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The double rotary inverted pendulum (DRIP) system belongs to the class of under-actuated mechanical systems, and it is a highly
nonlinear, unstable, and benchmark system to test the different control techniques. This paper successfully designed the nonlinear
hierarchical sliding mode control (HSMC) techniques to stabilize the DRIP system. We compare the performance of these
techniques numerically with each other and with the previously designed control technique. We propose an aggregated HSMC
technique as it has a much shorter stabilization time than other designed techniques.

1. Introduction

Sliding mode control (SMC) is a nonlinear control technique
that changes nonlinear system dynamics by implementing an
appropriate control signal. This control signal force the sys-
tem to slide along a sliding surface. It was first applied in the
1960s, and its primary formulation is based on the work of
Utkin and Korovin [1]. Utkin introduced the concept of the
sliding surface from which equivalent control is obtained.
After this, Utkin and Yang [2] proceeded with their work
and designed a nonlinear switching term that guarantees the
robustness of SMC. The use of the Lyapunov function
ensures the robustness of SMC that intensify it on other
control techniques. SMC technique can deal with complex
higher-order systems and has been applied to control the
different mechanical systems.

Inverted pendulum systems are members of under-
actuated mechanical systems and are well known for imple-
menting and validating newly designed control techniques
[3–5]. The rotary inverted pendulum (RIP) system is a type
inverted pendulum system that is strongly nonlinear and
well suited to compare the performance of different control
techniques. It has many applications in the field of robotics,

controlling satellite and aerospace vehicles, etc. Researchers
have proposed many control methodologies to solve the sta-
bilization problem for RIPs. Furuta et al. [6] used pseudos-
tate feedback method for swing-up control of inverted
pendulum. Choi and Kim [7] introduced the long-lasting
control for rotational inverted pendulum employing a feed-
back sliding mode controller. They presented system model-
ing, design controller, and execution of controller to inverted
rotational pendulum system. Pakdeepattarakorn et al. [8]
introduced dynamic models of a double rotary inverted pen-
dulum (DRIP) system. Driver and Thorpe [9] designed con-
trol of rotary single/double inverted pendulum. Casanova
et al. [10] worked on the development and control structure
of DRIP by using multiple feedback delay. Li [11] worked on
a rotational double inverted pendulum system by developing
a mathematical model using the Euler Lagrange align and
used the DAFC (direct adaptive fuzzy control) method to
increase LQR (linear quadratic regulator) performance to sta-
bilize the system. Jose et al. [12] worked to balance the pen-
dulum in its upwards position by using proportional integral
derivative and LQR control techniques on comparison based.
Yue et al. [13] worked on nonholonomic/under-actuated
wheeled inverted pendulum vehicle based on a data-driven
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trajectory devisor by applying an indirect adaptive fuzzy con-
trol technique.

Wen et al. [14] controlled RIP system based on logarith-
mic Lyapunov function. A logarithmic function is built as the
function of Lyapunov and contrasted with the normal qua-
dratic function [14]. They used the linearized model that
may influence controller performance because the RIP sys-
tem is highly nonlinear. Liu et al. [15] proposed stabilization
two dimensional stochastic systems through SMC. Idrees et
al. [16] discussed hierarchical sliding mode control (HSMC)
and decoupled sliding mode controller to mark the stabiliza-
tion problem and demonstrated powerful HSMC with state-
dependent switching gain for stabilization of RIP. Markazi
et al. [17] presented adaptive fuzzy SMC of under-actuated
nonlinear system. Using logical switching and integral SMC,
Butt [18] suggested rigorous stability of a class of nonholo-
nomic/under-actuated structures. To balance the system, a
switching containing three distinct steps was used [18]. Mehedi
et al. [19] used fractional order integral control scheme for the
stabilization of DRIP system. All the discussed control techni-
ques are either designed for a single pendulum RIP system or
complicated with a large stabilization time to stabilize DRIP
system. This paper aims to provide an efficient control tech-
nique having the less computational burden to stabilize the
DRIP system. For this purpose, we design three different
HSMC techniques to stabilize DRIP system and compare their
performances.

2. Mathematical Model of Double Inverted
Rotary Pendulum

DRIP is a highly nonlinear, unstable, and challenging control
system. It can be divided into three subsystems as shown in
Figure 1.

Two pendulums are stacked on top of one another and
mounted on a horizontal bar, controlled and stabilized
through an appropriate control input. The dynamics of
DRIP system can be presented mathematically as follows:

J1 þ L21 m2 þm3ð Þð Þ Θ̈1 þ L1 m2l2 þm3L2ð Þ cosΘ2 Θ̈2

þL1m3l3 cosΘ3 Θ̈3 þ b1Θ̇1 − L1 m2l2 þm3L2ð ÞΘ̇2
1 sinΘ2

−L1m3l3Θ̇
2
3 sinΘ2 ¼ τ;

ð1Þ

−L1 m2l2 þm3L2ð Þ cosΘ2 Θ̈1 − J2 þ L22m3 þm2l22ð Þ Θ̈2

−L2m3l3 cos Θ3 − Θ2ð Þ Θ̈3 − b2Θ̇2 þ L2m3l3Θ̇
2
3 sin Θ3 − Θ2ð Þ

þ m2l2 þm3L2ð Þg sinΘ2 ¼ 0;

ð2Þ

−L1m3l3 cosΘ3 Θ̈1 − L2m3l3 cos Θ3 − Θ2ð Þ Θ̈2 − J3 þ l23m3ð Þ Θ̈3

−b3Θ̇3 − L2m3l3Θ̇
2
2 sin Θ3 − Θ2ð Þ þm3l3g sinΘ3 ¼ 0;

ð3Þ

where Θ1, Θ2, and Θ3 are angles of horizontal, first, and second
vertical bars, respectively. The above dynamic Equations. (1)–
(3) can be rewritten as follows:

H1 Θ̈1 ¼ τ − b1Θ̇1 − H2 Θ̈2 cosΘ2 − H3 Θ̈3 cosΘ3

þH2Θ̇
2
2 sinΘ2 þ H3Θ̇

2
3 sinΘ3;

ð4Þ

H4 Θ̈2 ¼ −b2Θ̇2 − H2 Θ̈1 cosΘ2 − H5 Θ̈3 cos Θ3 − Θ2ð Þ
þH5Θ̇

2
3 sin Θ3 − Θ2ð Þ þ H7 sinΘ2;

ð5Þ

H6 Θ̈3 ¼ −b3Θ̇3 − H3 Θ̈1 cosΘ3 − H5 Θ̈2 cos Θ3 − Θ2ð Þ
−H5Θ̇

2
2 sin Θ3 − Θ2ð Þ þ H8 sinΘ3:

ð6Þ

Here J1 is the momentum of inertia around the rotation
of the horizontal bar, J2 is the momentum of inertia of the
first pendulum, J3 is the momentum of inertia of the second
pendulum, L1 is the length of the horizontal bar, L2 is the
length of the first pendulum, m2 is the mass of first pendu-
lum, m3 is the mass of second pendulum, g is the gravita-
tional acceleration, and τ is control input.H1,H2,H3,H4,H5,
H6, H7, and H8 are defined in the appendix. The state-space
representation of DRIP system is given by

ẏ1 ¼ y2;      
ẏ2 ¼ F1 yð Þ þ G1 yð Þτ;  
ẏ3 ¼ y4;      
ẏ4 ¼ F2 yð Þ þ G2 yð Þτ;  
ẏ5 ¼ y6;      
ẏ6 ¼ F3 yð Þ þ G3 yð Þτ;  

ð7Þ
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FIGURE 1: Schematic design of double inverted rotary pendulum.
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where y1 is the angle of horizontal bar making with x-axis, y2
is the angular velocity of the horizontal bar, y3 is the angle of
the first pendulum making with y-axis, y4 is the angular
velocity of the first pendulum, y5 is the angle of the second
pendulum making with y-axis, and y6 is the angular velocity
of the second pendulum. F1 yð Þ, F2 yð Þ, F3 yð Þ, G1 yð Þ, G2 yð Þ,
andG3 yð Þ are nonlinear functions defined by Fi yð Þ= αi yð Þ/Δ
and Gi yð Þ= βi yð Þ/Δ i ¼ð 1; 2; 3Þ. Here α, β, and Δ are also
nonlinear functions defined in the appendix.

3. Hierarchical Sliding Mode Control

In most circumstances, there is inaccuracy between the
actual plant and its mathematical model. This inconsistency
is due to the external disturbances, parameters variations,
and unmodeled dynamics of the plant. Due to these reasons
designing a control law is a challenging problem. SMC is a
particular type of variable structure control system that
forces the system’s state to reach a certain manifold and
subsequently to remain on a specified surface within the state
space. This manifold is called a sliding surface. The sliding
surface is a function of the state variables. Once the sliding
surface is reached, SMC keeps the system states on the closed
neighborhood of the sliding surface. SMC uses a finite
amount of time to force the system trajectories to move along
the sliding surface. In this section, we will design three dif-
ferent HSMC techniques to stabilize the DRIP system.

3.1. Control Law Based on Aggregated HSMC. The DRIP
system consists of three subsystems, and each subsystem
contains two state variables. The basic idea behind the design
of aggregated HSMC is to construct three first-level sliding
surfaces, and each first-level sliding surface is a linear com-
bination of two state variables. These first-level sliding sur-
faces are aggregated to construct a second-level sliding
surface. The schematic diagram of aggregated HSMC is
shown in Figure 2.

To design controller for DRIP system based on aggregated
HSMC, we consider state-space representation Equation (7)
and define first-level sliding surfaces as

s1 ¼ c1y1 þ c2y2;
s2 ¼ c3y3 þ c4y4;
s3 ¼ c5y5 þ c6y6;

ð8Þ

where ci i ¼ð 1; 2; ::; 6Þ are positive constants. To design the
higher order sliding surface, we aggregate these three layers
of sliding surfaces as follows:

S ¼ α1s1 þ α2s2 þ α3s3; ð9Þ

where αi i ¼ð 1; 2; 3Þ are constants. Aggregated control law
is defined by

τ ¼ τeq1 þ τeq2 þ τeq3 þ τsw: ð10Þ

To obtain equivalent control law of three subsystems, we
take ṡi ¼ 0 then

τeq1 ¼
−c1y2 − c2F1 yð Þ

c2G1 yð Þ ; ð11Þ

τeq2 ¼
−c3y4 − c4F2 yð Þ

c4G2 yð Þ ; ð12Þ

τeq3 ¼
−c5y6 − c6F3 yð Þ

c6G3 yð Þ : ð13Þ

Now we design the switching control law by using Lya-
punov function as follows:

V ¼ 1
2
S2: ð14Þ

Differentiating Lyapunov function w.r.t t,

V̇ ¼ SṠ;
V̇ ¼ S α1ṡ1 þ α2ṡ2 þ αṡ3½ �;
V̇ ¼ S α1 c1ð y2 þ c2F1 yð Þ þ c2G1 yð Þ τeq1 þ τeq2 þ τeq3 þ τsw

� ��

þα2 c3y4 þ c4ð F2 yð Þ þ c4G2 yð Þ τeq1 þ τeq2 þ τeq3 þ τsw
� �

þα3 c5ð y6 þ c6F3 yð Þ þ c6G3 yð Þ τeq1 þ τeq2 þ τeq3þsw
� � �:

ð15Þ

By substituting Equations. (11)–(13) into above expres-
sion, we have

V̇ ¼ S α1c2G1 yð Þ þ α2c4G2 yð Þ þ α3c6G3 yð Þ½ �: ð16Þ

We define Ṡ as follows:

Ṡ ¼ −ϵ ⋅ sat Sð Þ; ð17Þ

S

S1 S2 S3

Second level sliding surface

First level
sliding
surface

First level
sliding
surface

First level
sliding
surface

x1 x2 x3 x4 x5 x6

FIGURE 2: Structure of the aggregated sliding surfaces.
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V̇ ¼ S −ϵ ⋅ sat Sð Þ½ �: ð18Þ

The switching control is obtained from align Equations (16)
and (18) as follows:

τsw ¼ −ϵ ⋅ sat Sð Þ
α1c2G1 yð Þ þ α2c4G2 yð Þ þ α3c6G3 yð Þ : ð19Þ

3.2. Control Law Based on Incremental HSMC. In incremen-
tal HSMC, we select arbitrary two state variables to design
the first layer of the sliding surface. The second layer of the
sliding surface is constructed by increasing one variable in
the first layer. This proceeds till all the system state variables
are included. As the crane model covers six state variables,
the incremental sliding surfaces will consist of five layers.
The schematic presentation of incremental HSMC is shown
in Figure 3.

The first layer of sliding surface is defined as follows:

s1 ¼ ζ1y1 þ ζ2y2; ð20Þ

ṡ1 ¼ ζ1ẏ1 þ ζ2ẏ2; ð21Þ

ṡ1 ¼ ζ1y2 þ ζ2 F1 yð Þ þ G1 yð Þτ½ �; ð22Þ

where ζ1 and ζ2 are positive constant. Now second layer of
sliding surface s2 is constructed by the linear combination
of the first sliding surface s1 and third state variable y3 as follows:

s2 ¼ ζ3y3 þ s1:
ṡ2 ¼ ζ3ẏ3 þ ṡ1;
ṡ2 ¼ ζ3y4 þ ζ1y2 þ ζ2 F1 yð Þ þ G1 yð Þτ½ �:

ð23Þ

Third layer of sliding surface can be defined by

s3 ¼ ζ4y4 þ s2;
ṡ3 ¼ ζ4ẏ4 þ ṡ2:

ð24Þ

Fourth layer of sliding surface can be defined by

s4 ¼ ζ5y5 þ s3;
ṡ4 ¼ ζ5ẏ5 þ ṡ3:

ð25Þ

Fifth layer of sliding surface can be defined by

s5 ¼ ζ6y6 þ s4;
ṡ5 ¼ ζ6ẏ6 þ ṡ4;
ṡ5 ¼ ζ6 F3 yð Þ þ G3 yð Þτ½ � þ ζ5y6 þ ζ4 F2 yð Þ þ G2 yð Þτ½ �

þ ζ3y4 þ ζ1y2 þ ζ2 F1 yð Þ þ G1 yð Þτ½ �:
ð26Þ

The incremental control law is defined by

τ ¼ τeq þ τsw: ð27Þ

The equivalent control is obtained by putting ṡ5 ¼ 0 as
follows:

τeq ¼
−ζ5y6 − ζ3y4 − ζ1y2 − ζ2F1 yð Þ − ζ4F2 yð Þ − ζ6F3 yð Þ

ζ2G1 yð Þ þ ζ4G2 yð Þ þ ζ6G3 yð Þ :

ð28Þ

The switching control law can be obtained by defining
Lyapunov function as follows:

V ¼ 1
2
s25; ð29Þ

V̇ ¼ s5ṡ5: ð30Þ

Using expression of Equations (26) and (27),

V̇ ¼ s5 ζ6½ F3 yð Þ þ ζ4F2 yð Þ þ ζ2F1 yð Þ þ ζ5y6 þ ζ3y4 þ ζ1y2
þ ζ6G3 yð Þ þ ζ4G2 yð Þ þ ζ2G1 yð Þð Þ τeq þ τsw

� �
:

ð31Þ

We define ṡ5 as follows:

ṡ5 ¼ −ϵ ⋅ sat s5ð Þ;⇒V̇ ¼ s5 −ϵ ⋅ sat s5ð Þ½ �: ð32Þ

S5

S4

S3

S2

S1

x1 x2 x3 x4 x5 x6

Fifth layer sliding surface

Fourth layer sliding surface

Third layer sliding surface

Second layer sliding surface

First layer sliding surface

FIGURE 3: Structure of the incremental sliding surfaces.
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From expression of Equations (31) and (32), the switch-
ing control is obtained as follows:

τsw ¼ −ϵ ⋅ sat s5ð Þ
ζ6G3 yð Þ þ ζ4G2 yð Þ þ ζ2G1 yð Þ : ð33Þ

3.3. Control Law Based on Combining HSMC. The basic idea
behind the combining HSMC method is as follows. The
mathematical model of the DRIP system consists of six state
variables. These state variables are divided into two groups.
One group comprises y1, y2, and y3, while the other groups
cover their derivatives. The schematics presentation of com-
bining HSMC is shown in Figure 4.

To design the combining HSMC for DRIP system, we
define the intermediate variable z as follows:

z ¼ ϱ1y1 þ ϱ2y3 þ ϱ3y5; ð34Þ

ż ¼ ϱ1y2 þ ϱ2y4 þ ϱ3y6; ð35Þ

where ϱ1, ϱ2, and ϱ3 are positive constants. The higher order
sliding surface will consist of intermediate variable and its
derivative:

S ¼ βz þ ż : ð36Þ

The combining HSMC control law is defined by

τ ¼ τeq þ τsw: ð37Þ

The equivalent control law can be obtained by putting
Ṡ ¼ 0 as follows:

τeq ¼ −
βϱ1y2 þ βϱ2y4 þ βϱ3y6 þ ϱ1F1 yð Þ þ ϱ2F2 yð Þ þ ϱ3F3 yð Þ

ϱ1G1 yð Þ þ ϱ2G2 yð Þ þ ϱ3G3 yð Þ :

ð38Þ

The switching control law can be obtained from Lyapu-
nov function as follows:

V ¼ 1
2
S2; ð39Þ

and by defining Ṡ as Ṡ ¼ − ϵ ⋅ sat Sð Þ.
Hence,

τsw ¼ −
ϵ ⋅ sat Sð Þ

ϱ1G1 yð Þ þ ϱ2G2 yð Þ þ ϱ3G3 yð Þ : ð40Þ

4. Numerical Simulations

The designed HSMC techniques are simulated in the
MATLAB Simulink model to verify their feasibility and per-
formance. The physical parameters of the model and con-
trollers are listed in Table 1 (Appendix). The designed
controllers successfully stabilize the horizontal and vertical
bars. This means that all the designed HSMC techniques are
feasible to stabilize the DRIP system. The performance com-
parison of all designed techniques is shown in Figures 5
and 6.

The response time for all designed control techniques to
stabilize the horizontal bar of the DRIP system is shown in
Table 2. It can be seen that the aggregated HSMC technique
has a much shorter response time than the incremental and
combining HSMC technique. It also has less response time as
compared to the study of Elkinany et al. [20]. Hence, aggre-
gated HSMC technique is proposed to stabilize the DRIP
system.

S

z Ż

Combining sliding surface

Linear combination Derivative

x1 x3 x5 x2 x4 x6

FIGURE 4: Structure of the aggregated combining surfaces.

TABLE 1: The physical parameters of the model and controllers.

Parameters Values Parameters Values

J1 0.5741 J2 96
J3 0.16 L1 3
L2 1 m2 10
m3 2 l2 1
l3 0.1 g 9.81
c1 0.65 c2 1
c3 21 c4 1
c5 51 c6 1
α1 1.18 α2 1.2
α3 0.35 ϵ 10
ζ1 0.85 ζ2 1
ζ3 3.6 ζ4 0.4
ζ5 0.2 ζ6 1.6
ϱ1 1 ϱ2 0.242
ϱ3 0.64 β 0.487

Mathematical Problems in Engineering 5



5. Conclusion

This article presents a mathematical model of the DRIP sys-
tem, and HSMC techniques are successfully designed to sta-
bilize the DRIP system. The numerical results demonstrate
that all designed controllers can be used to stabilize the DRIP
system. However, aggregated HSMC technique has a shorter

stabilization time compared to the other two control techni-
ques. Aggregated HSMC for the DRIP system consists of
three first-level surfaces and one second-level sliding surface.
The first-level sliding surfaces are used to obtain the equiva-
lent controls, while the second-level sliding surface is used to
interact with the first-level sliding surfaces and obtain
switching control. We use the saturation function and con-
stant switching gain to obtain switching control. In conclu-
sion, aggregated HSMC technique is more efficient in order
to stabilize the DRIP system.

Appendix

We have, H1 ¼ J1 þ L21 m2 þð m3Þ; H2 ¼ L1 m2l2 þð m3L2Þ;
H3 ¼ L1m3l3; H4 ¼ J2 þ L22m3 þm2l22; H5 ¼ L2m3l3; H6 ¼
J3 þ l23m3;H7 ¼ m2l2 þð m3L2Þg; andH8 ¼m3l3g: Then
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FIGURE 5: Stabilization of horizontal bar with time starting from initial condition.
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TABLE 2: Response time of all three methods to stabilize horizontal
bar.

Method Response time of horizontal bar

Aggregated HSMC 7 s
Combining HSMC 13 s
Incremental HSMC 30 s
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Δ ¼ H1H4H6 − H2
2H6 cos2y3 − H1H2

5 cos y5 − y3ð Þð Þ 2 − H2
3H4 cos2y5

þ 2H2H3H5 cos y3 cos y5 cos y5 − y3ð Þ;
α1 ¼ y4b2 H2H6 cos y3 −H3H5 cos y5 cos y5 − y3ð Þ½ �

− y2b1 H4H6 − H2
5 cos

2 y5 − y3ð Þ½ � þ y6b3 H3H4 cos y5 − H2H5 cos y3 cos y5 − y3ð Þ½ �
þ y26 H3½ H4H6 sin y5 − H3H2

5 cos
2 y5 − y3ð Þsin y5 − H2H5H6 cos y3 sin y5 − y3ð Þ

þ H3H2
5 cos y5 sin y5 − y3ð Þ cos y5 − y3ð Þ þ y24 H2½ H4H6 sin y3

− H2H2
5 sin y3 cos2 y5 − y3ð Þ −H2H2

5 cos y3 sin y5 − y3ð Þ cos y5 − y3ð Þ
þ H3H4H5 cos y5 sin y5 − y3ð Þ � þ H3H5H7 sin y3 cos y5 cos y5 − y3ð Þ
− H2H6H7 sin y3 cos y3 þ H2H5H8 cos y3 sin y5 cos y5 − y3ð Þ −H3H4H8 cos y5 sin y5;

α2 ¼ y2b1 H2H6 cos y3 −H3H5 cos y5 cos y5 − cos y3ð Þ½ � − y4b2 H1H6 −H2
3 cos

2y5½ �
þ y6b3 H1H5 cos y5 − y3ð Þ − H2H3 cos y3 cos y5½ � þ y26 H

2
3½ H5 cos y5 sin y5 cos y5 − y3ð Þ

− H2H3H6 cos y3 sin y5 − H2
3H5 cos2 y5 sin y5 − y3ð Þ þ H1H5H6 sin y5 − y3ð Þ �

þ y24 H1½ H2
5 sin y5 − y3ð Þ cos y5 − y3ð Þ − H2

2H6 sin y3 cos y3
− H2H3H5 cos y3 cos y5 sin y5 − y3ð Þ þ H2H3H5 sin y3 cos y5 cos y5 − y3ð Þ �
þ H1H6H7 sin y3 − H2

3H7 cos 2y5 sin y3 −H1H5H8 sin y5 cos y5 − y3ð Þ
þ H2H3H8 cos y5 cos y3 sin y5;

α3 ¼ y4b2 H1H5 cos y5 − y3ð Þ − H2H3 cos y3 cos y5½ � − y6b3 H1H6 − H2
3 cos

2 y5ð Þ
þ y2b1 H3H4 cos y5 − H2H5 cos y3 cos y5 − y3ð Þ½ � þ y24 H

2
2½ H5 cos 2y3 sin y5 − y3ð Þ

− H1H4H5 sin y5 − H2 sin y3 H3H4 cos y5 − H2H5 cos y3 cos cos y5 − y3ð Þð Þ �
þ y26 H2½ H3H5 cos y3 cos y5 sin y5 − y3ð Þ − H1H2

5 sin y5 − y3ð Þ cos y5 − y3ð Þ
− H2

3H4 sin y5 cos y5 þ H2H3H5 cos y3 sin y5 cos y5 − y3ð Þ �
þ H2H3H7 sin y3 cos y3 cos y5 − H1H5H7 sin y3 cos y5 − y3ð Þ
þ H1H4H8 sin y5 − H2

2H8 sin y5 cos2 y3;

ðA:1Þ

β1 ¼ H4H6 − H2
5 cos

2 y5 − y3ð Þ;
β2 ¼ H3H5 cos y5 cos y5 − y3ð Þ −H2H6 cos y3;
β3 ¼ H2H5 cos y3 cos y5 − y3ð Þ −H3H4 cos y5:

ðA:2Þ
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