΦL − Φ1, (16)

where ΦL is left boundary of computational domain and it
coincides with the left interface (Φ1− ∆x/2) of frst control
volume around node 1. With this approximation of left
imaginary node the discretized expression at node 1 be-
comes as follows:

α
4

+
v∆t

2∆x
2 −

3α
2

  +
3k∆t

2∆x
2 φ1,j+1 +

α
4

+
vα∆t

4∆x
−
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2 φ2,j+1

�
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4
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3α
2

  −
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2∆x
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α
4

−
vα∆t

4∆x
+

k∆t

2∆x
2 φ2,j

+
α
2

− 1  −
v∆t

2∆x
(α − 2) +

k∆t

∆x
2 φL,j+1 + 1 −

α
2

  −
v∆t

2∆x
(α − 2) +

k∆t

∆x
2 φL,j.

(17)

Similarly, the approximation of right imaginary node
φn+1,j is given as follows:

Φn+∆x/2 � ΦR �
ϕn + ϕn+∆x

2
⟹ ϕn+∆x � 2ΦR − Φn. (18)

Now, the discretized expression for node n is given as
follows:

2 − α
4

+
v∆t

2∆x

α
2

− 1  −
k∆t

2∆x
2 φn− 1,j+1 +

2 − α
4

+
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3α
2

  +
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2∆x
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4

−
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2∆x

α
2

− 1  +
k∆t

2∆x
2 φn− 1,j +

2 − α
4

−
v∆t

2∆x
1 −

3α
2

  −
3k∆t

2∆x
2 φn,j

+ −
α
2

−
vα∆t

2∆x
+

k∆t

∆x
2 φR,j+1 +

α
2

−
vα∆t

2∆x
+

k∆t

∆x
2 φR,j.

(19)

Te above expressions (17) and (19) represents fully
discretized expression at node 1 and node n, respectively.

3. Numerical Experiments

Experiment 1. Consider one-dimensional con-
vection–difusion problem over the domain
0≤ x≤ 1, 0≤ t≤ 1. Te exact solution is

ϕ(x, t) � 1/
�����
4t + 1

√
e(− (x− 1− vt)2)/k(4t+1) with v≥ 0 as the

convection velocity to the x− direction and k> 0 as the
difusion coefcient [57, 58]. Now, the proposed scheme (15)

is applied to approximate φ(x, t), for diferent cases of
convection dominance and difusion dominance. Te initial
and boundary values are calculated from an exact solution by
taking t � 0, x � 0, and x � 1,

Te above Figures 5–7 represent the approximation for
α � 1, α � 0.5, and α � 0, respectively. In this approximation
the value of difusion coefcient (k) and convective velocity
(v) is taken as 0.03 and 0.02, respectively. Te magnitude of
maximum error for α � 1, 0.5 and α � 0 is
5.9113 × 10− 4, 0.0020 and 0.0042, respectively. Figures 8–10
show the approximation at diferent time levels (t) for
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diferent values of difusion and convection coefcients.
Results show that, in each case, the numerical approximation
is stable and consistent.

Experiment 2. Consider a homogeneous one-dimensional
convection–difusion problem over a computational domain
0≤ x≤ 1, 0≤ t≤ 1; its exact solution is given as follows:

ϕ(x, t) �
�
2

√
0/

�����
t + 20

√
e(− (x− 0.5− vt)2)/4k(t+20) with v≥ 0 as

the convection velocity to the x− direction and k> 0 as the
difusion coefcient.

Figure 11 represents the infuence of blending factor
over the numerical approximation. Taking a � 1, 0.5 and
a � 0 a difusion dominant problems is approximated
taking k � 2 fxed where as the convective velocity is taken
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Figure 5: Approximation of convection–difusion problem by numerical scheme (15) taking k � 0.03 and v � 0.002 gives
max − error � 5.9113 × 10− 4.
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Figure 6: Approximation of convection–difusion problem by numerical scheme (15) taking k � 0.03 and v � 0.002 gives
max − error � 0.0020.
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Figure 7: Approximation of convection–difusion problem by numerical scheme (15) taking k � 0.03 and v � 0.002 gives
max − error � 0.0042.
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as v � 0.1, 0.01 and v � 0.001 from left to right fgure,
respectively. ∆x and ∆t is taken as 1/15 and 1/1000, re-
spectively. Te results shown in Figure 11 represent that,
in each difusion dominant cases for high values of
blending factor (a), the results are stable whereas for small
vales of blending factor (a), it gives solution with high
oscillations.

Figure 12 represents the numerical solution for diferent
values of Peclect number (pe). Here, taking difusion

coefcient k � 0.02 and convective velocity v � 1 results for
convection-dominant case are presented in Figure 12(a).
Figure 12(b) represents the results for k � 0.01 and v � 0.8.
Figure 12(c) at the right side represents the approximation
for k � 0.003 and v � 0.6. In Figure 12, numerical results
indicate that the convection-dominant problem are highly
unstable for low value of factor a. In every fgure we can see
that, as we decrease the values of factor a, the the amplitude
of oscillation goes down.
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Figure 9: Approximation of convection–difusion problem by numerical scheme (15) taking k � 0.1, v � 0.6, and Pe � 0.0375.
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Figure 10: Approximation of convection–difusion problem by numerical scheme (15) taking k � 0.1, v � 1, and Pe � 0.0625.
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Figure 8: Approximation of convection–difusion problem by numerical scheme (15) taking k � 0.03 and v � 0.002.
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Figure 12: Approximation of convection–difusion problem by numerical scheme (15) taking k � 2, v � 0.1, 0.01, and v � 0.001.
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Figure 11: Approximation of convection–difusion problem by numerical scheme (15) taking k � 2, v � 0.1, 0.01, and v � 0.001.
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Figure 13: Approximation of convection–difusion problem by numerical scheme (15) taking k � 0.01, v � 1, and
a � 1max − error � 0.0031.
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Figure 14: Approximation of convection–difusion problem by numerical scheme (15) taking k � 0.01, v � 1, and
a � 0.5max − error � 0.0042.
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Figure 16: Approximation of convection–difusion problem by numerical scheme (15) taking k � 0.9, v � 0.08, and ∆x � 0.02.
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Figure 17: Approximation of convection–difusion problem by numerical scheme (15) taking k � 0.1, v � 0.01, and a � 1 gives
max − error � 5.2215 × 10− 4.
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Figure 18: Approximation of convection–difusion problem by numerical scheme (15) taking k � 0.1, v � 0.01, and a � 0.5 gives
max − error � 5.3943 × 10− 4.
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Figure 15: Approximation of convection–difusion problem by numerical scheme (15) taking k � 0.01, v � 1, and
a � 0 givesmax − error � 0.0047.
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Figures 13–15 show the simulation of the case k � 0.01
and convective velocity (v) � 1. Te numerical results are
consistent with the analytical solution for each value of
blending factor (a). In Figure 16, numerical results for
difusion coefcient K � 0.9 and convective velocity v � 0.08
are presented.

Now, Figures 17–19 represent the simulation of the
problem for difusion dominant problem. Taking the dif-
fusion coefcient (k) � 1 and convective velocity (v) � 0.1
the below results are obtained. Figures 17–19 show results
for blending factor a � 1, a � 0.5, and a � 0. Figure 20 shows
results for k � 0.01 and v � 0.03.

4. Conclusion

In this article, a numerical algorithm based on the fnite
volume method is proposed. A blending factor (a) is in-
troduced to merge the central diferencing and upwind
approach, and a new numerical scheme is constructed. Our
proposed new algorithm is applied to simulate the con-
vection–difusion transport problem for diferent values of
difusion coefcient (k), convective velocity (v), and
blending factor (a). Te existing central diferencing ap-
proach gives poor results for convection-dominant prob-
lems. Terefore, we have combined the central diferencing
approach and up-winding approach to simulate convection-
dominant and difusion-dominant problems. Numerical
results obtained by the proposed algorithm are consistent
with the analytical solution.

Data Availability

Te data used to support the fndings of this study are
available from the corresponding author upon request.

Conflicts of Interest

Te authors declare that they have no conficts of interest.

References

[1] S. Karaa, “A high-order compact ADI method for solving
three-dimensional unsteady convection-difusion problems,”
Numerical Methods for Partial Diferential Equations, vol. 22,
no. 4, pp. 983–993, 2006.

[2] W. J. Golz and J. Dorroh, “Te convection-difusion equation
for a fnite domain with time varying boundaries,” Applied
Mathematics Letters, vol. 14, no. 8, pp. 983–988, 2001.

[3] D. You, “A high-order Padé ADI method for unsteady
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