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In this study, we have utilized two study variables and one auxiliary variable. Te auxiliary variable is used as the stratifcation
variable, and we selected the sample using the stratifcation variable with a mixture of ratio and product estimators. Under super
population set-up, minimal equations have been obtained through minimization of the aggregated variance with the help of the
variables under study. Te objective function is minimized with respect to the constraints under consideration. Te dynamic
programming approach has been used tominimize the variance and obtain the optimum strata boundaries. Empirical studies have
also been made on the proposed rule utilizing diferent distributions. A simulation study has been done which shows the gain in
precision using the proposed method.

1. Introduction

In stratifed random sampling, carefully choosing the op-
timum strata boundaries would lead to a higher degree of
relative precision. Hansen and Hurwitz [1] pioneered the
concept of strata boundaries as an extension to Dalenius’ [2]
work for univariate cases. Sadasivan and Aggarwal [3]
studied the variables under consideration as stratifcation
variables under Neyman allocation. For several character-
istics under consideration for estimation, it is not possible to
utilize direct optimum allocation. Ghosh [4] considered the
proportional method of allocation using two stratifcation
variables. Several methods have been proposed in diferent
situations such as Singh [5], Dalenius and Gurney [6],
Danish et al. [7], Danish and Rizvi [8], Danish and Rizvi [9],
and Gupt and Ahamed [10].

In recent years, there has been an incredible interest in
researchers in the area of stratifcation points. Rizvi et al. [11]
used the compromised method and Verma’s [12] ratio and
regression method for obtaining approximately optimum
strata boundaries (AOSB). Danish and Rizvi [8] proposed
a method for obtaining stratifcation points using two highly
related variables. Two stratifcation variables have been used
by Danish et al. [13], Danish and Rizvi [9], and Danish and
Rizvi [14]. Abo-El Hassan et al. [15] proposed goal pro-
gramming for obtaining the stratifcation points. Tere has
been a dramatic increase in studies regarding obtaining
strata boundaries, with some of them being the most recent
work of Brito et al. [16], Reddy and Khan [17], and Danish
et al. [18]. Alshqaq et al. [19] discussed the linear approx-
imation of the multivariate stratifed sampling problem with
examples. Hamid et al. [20] suggested that the mathematical
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goal programming model can determine the optimum strata
boundaries by bivariate variables in multiobjective problems
with minimum variance.

Brito et al. [21] proposed a hybrid approach that works to
identify the cutof points of the strata through an optimi-
zation method and then, an exact method proposed, per-
form the optimal allocation of the sample to the strata. More
specifcally, Fadal et al. [22] proposed a heuristic algorithm
based on the Biased Random Key Genetic Algorithm
(BRKGA) meta-heuristic for the univariate stratifcation
problem for objective (ii). deMoura Brito et al. [23]proposed
an exact algorithm based on the concepts of graph theory
and the minimization of the expression of variance and
application of proportional allocation. Lisic et al. [24], under
the hypothesis that the stratifcation variable has a Weibull
distribution, solved the stratifcation problem using the
dynamic programming technique and Neyman allocation.
Furthermore, Rizvi and Danish [25] utilized a product es-
timator for obtaining the stratifcation points using the
classical approach.

In practical situations with two study variables, it may
happen that one study variable is highly positively correlated
with the stratifcation variable and the other variables are
negatively correlated with the stratifcation variable. Let us
assume that the study variable Y has a high and positive
correlation with the auxiliary variable X and that the cor-
relation between another study variable Z and the stratif-
cation variable X is negative.

In the present investigation, the issue of stratifcation
points for two study variables is investigated by simple
random sampling by selecting a sample for estimating the
population means using an auxiliary variable (X) with
a mixture of ratio and product estimators implementing the
technique of dynamic programming. Under the super
population setup, minimal equations have been obtained
through minimization of the aggregated variance with the
help of the variables under study. Furthermore, past in-
formation on the functional relationship of Y and Z on X

and the conditional variance functions V(y|x) and V(z|x)

are also assumed. Te problem is solved as a multistage
decision criterion. Te auxiliary variable is used as a strati-
fcation variable for selecting the sample used as the strat-
ifcation variable with a mixture of ratio and product
estimators. We have utilized dynamic programming for
obtaining the stratifcation points. A simulation study is
performed to obtain the relative precision to compare the
existing proposed methods.

We present the variance and covariance for the mixture
of ratio and product estimators under the superpopulation
minimal equations and dynamic programming as a solution
procedure, obtaining the optimum sample size, empirical
study, simulation study, and conclusions in this paper.

2. Variance and Covariance
Expressions under Super-PopulationSet-Up

Let us make L strata from the given population of size N and
assume that in each stratum, the regression lines of the two

interested variables on the highly related variable are linear
and pass through origin.

Let us assume the model as

Yj � Cj(X) + ej, (j � 1, 2), (1)

where Cj(X) is a real function of X, and ej is disturbance so
that E(ej/X) � 0, E(ejej

′/X, X′) � 0, for x≠ x′, V(ej/X) �

ηj(xi)> 0, j � 1, 2, x ∈ (a, b), (b − a)<∞. E(ejcj) � 0 but
E(c1c2)≠ 0. If fs(x, y1, y2) denoted joint density function of
(X, Y1, Y2) and f(x) marginal of X in the superpopulation
model, then we have

Wh � 􏽚
xh

xh− 1

f(x)dx,

μhyj
� μhcj

�
1

Wh

􏽚
xh

xh− 1

Cj(x)f(x)dx,

σ2hcj
�

1
Wh

􏽚
xh

xh− 1

C
2
j(x)f(x)dx − μhcj

􏼒 􏼓
2
,

σ2hyj
� σ2hcj

+ μhηj
,

(2)

where (xh− 1, xh) stratifcation points, μhηj
is the average

value, and ηj(xi) is the conditional variance of the hth

subpopulation.
Let us assume that the population of “N” units are split

into “L” strata. Te separate ratio estimates for the pop-
ulation mean in stratifed random sampling are given by

Yst.R1
� 􏽘

L

h�1
WhYhR1

, (3)

where Wh � Nh/N, hth stratum weight, Yh is the mean of Y

YhR1
�

Yh

xh

􏼠 􏼡,

Xh � R1hXh,

(4)

xh is the sample mean of X, Xh is the population mean of the
auxiliary variable X, Yst.R1

denotes the separate ratio esti-
mates for the population mean in stratifed random
sampling.

Now, we assume that in each stratum, the regression
lines of the stratifcation variable on the auxiliary variable are
linear and pass through the origin. Furthermore, we assume
from characteristics Z, R21 � R22 � R23 � . . . � R2L so that
we can use a combined product estimator. Te combined
estimators in the case of stratifed sampling are given by

Zst.P �
􏽐 WhZh( 􏼁 􏽐 WhXh( 􏼁

X
, (5)

where Wh � Nh/N, the strata weight, xh is the sample mean of
X, X is the population mean of X, Zh is the sample mean of Z.

If the fnite population correction (FPC) is neglected, the
approximate variances of these estimators, under pro-
portional allocation, are given by
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V Yst.R1( 􏼁P �
1
n

􏽘

L

h�1
Wh σ2hy + R

2
1hσ

2
hx − 2R1hσhxy􏼐 􏼑,

VZst.P( 􏼁P �
1
n

􏽘

L

h�1
Wh σ2hz + R

2
2σ

2
hx − 2R2σhxz􏼐 􏼑.

(6)

For the covariance expression, we have the
following lemma.

Lemma 1. Te covariance expression between the estimators
Yst.R1

and Zst.P as defned by equations (3) and (5), re-
spectively, up to the frst order of approximation, is given by

Cov Yst.R1
, Zst.P􏼐 􏼑 � 􏽘

L

h�1

W
2
h

nh

σhyz + R2σhyz − R1hσhxz − R1hR2 σhxz􏼐 􏼑.

(7)

Proof. Using partially the proofs of Lemma 5.1 and Lemma
5.3 from Rizvi [26], we have

Cov Yst.R1
, Zst.P􏼐 􏼑 �

1
X

Cov 􏽘 Wh ϵ1hXh −
ξYh

Xh

􏼠 􏼡, X 􏽘 Whϵ2h + Z 􏽘 Whξh􏼨 􏼩􏼢 􏼣. (8)

Which by simplifcation results in

Cov Yst.R1
, Zst.P􏼐 􏼑 �

1
X

Cov 􏽘 W
2
h XCov ϵ1h, ϵ2h( 􏼁, ZCov ϵ1h, ξh( 􏼁XR1hCov ξh, ϵ2h( 􏼁 − ZR1hCov ξh, ξh( 􏼁􏽨 􏽩􏽮 􏽯􏽨 􏽩. (9)

Finally, we have

Cov Yst.R1
, Zst.P􏼐 􏼑 � 􏽘

L

h�1

W
2
h

nh

σhyz + R2σhxy − R1hσhxz − R1hR2σ
2
hx􏼐 􏼑.

(10)

Tereby, proving the lemma.
Under the proportional method of allocating the sample

size to diferent strata, the formula for covariance as given by
equation (7) reduces to

Cov Yst.R1
, Zst.P􏼐 􏼑 �

1
n

􏽘

L

h�1
Wh σhyz + R2σhxy − R1hσhxz − R1hR2σ

2
hx􏼐 􏼑.

(11)

□

3. Minimal Equations

Let xh􏼈 􏼉 represents stratifcation points in (a, b) of the
stratifcation variable; corresponding to those strata

boundaries, the generalized variance G6 as given by
equation.

G6 �
σ2y σyz

σzy σ2z

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

� σ2yσ
2
z − σyz􏼐 􏼑

2
,

(12)

where σ2y, σ2z and σyz denote V(Yst.R1
)P, V(Zst.P)P and

Cov(Yst.R1
, Zst.P)P, respectively.

Diferentiating G6 partially with respect to xh􏼈 􏼉 and
equating it derivative to zero, we get

zG6

zxh

� σ2y
zσ2z
zxh

+ σ2z
zσ2y
zxh

− 2σyz

zσyz

zxh

� 0, h � 1, 2, 3 . . . , L − 1.

(13)

Inserting the values of σ2y, σ
2
z and σyz from equations (6)

and (11) in equation (13), we have

σ2y
z

zxh

􏽘

L

h�1
Wh σ2hz + R

2
2σ

2
hx − 2R2σhxz􏼐 􏼑⎡⎣ ⎤⎦ + σ2z

z

zxh

􏽘

L

h�1
Wh σ2hy + R

2
1hσ

2
hx − 2R1hσhxy􏼐 􏼑⎡⎣ ⎤⎦

− 2σyz

z

zxh

􏽘

L

h�1
Wh σhyz + R2σhxy − R1hσhxz − R1hR2σ

2
hx􏼐 􏼑⎡⎣ ⎤⎦ � 0. (14)
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Now let us assume that the functional relationship on Y

on X and Z on X is linear in each stratum and that the
regression lines pass through the origin. Ten, the ap-
proximate regression model can be given as

Y1 � R1hX + e1i, (15)

Z1 � R2X + e2i, (16)

where e1i and e2i represent the error terms in the study
variables Y and Z, respectively.

Now, the variance expressions for proportional alloca-
tion under these models [27] can be expressed as

σ2y � V Yst.R1
􏼐 􏼑

P
�
μη1
n

, (17)

σ2z � V Yst.P( 􏼁P �
4R

2
2

n
􏽘

L

h�1
Whσ

2
hx +

μη2
n

, (18)

where σ2y and σ
2
z denotes the general variance of the study

variables Y and Z, respectively.
Te covariance term can be obtained as

σyz � Cov Yst.R1
, Zst.P􏼐 􏼑 � 􏽘

L

h�1
Wh R1hR2σ

2
hx + R1hR2σ

2
hx − R1hR2σ

2
hx − R1hR2σ

2
hx􏼐 􏼑 � 0. (19)

If f(x) is known and is integrable, then,Wh, σ2hx, and μhx

can be expressed in terms of (xh− 1, xh, ) as follows:

Wh � 􏽚
xh

xh− 1

f(x)dx, (20a)

σ2hx � 􏽚
xh

xh− 1

x
2
f(x)dx − μhx( 􏼁

2
, (20b)

μhx � 􏽚
xh

xh− 1

xf(x)dx. (20c)

Let f(xi) be the estimated frequency distribution of the
variable xi(i � 1, 2, 3, . . . , p) in the range of (r, s) then we
need to fnd the intermediates points of X to cut up the range

(r, s) at (L − 1) points r � x0 ≤ x1 ≤x2 ≤ . . . ≤ xL � s

such that the total variance given in equations (17)–(19) is
minimum.

V Yst.R1
􏼐 􏼑

P
�
μη1
n

+
4R

2
2

n
􏽘

L

h�1
Whσ

2
hx +

μη2
n

. (21)

Tis can be written as

V Yst.R1
􏼐 􏼑

P
�
4R

2
2

n
􏽘

L

h�1
Whσ

2
hx +

μη1
n

+
μη2
n

. (22)

For a constant sample size n, reducing the previous
variance is equivalent to reducing the variance

V Yst.R1
􏼐 􏼑

P
� R

2
2 􏽘

L

h�1
Whσ

2
hx + μη1 + μη2. (23)

Tus, the optimization function in equation (23) can be
written as a function of the stratifcation points (xh, xh− 1)

only as

ch xh, xh− 1( 􏼁 � R
2
2 􏽘

L

h�1
Whσ

2
hx + μη1 + μη2. (24)

Tus, the problem of obtaining the stratifcation points
can be expressed as

Minimize 􏽐
L
h�1c(xh, xh− 1)

Subject to r � x0 ≤x1 ≤ x2 ≤ . . . ≤xL � s. (25)

Te length of X(r, s) can be written as xL − x0. In the
same fashion, uh � xh − xh− 1, (r, s)h � 1, 2, . . . , L where
uh ≥ 0 indicates the length of hth stratum. Tus, we can write

􏽘

L

h�1
uh � 􏽘

L

h�1
xh − xh− 1( 􏼁 � s − r � xL − x0. (26)

Hence, the last stratifcation point can be expressed as

xh � x0 + 􏽘

L

i�1
ui � xh− 1 + uh. (27)

Taking equation (26) as a subject to constraint, the
optimization problem can be expressed as

Minimize 􏽐
L
h�1c(qh, xh− 1)

Subject to constraints

􏽘

L

h�1
uh � k, (28)

uh ≥ 0, h � 1, 2, 3, . . . , L. (29)

Obviously, if x0 is given, then the initial term c1(u1, x0) ,
the objective function of Mathematical Programming
Problem (MPP), given in equation (28) is a function of u

only. Similarly, if q1 is given, the second term c2(u2, x1) will
be the function of u2 only and in the same way, the pro-
ceeding terms will be expressed as a function of the
succeeding terms.

Keeping in view the particular connection between
diferent terms, the optimization problem can be
expressed as

Minimize 􏽐
L
h�1 ch(uh)

Subject to constraint
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􏽘

L

h�1
uh � k,

uh ≥ 0, h � 1, 2, 3, . . . , L.

(30)

In practical situations, usually, the variable of interest is
not known at the initial stage of designing the experiment,
thus the highly associated variable is being used for the
estimation of stratifcation points. In the proposed tech-
nique, we carry out the optimization technique for the
equation (30) on the defned range “k” which is derived from
its highly associated variables. It is to be noted here that if the
objective function is comprised of any parameters, it should
be either fxed or chosen from literature in advance.

4. Dynamic Programming as
Solution Procedure

Te problem given in equation (28) is a type of problem that
can be solved at diferent stages having a main function
along with constraints as separable functions of uh, which
enhances us to utilize the technique of dynamic

programming (DP) [28]. Dynamic programming is prom-
inently used in the case of recursion but a plain one and has
replicated calls for the same inputs.Te approach is to utilize
one subproblem’s optimal solution as an initial feasible
solution in other sub problems to get the optimal solution.

Now, we take a fraction of the problem as
Minimize 􏽐

L
h�1ch(uh)

Subject to constraint

􏽘

L

h�1
uh � kp,

uh ≥ 0, h � 1, 2, 3, . . . , p,

(31)

where kp < k

kp � u1 + u2 + u3 + . . . + up,

kp− 1 � u1 + u2 + u3 + . . . + up− 1 � kp − up.
(32)

Let ζp(up) indicates the lowest value of the MPP
equation (30), which means

ζp up􏼐 􏼑 � min 􏽘
L

h�1
ch uh( 􏼁 􏽘

L

h�1
uh � up, uh ≥ 0, h � 1, 2, 3, . . . , p&1≤p≤L⎡⎣ ⎤⎦. (33)

With this procedure, equation (28) is equal to fnding
ζL(u) recursively by estimating ζm(um) for m � 1, 2, . . . , L

and 0≤ up ≤ u, we have

ζp up􏼐 􏼑 � min cp uh( 􏼁 + 􏽘

p− 1

h�1
ch uh( 􏼁 􏽘

m− 1

h�1
uh� kp − up, uh ≥ 0, h � 1, 2, 3, . . . , p&0≤ up ≤ cp

⎡⎣ ⎤⎦. (34)

For the particular value of up, we have

ζp up􏼐 􏼑 � cp uh( 􏼁min 􏽘

p− 1

h�1
ch uh( 􏼁 􏽘

m− 1

h�1
uh � kp − up, uh ≥ 0, h � 1, 2, 3, . . . , p&0≤ up ≤ cp

⎡⎣ ⎤⎦. (35)

Tus, we can utilize Bellman’s principle of optimality
and the recursion equation of the DP for p≥ 2

ζp up􏼐 􏼑 � min
0≤up≤cp

cp uh( 􏼁 + ζp− 1 kp − up􏼐 􏼑􏽨 􏽩. (36)

If we put p � 2, which is for the frst stage

ζ1 u1( 􏼁 � c1 u1( 􏼁 � u
∗
1 � k1, (37)

where u∗1 � k1 is the total deviation or range of the frst
stratum. Tus, equations (36) and (37) can be solved in

a forward manner for diferent values of p � 1, 2, . . . , L to
determine the optimum fraction of the problem’s objective
and then estimate it in a backward manner to estimate the
optimum strata boundaries (OSB).

5. Obtaining the Optimum Sample Size

When the stratifcation points (xh − xh− 1) are determined as
per the section discussed above, the estimation of the op-
timum sample size nh, h � 1, 2, . . . , L for the hth stratum can
be easily determined.
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As per the functional relationship defned in equations
(16) and (17) for the study variables and auxiliary variable for
all strata, we use equation (23) but for the fxed constant
sample size “n.”

For hth stratum the sample size is

nh �
nWh

����������

σhj(x)
2

+ σ2he

􏽱

􏽐
L
h�1Wh

����������

σhj(x)
2

+ σ2he

􏽱 , (38)

where Wh, σhj(x)
2 andσ2he denotes the weight and variance of

the hth stratum. σhj(x)
2 denotes the variance of the functional

form of the auxiliary variable and σ2he denotes variance of the
error term, which can be derived in terms of the stratifcation
points (xh − xh− 1). Furthermore, it is to be noted that
1≤ nh ≤Nh, where Nh denotes the total size of hth stratum.

6. Empirical Study

Let us assume the log-normally distribution auxiliary var-
iable X with probability density function (pdf) as

f(x) �

1
σx

���
2π

√ e
− (logx− μ)/2σ2

, x> 0, σ > 0,

0, otherwise.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(39)

Using equations (20a)–(20c), we get

Wh �
1
2
E1,

(40)

μh � exp
σ2

2
+ μ􏼠 􏼡

E3

E1
, (41)

σ2h �
1

E1
exp 2σ2 + 2μ􏼐 􏼑E2􏽨 􏽩 E1􏼂 􏼃 − exp

σ2

2
+ μ􏼠 􏼡 E3( 􏼁􏼢 􏼣

2⎧⎨

⎩

⎫⎬

⎭,

(42)

where,

E1 � erf
log uh + xh− 1( 􏼁 − μ

σ
�
2

√􏼠 􏼡 − erf
log xh− 1( 􏼁 − μ

σ
�
2

√􏼠 􏼡,

E2 � erf
log uh + xh− 1( 􏼁 − μ − 2σ2

σ
�
2

√􏼠 􏼡 − erf
log xh− 1( 􏼁 − μ − 2σ2

σ
�
2

√􏼠 􏼡,

E3 � erf
log uh + xh− 1( 􏼁 − μ − σ2

σ
�
2

√􏼠 􏼡 − erf
log xh− 1( 􏼁 − μ − σ2

σ
�
2

√􏼠 􏼡,

(43)

where

erf(ω) �
2
��
π

√ 􏽚
ω

0
e

− j2dj, (44)

and its properties

erf (− ω) � − erf(ω),

erf(0) � 0,

erf(∞) � 1,

erf (− ∞) � 1.

(45)

Using equations (40)–(42) in equation (30), we get
Minimize

R
2
2 􏽘

L

h�1

1
2
E1

1
E1

exp 2σ2 + 2μ􏼐 􏼑E2􏽨 􏽩 E1􏼂 􏼃 − exp
σ2

2
+ μ􏼠 􏼡 E3( 􏼁􏼢 􏼣

2⎧⎨

⎩

⎫⎬

⎭ + μη1 + μη2. (46)

Subject to constraint

􏽘

L

h�1
uh � k, (47)

and uh ≥ 0, h � 1, 2, 3, . . . , L

Let us assume now that the standard log-normal dis-
tribution is defned in the interval xϵ[0.000, 30.000] that is
x0 � 0.000 and xL � 30.000, μ � 0, σ � 1. Tis implies xL −

x0 � 30.00 − 0.000 � 30 and have fxed sample size n � 200.
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Executing the MPP given in equation (47), we get the
stratifcation points along with variance and sample size as
presented in Table 1.

Now let us assume the variable X follows gamma dis-
tribution with probability density function as

f(z) � f(x, s, θ) �

1
θsx

s− 1
e

− x/θ
, x≥ 0, s, θ> 0,

0, otherwise,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(48)

where “s” is the slope and “θ” is the scale parameter and Γs is
a gamma distribution function defned as

Γs � 􏽚
∞

0
e

− x
x

s− 1dz, s> 0. (49)

Tis function is also defned by the upper incomplete
gamma function Γ(s, x) and a lower incomplete gamma
function c(s, x), respectively, as

�����
(s, x)

􏽰
� 􏽚
∞

x
u

s− 1
e

− udu, (50)

and c(s, x) � 􏽒
x

0 us− 1e− udu.

Tere is also an incomplete gamma function whose
values are from 0 to 1 as

Q(s, x) �
1
Γs

􏽚
∞

x
u

s− 1
e

− udu, s, x> 0,

P(s, x) �
1
Γs

􏽚
x

0
u

s− 1
e

− udu, s, x> 0≠ 0,

(51)

where Q(s, x) and P(s, x) represent upper and lower reg-
ularized incomplete gamma function, respectively.

Using these values in equations (20a)–(20c), we get

Wh � Q s,
xh− 1

θ
􏼒 􏼓 − Q s,

xh− 1 + uh

θ
􏼒 􏼓, (52)

σ2hx �
θ2s(s + 1) Q s + 2, xh− 1/θ( 􏼁 − Q s + 2, xh/θ( 􏼁􏼂 􏼃

Q s, xh− 1/θ( 􏼁 − Q s, xh/θ( 􏼁􏼂 􏼃
−
θ2s2 Q s + 1, xh− 1/θ( 􏼁 − Q s + 1, xh− 1 + uh/θ( 􏼁􏼂 􏼃

2

Q s, xh− 1/θ( 􏼁 − Q s, xh− 1 + uh/θ( 􏼁􏼂 􏼃
2 . (53)

Using equations (52) and (53) in equation (30), we have Minimize

R
2
2 􏽘

L

h�1
Q s,

xh− 1

θ
􏼒 􏼓 − Q s,

xh− 1 + uh

θ
􏼒 􏼓􏼔 􏼕

θ2s(s + 1) Q s + 2, xh− 1/θ( 􏼁 − Q s + 2xh/θ,( 􏼁􏼂 􏼃

Q s, xh− 1/θ( 􏼁 − Q s, xh/θ( 􏼁􏼂 􏼃
−
θ2s2 Q s + 1, xh− 1/θ( 􏼁 − Q s + 1, xh− 1 + uh/θ( 􏼁􏼂 􏼃

2

Q s, xh− 1/θ( 􏼁 − Q s, xh− 1 + uh/θ( 􏼁􏼂 􏼃
2

⎡⎣ ⎤⎦ + μη1 + μη2. (54)

Subject to constraint

􏽘

L

h�1
uh � k, (55)

and uh ≥ 0, h � 1, 2, 3, . . . , L

Te maximum likelihood estimate of the parameters for
the gamma distribution was found to be s � 3.836157 and
θ � 2.937784

By assuming the auxiliary variable xϵ[0.0005, 26.000]

with mean x0 � 0.0005, xL � 26.000 and fxed sample size
n � 300 and executing the MPP given in equation (47), we
get the stratifcation points presented in Table 2.

7. A Simulation Study

We performed a simulation study to verify the validity of the
proposed method by checking its relative precision using the
DP technique comparative with the below-mentioned
methods utilizing R statistical software.

(i) Dalenius et al. [29] cum
��
f

􏽰
method

(ii) Gunning and Horgan [30] geometric method
(iii) Lavallée and Hidiroglou [31] approach using

Kozak’s [32] method
(iv) Khan et al. [33] mathematical programming approach

Table 1: Optimum strata boundaries, sample size, and total var-
iance for log-normally distributed auxiliary variables.

L (no. of strata) OSB nh (sample size) Total variance

2 4.2643 102 1.635598

3 6.1785
9.3972

70
1.057664

66

4
2.7314
5.3049
11.7431

52

0.851351
47
50

5

1.9742
3.1857
7.2533
13.5943

40

0.6501
42
40
41
37

6

1.6476
3.9182
7.5193
11.4136
15.9548

34

0.4925

36
32
31
35
32
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(v) Proposed method.

We utilized a uniformly distributed auxiliary variable
with a data set of 8000, a � 0.005, and b � 1.90 in R software
for our simulation. Our minimum and maximum values
came out to be 0.0046 and 1.8842, respectively, with a total
deviation k � 1.877.

Tus, we have outlined the stratifcation points using
our proposed method as discussed above with the
comparative methods. Te variance obtained by all these
methods along with the proposed method is presented in
Table 3. Our proposed method gives a better estimate
than the existing methods.

8. Conclusion

In the current investigation, the case of a mixture of ratio and
product methods of estimation has been dealt with using
mathematical equations obtained after minimizing the vari-
ance, which evolved in the estimation. We proposed a method
for the estimation of strata boundaries using dynamic pro-
gramming along with the sample size for each stratum.
Trough empirical study, it is seen that the gain in efciency is
remarkably high for diferent distribution functions for the
auxiliary variable. Furthermore, Tables 1 to 3 suggest the

superiority of our developedmethod over the existingmethods.
As a result, our proposed methodology will be useful for
obtaining OSB for the variables or characteristics under con-
sideration while using the frequency distribution of the aux-
iliary variables. When the data are coming from a complex
process, neutrosophic statistics is prioritized over classical
statistics. Several studies have been done in this regard such as
Reddy et al. [34], Mart́ınez et al. [35], Cruzaty et al. [36], and
Danish [37]. Tus, the utilization of neutrosophic statistics can
be considered in future studies.
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��
f

􏽰
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