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Tis article studies a new kind of Ψ-Hilfer fractional system driven by m-dimensional Brownian motion. By utilizing the
generalized Laplace transform and its inverse, the contraction mapping principle, and the properties of a semigroup, we establish
the uniqueness of the solution. In addition, fnite-time stability is investigated by means of the properties of norm and inequalities
scaling technique. As verifcation, an example is given to show the deduced conclusions.

1. Introduction

Actually, the fractional derivative can be expressed as a
diferential-integral convolution operator, which is nonlocal.
Te integral term defned by it refects the historical de-
pendence of system development well. Te fractional time
derivative operator has long-range correlation and memory.
Terefore, fractional calculus has been widely used in the
research of viscoelastic material, abnormal difusion, fuid
mechanics, biomedicine, chaos and turbulence, control
theory, and many other felds. One can refer to the
monographs [1–4] for more information.

Te existence and uniqueness theorems for solutions
are a primary subject of fractional system. Various
methods were used to obtain the existence and uniqueness
results in [5, 6] and the following literatures. As for the
non-Lipschitz condition, Abouagwa et al. [7, 8] estab-
lished the existence theorem for solutions by applying the
Carathéodory approximation. Under global Lipshitz
conditions, with the aid of Picard iteration method and
contradiction method, Moghaddam et al. [9] and Uma-
maheswari et al. [10] deduced the existence and
uniqueness results. In [11–13], the monotone iterative
method was used to obtain the existence theorem of mild
solutions. In addition, various fxed point theorems were

proposed to show the existence and uniqueness results for
solutions in [14–16]. Jleli et al. [17] researched the
uniqueness of solutions for a kind of coupled system by
applying Perov’s fxed point theorem together with a type
of Lyapunov inequality. In [18], Baghani derived the
uniqueness result for the Langevin equation with two
orders by establishing a new type of norm in a Banach
space and combining the contraction principle. In [19],
the uniqueness theorem was deduced by establishing a
new type of α-ψ-contractive mapping. In [20, 21], Kras-
noselskii-type fxed point theorem and the extended
Krasnoselskii’s fxed point theorem were used to deduce
the existence and uniqueness theorem of the considered
system.

Te fnite-time stability analysis of a system has the
following two situations. Te frst case is to research the
transient performance of the system over a fxed fnite time
domain, that is, in a fnite time domain the state of the
system remains within a given boundary, which is inde-
pendent of Lyapunov stability. Te second case is to study
steady-state performance over an infnite time domain; that
is, the system converges to equilibrium over fnite time
within the category of Lyapunov stability. Te second case is
known as fnite time convergent stable. In the present article,
we study the frst kind. Finite-time stability analysis plays an

Hindawi
Mathematical Problems in Engineering
Volume 2023, Article ID 3642394, 13 pages
https://doi.org/10.1155/2023/3642394

mailto:luodf0916@sohu.com
https://orcid.org/0000-0002-2381-8388
https://orcid.org/0000-0002-7346-4733
https://orcid.org/0000-0002-8669-372X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/3642394


indispensable role in many practical problems, for example,
the launch of a rocket, automatic active suspension system,
trafc fow node control, and satellite sliding mode control
Amato et al. [22, 23].

Since the groundbreaking work of Dorato [24], subse-
quently, the basic defnition of fnite-time stability in sto-
chastic system was frst proposed by Kushner [25]. Te
Grönwall approach was used to establish the fnite-time
stability of stochastic fractional system in [26–29]. Based on
the properties of nabla diference for Riemann–Liouville-
type and the generalized Grönwall inequality, Lu et al. [26]
researched fnite-time stability in the mean for the fractional
diference equations with the nabla operator, in which
contains uncertain term. With the aid of the Laplace
transform and its inverse, Luo et al. [27] researched two
kinds of stochastic fractional delay systems, and the fnite-
time stability results were established by applying the
generalized Henry–Grönwall delay inequality. Under some
assumptions, Mathiyalagan and Balachandran [28]
researched the fnite-time stability of fractional stochastic
singular delay system driven by white noise by using the
Laplace transform and its inverse and based on the Grönwall
method. Mchiri et al. [29] studied the fnite-time stability of
stochastic fractional linear delay system, in which the
analysis method was the generalized Grönwall inequality.
Te analysis of fnite-time stability for various systems had
been investigated by applying diferent methods in [30] and
the follows. By applying the Lyapunov functions approach,
Luo et al. [31] derived fnite-time stability results. In [32–34],
based on a delayed Mittag–Lefer-type matrix, Li et al.
deduced fnite-time stability results of diferent systems.
Moreover, the delayed exponential matrix method was also a
useful tool to study fnite-time stability in [35–37]. In [38],
with the aid of variation of constants method and fractional
order cosine and sine delayed matrices, Liang et al. obtained
the representation of the solution, and fnite-time stability
results were subsequently deduced by norm estimates and
Caputo derivative properties. Zhang and Wang [16] studied
a kind of Hadamard-type fractional nonlinear system, in
which fnite-time stability result was derived by means of
Hadamard-type impulsive Grönwall inequality.

At the same time, the Hilfer-type fractional system was
also favored by many scholars. Harikrishnan et al.
researched a class of Ψ-Hilfer fractional system under
boundary conditions in [39] and coupled diferential
equations in the sense of Ψ-Hilfer fractional derivative in
[40]. With the aid of Grönwall approach, Luo and Luo [41]
researched the fnite-time stability of Ψ-Hilfer fractional
impulsive delay system. In addition, Zhou et al. [42] and
Luo et al. [43] established the existence of solutions and
stability results for Ψ-Hilfer fractional system. Under the
non-Lipschitz assumption, using the Laplace transform
and its inverse, Luo et al. [44] considered a kind of sto-
chastic Hilfer-type fractional system. Under non-local
conditions, Gou [12] studied a kind of Hilfer fractional
system. For more knowledge about Hilfer fractional cal-
culus, one can refer to [1, 45]. Compared with the refer-
ences [41–44], in this article, we will investigate the
stochastic Ψ-Hilfer fractional system. According to all the

studies we known, there are few results on Ψ-Hilfer
fractional system driven by random process. In addition,
we are particularly interested in the difculties arising from
considering the Ψ function in the analysis of stochastic
Hilfer-type fractional system. Tese provide the main
motivations for us to fnd a new method to investigate the
stochastic Ψ-Hilfer fractional system.

Based on the discussions above, in the present article, we
will study the following stochastic Ψ-Hilfer fractional
system:

H
D

α,β;Ψ
0+ X(t) � AX(t) + σ t, X(t),

H
D

p,q;Ψ
0+ X(t) 

+g t, X(t),
H

D
p,q;Ψ
0+ X(t) 

dW(t)

dt
, t ∈ J � [0, T],

I
1−c;Ψ
0+ X(0) � 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where HD
α,β;Ψ
0+ (·) and HD

p,q;Ψ
0+ (·) are the fractional Ψ-Hilfer

derivative operators with order α − p> 1/2, 0< α, p< 1 and
type 0≤ β, q≤ 1. I

1−c;Ψ
0+ (·) represents the fractional Ψ-Hilfer

integral operator with order 1 − c, where c � α + β − αβ.
A ∈ Rn × Rn, σ: J × Rn × Rn⟶ Rn, and
g: J × Rn × Rn⟶ Rn×m are continuously diferentiable
functions. Ω,F,P{ } is the complete probability space, and
W(t) denotes m-dimensional Brownian motion on it.

Up to now, there exist a lot of literatures using the
Laplace transform and its inverse to solve Caputo fractional
diferential equations [27] and the Hilfer fractional system
[44, 46], but few literatures have used this kind of technique
to solveΨ-Hilfer fractional system. In this article, we apply a
new type generalized Laplace transform and its inverse to
solve this kind of stochastic Ψ-Hilfer fractional system. Te
main contributions and innovations of this article are at least
as follows:

(1) Compared with [42], the proposed model in present
manuscript is more generalized, in which the ran-
dom term is considered in Ψ-Hilfer fractional sys-
tem. Tere are few literatures available for solving
this type of considered system.

(2) By applying the generalized Laplace transform and
its inverse, we make the frst attempt to construct the
form of solutions for stochastic Ψ-Hilfer fractional
system. Tis method is essentially new.

(3) In order to estimate equation ∣ HD
p,q;Ψ
0+ RX(t)−H

D
p,q;Ψ
0+ RY(t) ∣ in the process of proving the

uniqueness of the solution, we construct a Ψ-Rie-
mann–Liouville fractional integral for RX(t) at the
frst step, and then skillfully use its semigroup
properties, which greatly simplify our proof.

Te vein of this article is developed as follows: In Section
2, some basic defnitions and their properties are introduced,
which play an indispensable role in the subsequent deri-
vation. Section 3 mainly proves the existence and fnite-time
stability results for our investigated system. As verifcation,
an example is given to expound the derived conclusions in
Section 4.
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2. Essential Definitions and Lemmas

For the convenience of reading and for the smooth deri-
vation, some basic defnitions and related lemmas are
introduced.

Defnition 1 (see [45]). If Ψ(t) is a positive and mono-
tonically increasing function on (a, b], Ψ′(t) ∈ C(a, b). Te
fractional ψ-Riemann–Liouville integral can be written as

I
α;Ψ
a+ f(t) �

1
Γ(α)


t

a
(Ψ(t) − Ψ(s))

α− 1
f(s)Ψ′(s)ds. (2)

Remark 1. Fractional integral operator has the following
semigroup property, for α> 0 and β> 0

I
α;Ψ
a+ I

β;Ψ
a+ f(t) � I

α+β;Ψ
a+ f(t). (3)

Defnition 2 (see [45]). If f, Ψ ∈ Cn([a, b],R), Ψ is in-
creasing and Ψ′(t)≠ 0, for ∀t ∈ [a, b]. Te fractional Ψ
-Hilfer derivative of order α and type 0≤ β≤ 1 can be written
as

H
D

α,β;Ψ
a+ f(t) � I

β(n−α);Ψ
a+

1
Ψ′(t)

d

dt
 

n

I
(1−β)(n−α);Ψ
a+ f(t), n − 1< α< n, n ∈ N. (4)

Remark 2
(1) If f ∈ C1[a, b], 0< α< 1 and 0≤ β≤ 1, (1 − α) (1 − β) �

1 − c, we have

I
α;Ψ
a+ HD

α,β;Ψ
a+ f(t) � f(t) −

(Ψ(t) − Ψ(a))
c− 1

Γ(c)
I

(1−β)(1−α);Ψ
a+ f(a). (5)

(2) If f ∈ C1[a, b], α> 0 and 0≤ β≤ 1, then HD
α,β;Ψ
a+

I
α;Ψ
a+ f(t) � f(t).

Defnition 3 (see [47]). We assume f: [0, ∞( )⟶ R, and
Ψ(·) is a non-negative increasing function satisfying Ψ(0) �

0. Te generalized the Laplace transform of f can be written
as

LΨ f(t)  � F(s) � 
∞

0
e

−sΨ(t)Ψ′(t)f(t)dt. (6)

Defnition 4 (see [47]). We assume f and g are piecewise
continuous andΨ-exponential order functions in [0, T]. Te
Ψ-convolution with respect to f and g is defned as

f∗Ψg( (t) � 
t

0
Ψ−1

(Ψ(t) − Ψ(τ)) fg(τ)Ψ′(τ)dτ. (7)

Lemma 1 (see [47]). We assume α> 0, n � α + 1, 0≤ β≤ 1,
and a Ψ-exponential order function f(·) satisfying f(t),
D

i;Ψ
0+ I

(1−β)(n−α);Ψ
0+ f t( ) ∈ C[0,∞), where i � 0, 1, 2, . . . , n − 1,

while HD
α,β;Ψ
0+ f(t) is piecewise continuous on [0,∞). Ten,

LΨ
H

D
α,β;Ψ
0+ f(t)  � s

α
LΨ f(t)  − 

n−1

i�0
s

n(1− β)+αβ− i− 1
I

(1−β)(n−α)−i;Ψ
0+ f (0). (8)

Lemma 2 (see [47]). Let α> 0, a Ψ-exponential order
function of f which is piecewise continuous on [0, T]. Ten,

LΨ I
α;Ψ
0+ f (t)  � s

− α
LΨ f(t) . (9)

Lemma 3 (Jensen’s inequality [48]). Let n ∈ N and
a1, a2, . . . , an be real and nonnegative numbers. Ten,



n

i�1
ai

⎛⎝ ⎞⎠

p

≤ n
p− 1



n

i�1
a

p
i , forp> 1. (10)

3. Main Results

In the present section, we shall deduce the existence and
uniqueness of solutions for system (1) by applying the
contraction mapping principle. Furthermore, fnite-time
stability results are obtained by means of the properties of
norm and inequalities scaling technique. We defne the
following space:

ℵ � X | X(t) ∈ C1
J,R

n
( ,

H
D

p,q;Ψ
0+ X(t) ∈ C1

J,R
n

(  ,

(11)
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with norm

‖X‖ℵ � max E supt∈J |X(t)|
2

 ,E supt∈J ∣
H

D
p,q;Ψ
0+ X(t) ∣ 2  , (12)

where E is the mathematical expectation. We can readily
verify that (ℵ, ‖ · ‖ℵ) is a Banach space, and see [49, 50] for
more details.

Defnition 5 (see [22]). Assuming that there exist positive
constants T, δ, ε with δ < ε, then system (1) is fnite-time
stable if ‖X0‖ℵ≤ δ implies ‖X‖ℵ ≤ ε for ∀t ∈ [0, T], where
X0 � X(0).

Before starting our proof of the main conclusions, we
make the following assumptions on the coefcients of
system (1):

[(H1)] As for any Xi, Yi ∈ Rn, there exists a positive
bounded function L1(·) satisfying

σ t, X1, Y1(  − σ t, X2, Y2( 



2∨ g t, X1, Y1(  − g t, X2, Y2( 



2

≤L1(t) X1 − Y1



2

+ X2 − Y2



2

 .
(13)

[(H2)] We assume that there is a positive constant M

such that supt∈J [Ψ′(t)]2 ≤M.
[(H3)] For ∀t ∈ J, let Ξ � sups∈[0,t]|Eα,αA(Ψ(t)

−Ψ(s))α|, where Eα,α(·) denotes the two-parameters
Mittag–Lefer function, and see [44] for details.
[(H4)] As for any X, Y ∈ Rn, there exists a bounded
positive function L2(·) satisfying

∣ ∣ 2∨|g(t, X, Y)|
2 ≤ L2(t) 1 + ∣ X ∣ 2 + ∣ Y ∣ 2 . (14)

| · | is the norm of Rn, a∨b � max a, b{ }, sup
t∈J

Li(t) � Li,
i � 1, 2, t ∈ J.

Theorem 1. We assume that hypotheses (H1)–(H3) hold,
then system (1) has a unique solution in (ℵ, ‖ · ‖ℵ), if there is
a constant C, 0<C< 1, and

max
(T + 4)4MΞ2L1[Ψ(T) − Ψ(0)]

2α− 1

2α − 1
,
(T + 4)4MΞ2L1[Ψ(T) − Ψ(0)]

2(α− p)− 1

2(α − p) − 1
 ≤C. (15)

Proof. Taking the generalized Laplace transform on (1), we
get the following with the aid of Lemma 1:

LΨ X(t){ } �
LΨ σ t, X(t),

H
D

p,q;Ψ
0+ X(t)  

s
α

− A
+
LΨ g t, X(t),

H
D

p,q;Ψ
0+ X(t) dW(t)/dt 

s
α

− A
. (16)

Subsequently, using the generalized inverse Laplace
transform, we obtain the solution of system (1) is

X(t) � Eα,α A(Ψ(t))
α

( (Ψ(t))
α− 1∗Ψσ t, X(t),

H
D

p,q;Ψ
0+ X(t) 

+ Eα,α A(Ψ(t))
α

( (Ψ(t))
α− 1∗Ψg t, X(t),

H
D

p,q;Ψ
0+ X(t) 

dW(t)

dt

� 
t

0
Eα,α A(Ψ(t) − Ψ(s))

α
( (Ψ(t) − Ψ(s))

α− 1Ψ′(s)σ s, X(s),
H

D
p,q;Ψ
0+ X(s) ds

+ 
t

0
Eα,α A(Ψ(t) − Ψ(s))

α
( (Ψ(t) − Ψ(s))

α− 1Ψ′(s)g s, X(s),
H

D
p,q;Ψ
0+ X(s) dW(s).

(17)
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We defne operator R: (ℵ, ‖ · ‖ℵ)⟶ (ℵ, ‖ · ‖ℵ) as

RX(t) � 
t

0
Eα,α A(Ψ(t) − Ψ(s))

α
( (Ψ(t) − Ψ(s))

α− 1Ψ′(s)σ s, X(s),
H

D
p,q;Ψ
0+ X(s) ds

+ 
t

0
Eα,α A(Ψ(t) − Ψ(s))

α
( (Ψ(t) − Ψ(s))

α− 1Ψ′(s)g s, X(s),
H

D
p,q;Ψ
0+ X(s) dW(s).

(18)

According to the properties of fractional Ψ-Hilfer de-
rivative and fractional Ψ-Riemann–Liouville integral, it is
readily to verify that above operator R is well-defned.

Moreover, we need to deduce that the operator R is a
contraction mapping on ℵ for all X, Y ∈ ℵ. For ∀t ∈ J, we
get the following by (H3)

∣ RX(t) − RY(t) ∣ ≤ ∣ 
t

0
Eα,α A(Ψ(t) − Ψ(s))

α
( (Ψ(t) − Ψ(s))

α− 1Ψ′(s) · σ s, X(s),
H

D
p,q;Ψ
0+ X(s)  − σ s, Y(s),

H
D

p,q;Ψ
0+ Y(s)  ds ∣

+ ∣ 
t

0
Eα,α A(Ψ(t) − Ψ(s))

α
( (Ψ(t) − Ψ(s))

α− 1Ψ′(s) · g s, X(s),
H

D
p,q;Ψ
0+ X(s) 

−g s, Y(s),
H

D
p,q;Ψ
0+ Y(s) dW(s) ∣

≤ Ξ ∣ 
t

0
(Ψ(t) − Ψ(s))

α− 1Ψ′(s) · σ s, X(s),
H

D
p,q;Ψ
0+ X(s)  − σ s, Y(s),

H
D

p,q;Ψ
0+ Y(s)  ds ∣

+Ξ ∣ 
t

0
(Ψ(t) − Ψ(s))

α− 1Ψ′(s) · g s, X(s),
H

D
p,q;Ψ
0+ X(s)  − g s, Y(s),

H
D

p,q;Ψ
0+ Y(s)  dW(s) ∣ .

(19)

Ten, by means of Jensen’s inequality, Hölder inequality,
and Doob’s martingale inequality, we get for all t ∈ J

E sup
0≤u≤ t

∣ RX(u) − RY(u) ∣ 2 ≤ 2Ξ2E sup
0≤ u≤ t

∣ 
u

0
(Ψ(u) − Ψ(s))

α− 1Ψ′(s) · σ s, X(s),
H

D
p,q;Ψ
0+ X(s)  − σ s, Y(s),

H
D

p,q;Ψ
0+ Y(s)  ds ∣ 2 

+ 2Ξ2E sup
0≤ u≤ t

∣ 
u

0
(Ψ(u) − Ψ(s))

α− 1Ψ′(s)

· g s, X(s),
H

D
p,q;Ψ
0+ X(s)  − g s, Y(s),

H
D

p,q;Ψ
0+ Y(s)  dW(s) ∣ 2

≤ 2Ξ2E sup
0≤ u≤ t


u

0
Ψ′(s) 

2
(Ψ(u) − Ψ(s))

2α− 2ds

· 
u

0
∣ σ s, X(s),

H
D

p,q;Ψ
0+ X(s)  − σ s, Y(s),

H
D

p,q;Ψ
0+ Y(s)  ∣ 2ds

+ 8Ξ2E 
t

0
(Ψ(t) − Ψ(s))

2α− 2 Ψ′(s) 
2

· ∣ g s, X(s),
H

D
p,q;Ψ
0+ X(s)  − g s, Y(s),

H
D

p,q;Ψ
0+ Y(s)  ∣ 2ds 

≔ I1 + I2.

(20)
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By assumptions (H1)-(H2), we obtain

I1 ≤
2MΞ2[Ψ(t) − Ψ(0)]

2α− 1

2α − 1
· 

t

0
L1(s)E ∣ X(s) − Y(s) ∣ 2+

∣ HD
p,q;Ψ
0+ X(s)−

H
D

p,q;Ψ
0+ Y(s) ∣ 2ds

≤
2MΞ2L1[Ψ(T) − Ψ(0)]

2α− 1

2α − 1


t

0
E sup0≤s1 ≤ s ∣ X s1(  − Y s1(  ∣ 2 +

E sup0≤s1 ≤ s ∣
H

D
p,q;Ψ
0+ X s1( −

H
D

p,q;Ψ
0+ Y s1(  ∣ 2 ds

≤
2MΞ2L1[Ψ(T) − Ψ(0)]

2α− 1

2α − 1
2T‖X − Y‖ℵ.

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(21)

Similarly, one can obtain

I2 ≤ 8Ξ
2
E 

t

0
(Ψ(t) − Ψ(s))

2α− 2 Ψ′(s) 
2
L1(s)

·E ∣ X(s) − Y(s) ∣ 2 + ∣ HD
p,q;Ψ
0+ X(s)−

H
D

p,q;Ψ
0+ Y(s) ∣ 2 ds

≤ 8Ξ2L1
t

0
(Ψ(t) − Ψ(s))

2α− 2 Ψ′(s) 
2
E sup0≤s1 ≤ s ∣ X s1(  − Y s1(  ∣ 2 

+ E sup0≤s1 ≤ s ∣
H

D
p,q;Ψ
0+ X s1( −

H
D

p,q;Ψ
0+ Y s1(  ∣ 2 

≤ 8Ξ2L1
t

0
(Ψ(t) − Ψ(s))

2α− 2 Ψ′(s) 
2
2‖X − Y‖ℵds

≤
8MΞ2L1[Ψ(T) − Ψ(0)]

2α− 1

2α − 1
2‖X − Y‖ℵ.

(22)

Ten, it is easy to obtain

E sup
0≤ u≤ t

∣ RX(u) − RY(u) ∣ 2 

≤
4TMΞ2L1[Ψ(T) − Ψ(0)]

2α− 1

2α − 1
‖X − Y‖ℵ

+
16MΞ2L1[Ψ(T) − Ψ(0)]

2α− 1

2α − 1
‖X − Y‖ℵ

�
(T + 4)4MΞ2L1[Ψ(T) − Ψ(0)]

2α− 1

2α − 1
‖X − Y‖ℵ

≤C‖X − Y‖ℵ.

(23)
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On the contrary, we have

RX(t)≤ΞΓ(α)
1
Γ(α)


t

0
(Ψ(t) − Ψ(s))

α− 1Ψ′(s) ∣ σ s, X(s),
H

D
p,q;Ψ
0+ X(s)  ∣ ds 

+ ΞΓ(α)
1
Γ(α)


t

0
(Ψ(t) − Ψ(s))

α− 1Ψ′(s) ∣ g s, X(s),
H

D
p,q;Ψ
0+ X(s)  ∣ dW(s) 

� ΞΓ(α)I
α;Ψ
0+ ∣ σ t, X(t),

H
D

p,q;Ψ
0+ X(t)  ∣ + ΞΓ(α)I

α;Ψ
0+ ∣ g t, X(t),

H
D

p,q;Ψ
0+ X(t)  ∣

dW(t)

dt
.

(24)

Ten, with the aid of semigroup property introduced in
Remark 1, we can readily derive the following:

∣ HD
p,q;Ψ
0+ RX(t)−

H
D

p,q;Ψ
0+ RY(t) ∣

� ∣ HD
p,q;Ψ
0+ 

t

0
Eα,α A(Ψ(t) − Ψ(s))

α
(  (Ψ(t) − Ψ(s))

α− 1Ψ′(s)

· σ s, X(s),
H

D
p,q;Ψ
0+ X(s)  − σ s, Y(s),

H
D

p,q;Ψ
0+ Y(s)  ds

+ 
t

0
Eα,α A(Ψ(t) − Ψ(s))

α
( (Ψ(t) − Ψ(s))

α− 1Ψ′(s)

· g s, X(s),
H

D
p,q;Ψ
0+ X(s)  − g s, Y(s),

H
D

p,q;Ψ
0+ Y(s)  dW(s)) ∣

≤ ∣ HD
p,q;Ψ
0+ Ξ( )Γ(α)I

α;Ψ
0+ ∣ σ t, X(t),

H
D

p,q;Ψ
0+ X(t)  − σ t, Y(t),

H
D

p,q;Ψ
0+ Y(t)  ∣ 

+ ΞΓ(α)I
α;Ψ
0+ ∣ g t, X(t),

H
D

p,q;Ψ
0+ X(t)  − g t, Y(t),

H
D

p,q;Ψ
0+ Y(t)  ∣ 

dW(t)

dt
) ∣

≤ ∣ ΞΓ(α)I
α−p;Ψ
0+ ∣ σ t, X(t),

H
D

p,q;Ψ
0+ X(t)  − σ t, Y(t),

H
D

p,q;Ψ
0+ Y(t)  ∣  ∣

+ ∣ ΞΓ(α)I
α−p;Ψ
0+ ∣ g t, X(t),

H
D

p,q;Ψ
0+ X(t)  − g t, Y(t),

H
D

p,q;Ψ
0+ Y(t)  ∣ 

dW(t)

dt
∣

� Ξ ∣ 
t

0
(Ψ(t)Ψ(s))

(α− p)− 1Ψ′(s)

· ∣ σ s, X(s),
H

D
p,q;Ψ
0+ X(s)  − σ s, Y(s),

H
D

p,q;Ψ
0+ Y(s)  ∣ ds ∣

+ Ξ ∣ 
t

0
(Ψ(t) − Ψ(s))

(α− p)− 1Ψ′(s)

· ∣ g s, X(s),
H

D
p,q;Ψ
0+ X(s)  − g s, Y(s),

H
D

p,q;Ψ
0+ Y(s)  ∣ dW(s) ∣ .

(25)
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Similarly, by means of Jensen’s inequality, Hölder in-
equality, and Doob’s martingale inequality, we get

E sup
0≤ u≤ t

∣ HD
p,q;Ψ
0+ RX(u)−

H
D

p,q;Ψ
0+ RY(u) ∣ 2 

≤
(T + 4)4MΞ2L1[Ψ(T) − Ψ(0)]

2(α− p)− 1

2(α − p) − 1
‖X − Y‖ℵ

≤C‖X − Y‖ℵ.

(26)

Terefore, by the defnition of ‖ · ‖ℵ, for ∀X, Y ∈ ℵ

‖RX(t) − RY(t)‖ℵ ≤C X − Y‖ℵ <
����

����X − Y
����ℵ, t ∈ J, (27)

then R is a contraction mapping within (ℵ, ‖ · ‖ℵ), which
implies that R has a fxed point. Terefore, system (1) has a
unique solution. □

Theorem 2. We assume that the assumptions (H2)–(H4)

hold, and there exist positive constants δ, ε satisfying δ < ε and
‖X0‖ℵ ≤ δ. Ten, system (1) is fnite-time stable on [0, T],
provided that

K≤
ε

1 + 2ε
, (28)

where

K � max (T + 4)2MΞ2L2
[Ψ(T) − Ψ(0)]

2α− 1

2α − 1
, (T + 4)2MΞ2L2

[Ψ(T) − Ψ(0)]
2(α− p)− 1

2(α − p) − 1
 . (29)

Proof. From Teorem 1, system (1) has a unique solution
that has the following form:

X(t) � 
t

0
Eα,α A(Ψ(t) − Ψ(s))

α
( (Ψ(t) − Ψ(s))

α− 1Ψ′(s)σ s, X(s),
H

D
p,q;Ψ
0+ X(s) ds

+ 
t

0
Eα,α A(Ψ(t) − Ψ(s))

α
( (Ψ(t) − Ψ(s))

α− 1Ψ′(s)g s, X(s),
H

D
p,q;Ψ
0+ X(s) dW(s).

(30)

By applying Jensen’s inequality, Hölder inequality, and
Doob’s martingale inequality, we have for ∀t ∈ J

E sup
0≤ u≤ t

|X(u)|
2

 

≤ 2E sup0≤ u≤ t ∣ 
u

0
Eα,α A(Ψ(u) − Ψ(s))

α
( (Ψ(u) − Ψ(s))

α− 1
·Ψ′(s)σ s, X(s),

H
D

p,q;Ψ
0+ X(s) ds ∣ 2

+2E sup0≤ u≤ t ∣ 
u

0
Eα,α A(Ψ(u) − Ψ(s))

α
( (Ψ(u) − Ψ(s))

α− 1
·Ψ′(s)g s, X(s),

H
D

p,q;Ψ
0+ X(s) dW(s) ∣ 2

≤ 2E sup0≤ u≤ t 
u

0
Eα,α A(Ψ(u) − Ψ(s))

α
( 

2
(Ψ(u) − Ψ(s))

2α− 2 Ψ′(s) 
2
ds

·
u

0
∣ σ s, X(s),

H
D

p,q;Ψ
0+ X(s)  ∣ 2ds

+8E 
t

0
Eα,α A(Ψ(t) − Ψ(s))

α
(  

2
(Ψ(t) − Ψ(s))

2α− 2 Ψ′(s) 
2
· ∣ g s, X(s),

H
D

p,q;Ψ
0+ X(s)  ∣ 2ds ≔ I3 + I4. (31)
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By assumptions (H2)–(H4), we obtain

I3 ≤ 2MΞ2
[Ψ(T) − Ψ(0)]

2α− 1

2α − 1
E 

t

0
∣ σ s, X(s),

H
D

p,q;Ψ
0+ X(s)  ∣ 2ds 

≤ 2MΞ2
[Ψ(T) − Ψ(0)]

2α− 1

2α − 1


t

0
L2(s)E 1 + ∣ X(s) ∣ 2 + ∣ HD

p,q;Ψ
0+ X(s) ∣ 2 ds

≤ 2MΞ2L2
[Ψ(T) − Ψ(0)]

2α− 1

2α − 1


t

0
1 + 2‖X‖ℵ( ds

≤ 2TMΞ2L2
[Ψ(T) − Ψ(0)]

2α− 1

2α − 1
1 + 2‖X‖ℵ( .

(32)

Similarly, we obtain

I4 ≤ 8Ξ
2


t

0
(Ψ(t) − Ψ(s))

2α− 2 Ψ′(s) 
2
L2(s)E 1 + ∣ X(s) ∣ 2 + ∣ HD

p,q;Ψ
0+ X(s) ∣ 2 ds

≤ 8Ξ2L2
t

0
(Ψ(t) − Ψ(s))

2α− 2 Ψ′(s) 
2
1 + 2‖X‖ℵ( ds

≤ 8MΞ2L2
[Ψ(T) − Ψ(0)]

2α− 1

2α − 1
1 + 2‖X‖ℵ( .

(33)

Terefore, we obtain

E sup
0≤u≤ t

|X(u)|
2

 ≤ (T + 4)2MΞ2L2
[Ψ(T) − Ψ(0)]

2α− 1

2α − 1
1 + 2‖X‖ℵ( . (34)

On the other hand, we can readily derive the following:

E sup
0≤ u≤ t

∣ HD
p,q;Ψ
0+ X(u) ∣ 2 ≤ (T + 4)2MΞ2L2

[Ψ(T) − Ψ(0)]
2(α− p)− 1

2(α − p) − 1
1 + 2‖X‖ℵ( . (35)

According to the defnition of ‖ · ‖ℵ, we have

‖X‖ℵ ≤K 1 + 2‖X‖ℵ( , (36)

then by the conditions of Teorem 2, yields

‖X‖ℵ ≤ ε, (37)

which implies that system (1) is fnite-time stable on [0, T]

. □

Remark 3. Taking the initial value I
1−c;Ψ
0+ X(0) � 0 is

somewhat strict. One can let the initial value to I
1−c;Ψ
0+ X(0) �

X0 or X(0) � X0. However, when performing stability es-
timation, we will meet the following difculties.

(1) Taking the initial value to I
1−c;Ψ
0+ X(0) � X0 ≠ 0 and

applying the generalized Laplace transform and its
inverse, we derive that system has the following
solution:
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X(t) � Eα,α A(Ψ(t) − Ψ(0))
α

( [Ψ(t) − Ψ(0)]
c− 1

X0

+ 
t

0
Eα,α A(Ψ(t) − Ψ(s))

α
( (Ψ(t) − Ψ(s))

α− 1Ψ′(s)σ s, X(s),
H

D
p,q;Ψ
0+ X(s) ds

+ 
t

0
Eα,α A(Ψ(t) − Ψ(s))

α
( (Ψ(t) − Ψ(s))

α− 1Ψ′(s)g s, X(s),
H

D
p,q;Ψ
0+ X(s) dW(s).

(38)

We will fnd that the frst term is a singular function,
then the estimation of E(sup0≤u≤t ∣ X(u) ∣ 2), for all
t ∈ J, will be unbounded.

(2) Taking the initial value to X(0) � X0, similarly, the
system has the following solution:

X(t) �
X0

Γ(c)Γ(2 − c)
Eα A(Ψ(t) − Ψ(0))

α
( 

+ 
t

0
Eα,α A(Ψ(t) − Ψ(s))

α
( (Ψ(t) − Ψ(s))

α− 1Ψ′(s)σ s, X(s),
H

D
p,q;Ψ
0+ X(s) ds

+ 
t

0
Eα,α A(Ψ(t) − Ψ(s))

α
( (Ψ(t) − Ψ(s))

α− 1Ψ′(s)g s, X(s),
H

D
p,q;Ψ
0+ X(s) dW(s).

(39)

In order to estimate E(sup0≤u≤t ∣ HD
p,q;Ψ
0+ X(u) ∣ 2), we

need to take the Ψ-Hilfer fractional derivative of the frst
term, which will produce a singular function
Λ[Ψ(t) − Ψ(0)]− α, where Λ represents a constant. Tis
prevents us from considering the stability analysis.

4. Example

We consider the following stochastic Ψ-Hilfer fractional
system.

Example 1

H
D

0.8,0.5;
��
0.1

√
t

0+ X(t) � AX(t) + 0.1e
− t

X(t) + 0.1H
D

0.2,0.5;
��
0.1

√
t

0+ X(t)

+ 0.1 cos(t)X(t) + 0.1 sin (t)
H

D
0.2,0.5;

��
0.1

√
t

0+ X(t) 
dW(t)

dt
, t ∈ [0, 10],

I
0.1;

��
0.1

√
t

0+ X(0) � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(40)

We know that

σ t, X(t),
H

D
p,q;Ψ
0+ X(t)  � 0.1e

− t
X(t) + 0.1H

D
0.2,0.5;

��
0.1

√
t

0+ X(t),

g t, X(t),
H

D
p,q;Ψ
0+ X(t)  � 0.1 cos(t)X(t) + 0.1 sin (t)

H
D

0.2,0.5;
��
0.1

√
t

0+ X(t).
(41)
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We can readily calculate that L1 � 0.02, L2 � 0.02.
Taking M � 0.1, C � 0.8, δ � 0.1, ε � 1.5, and A � 0.2I,

where I denotes the identity matrix, using mathematical
software, we calculate the following results:

Ξ � sups∈[0,t] Eα,α A(Ψ(t) − Ψ(s))
α

( 


 � 1.119, t ∈ [0, 10],

· max
(T + 4)4MΞ2L1[Ψ(T) − Ψ(0)]

2α− 1

2α − 1
,
(T + 4)4MΞ2L1[Ψ(T) − Ψ(0)]

2(α− p)− 1

2(α − p) − 1
  � 0.7012<C,

K � 0.3506, K<
ε

1 + 2ε
� 0.375.

(42)

Ten, it can be easily verifed that all the conditions in
Teorem 1 and 2 are satisfed. Terefore, system (40) has a
unique solution, and the norm of solution will not exceed the
given bound ε � 1.5 over the fnite time interval [0, 10].
Ten, we can conclude that system (40) is fnite-time stable
on [0, 10].

Remark 4. When the system evolves beyond this given fnite
time domain, for example, let us consider T � 12. By simple
calculation, we can obtain Ξ � 1.167 and C � 0.95 and the
other values are the same as in Example 1, and the following
results are obtained:

max
(T + 4)4MΞ2L1[Ψ(T) − Ψ(0)]

2α− 1

2α − 1
,
(T + 4)4MΞ2L1[Ψ(T) − Ψ(0)]

2(α− p)− 1

2(α − p) − 1
  � 0.904<C. (43)

It is verifed that system (40) has a unique solution,
according to Teorem 1. However, K � 0.452> ε/1 + 2ε �

0.375; then, with the aid of Teorem 2, we conclude that
system (40) is not fnite time stable on [0, 12].

5. Conclusion

In this article, we study a new kind of stochastic Ψ-Hilfer
fractional system and apply the generalized Laplace trans-
form and its inverse to solve this kind of system. We have
established existence and uniqueness theories as well as f-
nite-time stability results for the solutions of the considered
problem. Te nonlinear analysis method we used is essen-
tially new, and yet there are few literatures available for
solving this type of considered system. Te obtained results
have been expounded via an example.
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