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Te recent advancements in demand-side management techniques add signifcant benefts to the distribution systems. One such
technique is transactive energy management systems (TEMS) which motivate the energy end-users to take part in local energy
trading. Te end-users can efectively increase the monetary benefts by trading the surplus generation/demand within the local
energy market (LEM). Te LEM operator frames a viable market clearing strategy to fx the market clearing price to enhance the
monetary benefts of all the market players. In this study, LEM architecture with diferent market clearing strategies is proposed
for TEMS to ensure proftable power transactions between the neighboring end-users. An optimal energy management algorithm
is also proposed for time scheduling the operation of fexible loads and batteries, considering dynamics in end-users’ behavior,
variations in utility parameters, and the intermittent nature of renewable power generation. Further, an optimal load scheduling
algorithm is developed at the end-users’ premises to improve the profts in the LEM. Correspondingly, the trading strategies are
extended to increase market reliability by penalizing participants for their abnormal activities in energy trading. Te proposed
framework is validated with diferent case studies considering ten residential participants in a locality.

1. Introduction

Demand side management (DSM) techniques are proven to
achieve remarkable benefts in smart distribution systems
[1]. For instance, the end-users can avail considerable in-
centives from the grid operator by actively responding
(demand response) to the utility DSM control schemes. An
energy management system helps the end-users easily track
and regulate the operation of home appliances to avail the
maximum economic benefts [2]. Also, the end-users can
further minimize their electricity bill by signifcantly re-
ducing and meeting the demand through energy storage
devices, especially during peak intervals. Since these storage
devices are charged from the grid, they may not result in
a substantial reduction in the electricity bill, especially when
the utility charges at a fat-rate tarif. As an alternate so-
lution, the end-users adopt in-house renewable energy

resources (RERs), for instance, rooftop solar photovoltaic
(PV) arrays and small wind turbines, to meet the residential
demand either partly or entirely. Nevertheless, the power
generation from the RERs is site-specifc and profoundly
intermittent. Henceforth, the net demand profle of such
residential buildings is highly unpredictable.

On the other hand, utilities encourage the end-users to
trade their excess power generation to the utility with
considerable incentives and call these types of users as
prosumers. Generally, prosumers prefer to export the excess
generation into the grid during peak intervals to enhance
electricity bill savings. Further, to reduce their dependency
on the grid during high price intervals, prosumers optimally
reschedule the operation of home appliances for low-price
intervals. To enhance the control mechanism of home ap-
pliance operation, the smart energy management system
(SEMS) is indispensable [2]. Generally, SEMS is devised to

Hindawi
Mathematical Problems in Engineering
Volume 2023, Article ID 3979662, 15 pages
https://doi.org/10.1155/2023/3979662

https://orcid.org/0000-0002-4330-0033
https://orcid.org/0000-0001-7333-7438
https://orcid.org/0000-0001-6655-0089
https://orcid.org/0000-0002-7862-2278
mailto:bingi.kishore@ieee.org
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/3979662


schedule the operating time of household appliances con-
cerning end users’ requirements, utility operational dy-
namics, and the intermittent nature of RERs.

1.1. Literature Review. Several research works have been
addressed in the literature to schedule household appliances
through energy management systems optimally. To lower
the residential consumer’s electricity bill, a load scheduling
algorithm using a mixed-integer linear program is proposed
in [3]. Considering the uncertainty of home appliances’
operation times, energy storage systems, and the sporadic
nature of renewable energy generation, an efcient energy
management scheme is devised in [4]. A DSM with pro-
sumer participation is developed in [5], where the con-
sumer’s electricity bill is reduced by exporting power to the
utility. Also, the residential electricity demand pattern is
synthesized based on the probability of appliances’ times of
operation. Incorporating RERs and electric vehicles with
appropriate DSM in residential buildings substantiates
microgrid stability and lessens utility dependence [6]. A load
scheduling algorithm to maximize operational savings as
a primary objective function is discussed in [7], employing
a simple linear program. In [8], an optimization technique is
presented to schedule the load demand of PV-installed
residential buildings as the output power variation is
unpredictable.

Te feed-in tarif (FiT) scheme in the traditional market
is intended to motivate small-scale prosumers. However, the
number of new installations over a decade increased un-
expectedly. Te governing bodies started to decrease the FiT
price signifcantly, which resulted in a lengthy investment
pay-back period for prosumers. FiT schemes have been
discontinued in some parts of the world, like the state of
Queensland in Australia [9]. As the distribution grid op-
erators face additional operational challenges with in-
tegrating RERs-based residential buildings [10], utilities are
showing a lack of interest in purchasing surplus generation
from the end-users. However, few utilities regulate end-
users’ support by initiating a time-varying power injection
limit (PIL) [11]. In this regulation, an end-user benefts
economically by injecting the excess generation into the grid
without exceeding the predefned utility PIL. In such sce-
narios, the excess power generation beyond the utility PIL
should either be stored in the battery for subsequent usage or
drained via a dump load. Further, the end-users are rec-
ommended to lessen the power evacuation from RERs by
disconnecting the in-house resources from the system when
the surplus power generation exceeds PIL.

Although introducing PIL at the end-user premises
signifcantly reduces the operational difculties of utilities,
this regulation may decrease the proft gained by the end-
user. Further, the generated green energy may not be fully
utilized when surplus generation exceeds the utility PIL.
Hence, the PIL constraint indirectly restricts the installation
capacity of in-house RERs at the end-user side. To overcome
this limitation, end-users are preferred to participate in
transactive energy management systems (TEMS) [12, 13].
TEMS is an advanced technique in DSM schemes that intend

to develop a deregulated market between the end-users to
trade their excess generation and demand with neighboring
users to attain more proft compared to utility [14].Tis kind
of market is called the local energy market (LEM).

In [15], a game theory-based reverse auction model is
developed as a multiagent system including prosumers of the
corresponding locality and utility. However, neither the
prosumers are modeled as individual agents, nor the fexible
loads are considered. An individual agent-based simulation
environment is structured in [16] to share the energy among
participants in the community energy market. In such
a community, a recursive least squares learning algorithm is
framed to fnd the dynamic pricing and initiate decision-
making. Nevertheless, modeling of fexible loads is not
considered in the considered work. In [17], a peer-to-peer
(P2P) energy trading technique is devised between electric
vehicles. A game theory method is employed in the con-
sidered work to maintain the dynamic equity between de-
mand and supply at peak and of-peak intervals. A similar
game theory approach is discussed in [18], which has ini-
tiated a P2P energy trading technique considering a multi-
agent coordinated zone-based energy trading network. Also,
this study details the energy trading between prosumers in
the smart neighborhood.

In [19], a P2P energy sharing mechanism is developed
using a game theory method for of-grid and on-grid
microgrid systems. A game-theory method based on
a bilevel optimization algorithm and a two-stage distributed
optimization algorithm using Nash bargaining is discussed
in [20, 21], respectively, for P2P power trading. Diferent
P2P power trading techniques are explained in [22–24]. A
novel multilevel transactive energy optimization model is
proposed in [25] for the optimal scheduling of distributed
generation units within the considered virtual power plant
(VPP). Te model supports energy transfers inside a specifc
VPP as well as between the linked VPPs. Further, a block-
chain-based smart contract layer is being developed to
automate and store the energy transaction information. In
[26], a market model based on the double auction technique
is developed to facilitate P2P energy trading. Te proposed
market architecture’s benefts are highlighted by comparing
it with the manager-based centralized energy market in
terms of social welfare, total payment, and energy trade
volume outcomes. Te overview of blockchain-based
decentralized energy market architecture and its compo-
nents for TEMS is detailed in [27]. Consecutively, the
blockchain-based intra- and inter-VPP-P2P energy market
is realized in [28]. Besides mixed-integer linear
programming-based optimization, it is proposed to compute
the optimal cost for energy exchange.

A comprehensive review of transactive energy systems is
presented in [29], emphasizing the control techniques, to-
pologies, and simulators available for the design, assessment,
and analysis of the systems. Further, a hierarchical frame-
work which comprised four main levels is used to evaluate
the transactive energy control strategies and controller’s
concepts. A decentralized architecture is developed in [30] to
integrate the retail and wholesale energy markets in the
context of wind and demand uncertainty, as well as the
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fnancial risks provided by these sources. Te results of
simulation studies show that the suggested structure has
a strong potential to create integrated power markets with
maximum performance and efciency despite multiple
system restrictions. Te impact of numerous uncertainties
(created by pricing, generation, and demand) on direct
energy trading is examined in [31]. Additionally, a Nash
bargaining game-based direct transactive energy trading
framework is implemented to mitigate the efects of un-
certainty. A detailed evaluation of previous research studies
and pilot projects on P2P energy trading in terms of
implementation approaches with mathematical formula-
tions is presented in [32].

1.2. Research Gap and Motivation. Based on the literature
survey, it is foreseen that the optimum scheduling of fexible
loads and batteries, including the expected renewable gen-
eration and utility dynamics, results in signifcant savings in
end-users’ electricity bills. Further, injecting excess power
into the utility, especially during peak intervals, assures end-
users of high incentives from the utility. Additionally, the
active participation of end-users in energy trading under
LEM increases the proft considerably. On the other hand,
developing suitable market clearing strategies by the LEM
operators (LEMO) attracts many end-users to participate in
transactive energy systems, increasing the installation and
optimal utilization of RERs.

An optimal energy management algorithm is developed
in this study to enhance the operational and monetary perks
of end-users and utilities. Te algorithm is framed to control
the operating time of fexible loads and batteries, considering
end-users’ operational dynamics and requirements, utility
parameter variations, and renewable power generation.
Further, the scheduling method has been upgraded to assist
the end-users in taking part in LEM. Te upgraded system
optimally determines the expected demand/generation for
the upcoming intervals based on the dynamics of end-users’
behavior and climatic changes. In addition, the proposed
system reschedules the operations of home appliances in real
time to reduce the forfeit imposed by themarket operator for
not supporting the grid with quoted power. LEM is also
devised with diferent market clearing strategies to manage
the power trading between the neighboring end-users. Te
proposed LEM scheme ensures the individuals’ proft in
energy trading based on their participation and consistency
in quoted demand. Further, the proposed LEM scheme
identifes the abnormal activities of participants in quoted
power and penalizes them accordingly.

1.3. Contributions and Paper Organization. Te major
contributions of this study are described as follows:

(1) An optimal energy management algorithm is pro-
posed for time scheduling the operation of fexible
loads and batteries considering

(a) Dynamics in end-users’ behavior
(b) Variations in utility parameters (consumer de-

mand limit and PIL)

(c) Intermittent nature of renewable power
generation

(2) An energy trading algorithm is developed to enable
the participants to participate in LEM to enhance
their profts through transactive energy.

(3) A new local energy market with diferent market
clearing strategies is presented to ensure proftable
power transactions between the neighboring end-
users

(4) Te proposed trading strategies are extended to
increase the market’s reliability by penalizing the
participants for their abnormal activities in energy
trading

Te remaining sections of the manuscript are organized
as follows: the detailed architecture of the proposed local
energy market and the mathematical modeling of the end-
user’s demand pattern are discussed in Section 2; as part of
the P2P energy market, two diferent pricing strategies are
developed in Section 3; the proposed market clearing
strategies are validated through case studies in Section 4.Te
conclusions and future scope are given in Section 5.

2. Architecture of the Local Energy Market

A group of residential consumers and prosumers in close
proximity forms a LEM. In LEM, the market participants
(consumer/prosumer) are encouraged to trade their surplus
generation/demand within the locality along with the up-
stream utility grid. Te proposed conceptual architecture of
LEM is shown in Figure 1, which consists of market par-
ticipants, LEMO, and a utility grid.Te objective of LEMO is
to maintain a real-time balance between local demand and
generation with the appropriate pricing strategies within the
locality. Tis led to the development of TEMS with diferent
market clearing strategies within the locality.

Nowadays, residential consumers are intelligently op-
erating electrical and electronic household appliances to
fulfll their tasks timely. Based on the operating pattern,
residential loads are categorized into two groups: nonfexible
loads (NFLs) and fexible loads (FLs). Te loads which are
essential and anticipated to respond instantly are classed as
NFLs. Te inherence and comfort highly persuade the end-
user’s operational profles of the NFLs. Loads that are fexible
to operate between user-defned periods are categorized
under FLs. Te net demand of an end-user
n (n ∈N�

∆
[1, 2, . . . , N]) for the time interval

t (t ∈ T�
∆

[1, 2, . . . , T]) is as NDt
n, and it is

mathematically expressed as follows:

NDt
n � NFLt

n + FLt
n + ESt

n − DGt
n, ∀n ∈N;∀t ∈ T, (1)

where

(i) N is the locality’s cumulative end-users
(ii) T is the maximum number of time intervals over

a period
(iii) NFLt

n and FLt
n represent the overall demand of the

entire NFLs and FLs, respectively
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FLt
n can be computed as follows:

FLt
n � 􏽘

l∈FLs

S
t
l,n · Pl,n, (2)

where St
l,n denotes operating status of fexible load l during

an interval t. Te value of St
l,n is assigned to 0 and 1 for the

respective load status of OFF and ON. Pl,n represents the
power rating of fexible load l.

ESt
n refers to the battery power exchange during diferent

modes of battery operation, and it is described as follows:

ESt
n > 0;

B
t
C,n � 1,B

t
D,n � 0,B

t
F,n � 0

Battery in chargingmode

⎧⎨

⎩

⎫⎬

⎭,

ESt
n < 0;

B
t
C,n � 0,B

t
D,n � 1,B

t
F,n � 0

Battery in di schargingmode

⎧⎨

⎩

⎫⎬

⎭,

ESt
n � 0;

B
t
C,n � 0,B

t
D,n � 0,B

t
F,n � 1

Battery in floatingmode

⎧⎨

⎩

⎫⎬

⎭,

(3)

where Bt
C,n, B

t
D,n, and Bt

F,n are battery operating mode
status during charging, discharging, and foating,
respectively.

DGt
n represents the power generation from installed in-

house distributed energy resources. Tese days, residential
buildings are mostly equipped with renewable power gen-
eration systems such as rooftop solar PV or small wind
turbines. Hence, considering the RERs, the total power
generation (DGt

n) can be computed as follows:

DGt
n � P

t
PV,n + P

t
WT,n, (4)

where Pt
PV,n and Pt

WT,n represent the installed solar PV and
wind turbine power generation, respectively.

Currently, utilities are introducing various electricity
pricing schemes as part of the DSM program to maintain
a fat load profle. One such pricing scheme is real-time
pricing (RTP), where the end-user will be informed about
the interval’s electricity price and other incentives just before
the interval begins [33]. Hence, the prediction strategies of
end-users play a vital role in reducing end-users’ electricity
bills. Te total electricity bill of any user n(TEBn) will be
computed based on the utility cost function as expressed in

TEBn � 􏽘
T

t�1
C

t NDt
n􏼐 􏼑, (5)

C
t NDt

n􏼐 􏼑 �

GSPt
· NDt

n · ∆t; if 0≤NDt
n ≤CDL

t
,

GSPt
· CDLt

· ∆t+

NDt
n − CDLt

􏼐 􏼑 · βt
· GSPt

· ∆t
⎛⎝ ⎞⎠; if NDt

n >CDL
t
,

GBPt
· NDt

n · ∆t; if NDt
n < 0,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(6)

where GSPt and GBPt are the tth interval grid selling and
buying prices, respectively. CDLt represents the consumer
demand limit (CDL) for the interval t, which the grid op-
erator imposes to regulate the energy utilization at the
consumer zone [34].

Te consumer will be fned only when the total demand
exceeds the utility-defned CDL. Hence, the electricity bill
will be increased based on the CDL factor (βt) of that

interval (t). To limit the usage of the peak power plant and
increase proft, the utilities are imposing higher energy
prices during peak intervals. Further, the end-users are also
incentivized by the utilities to export their surplus, especially
during peak intervals. Hence, the prosumers are showing
more interest in optimally altering their demand pattern to
avail of possible utility benefts. Tis optimal scheduling
problem can be analytically calculated considering the

LEMO

Distribution
Transformer

Utility

Smart
Meter

Figure 1: Conceptual diagram of the local energy market.

4 Mathematical Problems in Engineering



objective function as minimizing the overall debt of the
electricity bill as expressed in

min . TEBn � 􏽘
T

t�1
C

t NDt
n􏼐 􏼑⎛⎝ ⎞⎠, (7)

subject to

S
t
l,n � 0 t ∉ Ψl,i∀l ∈ FL, (8)

􏽘

T

t�1
S

t
l,n � λl,n∀l ∈ FL, (9)

B
t
C,n + B

t
D,n + B

t
F,n � 1∀t ∈ T, (10)

SoCmin,n < SoC
t
B,n < SoCmax,n, (11)

ESmin,n < ES
t
n

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌<ESmax,n, (12)

where Ψl,n is the user-predefned time for fexible load l and
λl,n is the number of intervals needed to fulfll the fexible
load l task. Battery operational parameter SoCt

B,n represents
the feasible state of charge (SoC) at the beginning of the time
interval t. Te minimum and maximum SoC boundary
values are represented as SoCmin,n and SoCmax,n, respectively.
Similarly, the battery power exchange minimum and
maximum boundaries are given as ESmin,n and ESmax,n,
respectively.

Te distribution grid operators face many operational
challenges due to the high penetration of grid-connected
small-scale RERs. Hence, the utilities regulate the end users’
support by introducing a time-varying PIL. To utilize the
maximum amount of generated renewable power and to
increase the economic proft through energy export, the end-
users are expected to optimally schedule their household
appliances with due consideration to the dynamics in re-
newable energy generation. Accounting for this, the ob-
jective function defned in (7) is updated with the modifed
cost function as shown in

C
t NDt

n􏼐 􏼑 �

GSPt
· NDt

n · ∆t; if 0≤NDt
n ≤CDL

t
,

GSPt
· CDLt

· ∆t+

NDt
n − CDLt

􏼐 􏼑 · βt
· GSPt

· ∆t
⎛⎝ ⎞⎠; if NDt

n >CDL
t
,

GBPt
· NDt

n · ∆t; if −PILt
􏼐 􏼑≤NDt

n < 0,

GBPt
· −PILt
􏼐 􏼑 · ∆t; if NDt

n < −PILt
􏼐 􏼑.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)

In addition to the constraints discussed from (8) to (12),
the modifed objective function is also subjected to the
power injection constraint. Te constraint imposes that the
excess energy shared with the utility during a particular
interval (t) should not exceed the utility’s predefned power
export limit of that interval (PILt). Te hard constraint shall
be mathematically expressed as follows:

NDt
n ≥ −PILt

􏼐 􏼑, ∀t ∈ T. (14)

To overcome the limitation due to utility PIL, it is
preferred that the end-users take part in TEMS. As part of
TEMS, the LEM operator invites the end-users to trade the
power (surplus generation/demand) within the locality. Te
expected net demand ENDt

n of any participant n for the time
interval t is computed as follows:

ENDt
n � ENFLt

n + EFLt
n + EESt

n − EDGt
n∀n ∈N;∀t ∈ T,

(15)

where ENFLt
n represents the expected nonfexible load de-

mand for interval t, which will be decided based on the users’
comfort and desire.

EFLt
n and EES

t
n are the expected demands of fexible load

and battery banks which can be obtained as the result of the
optimal scheduling problem defned in (7) and (13). EDGt

n is
the expected power generation from in-house RERs, which
can be predicted either by devising a dedicated algorithm or

analyzing the local renewable resources variables such as
solar irradiation, atmospheric temperature, and wind speed
provided by the LEM operator. Based on the quoted demand
of individuals, the LEM operator will clear the market so that
all the localities and the grid participants would beneft.

End-users’ active participation will build successful
TEMS. Further, adopting suitable marketing strategies for
LEM may increase the participants’ interest in TEMS. Te
LEM should be designed with due consideration for par-
ticipants’ consumption patterns and utility dynamics in
operational parameters (selling price, buying price, CDL,
and PIL). However, the developed LEM should deliver
adequate economic beneft to the participants without vi-
olating the utility power constraints. Diferent market
strategies are proposed in the upcoming section to have
a proftable power transaction between participants
through TEMS.

3. Local Energy Market Pricing Strategies

Te reliability of any LEM is merely based on the pricing
strategy used to clear the market. Terefore, the proposed
LEM shall be managed by either a utility or a third party in
this work. However, the utility considers all the end-users
participating in LEM as single users whose power demand
varies continuously. Hence, the individual users’ utility
constraint parameters, such as CDL and PIL, should be
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aggregated. Tis study proposes two diferent market
clearing strategies: average market clearing (AMC) and
generation-to-demand ratio-based market clearing
(GDRMC) strategies.

3.1. Average Market Clearing (AMC) Strategy. Let us con-
sider a locality where all the users participate in LEM.
Considering individuals’ expected net demand, the aggre-
gated locality demand (TDEt), locality generation (TGEt),
and locality net demand (LNDt) for an interval t can be
calculated as follows:

TDEt
� 􏽘

N∈N
ENDt

n∀END
t
n ≥ 0,

TGEt
� 􏽘

N∈N
ENDt

n

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌∀ENDt

n < 0,

LNDt
� TDEt

− TGEt
� 􏽘

N∈N
ENDt

n.

(16)

Te computed value of LNDt expresses the entire
locality’s grid dependency. Hence, two substrategies are
proposed under AMC for diferent values of LNDt.

3.1.1. AMC Strategy-1: LNDt ≥ 0. When the locality’s total
demand is more than its total generation (TDEt ≥TGEt), the
locality will act as an importer for utilities. Te locality
should depend on the grid to meet the excess demand in this
scenario. However, LEM allows the exporter (having excess
generation) and importer (having excess demand) to trade
the surplus power with others for more proft than the
utility. Te exporter market clearing price (λt

sell) for an
interval t under AMC strategy-1 is expressed as follows:

λt
sell �

GSPt
+ GBPt

2
. (17)

Based on the computed price of λt
sell, importer market

clearing price (λt
buy) for an interval t under AMC strategy-1

can be calculated as follows:

λt
buy �

LNDt
× GSPt

􏼐 􏼑 + λt
sell × TGEt

􏼐 􏼑

TDEt if LNDt
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ N × CDLt
􏼐 􏼑,

N × CDLt
× GSPt

􏼐 􏼑 + λt
sell × TGEt

􏼐 􏼑

N × CDLt
􏼐 􏼑

if LNDt
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌> N × CDLt
􏼐 􏼑.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(18)

3.1.2. AMC Strategy-2: LNDt < 0. When the total generation
of a locality is more than the total demand (TGEt >TDEt),
the locality will act as an exporter of utility. Further, the
locality is allowed to share the surplus generation with the
grid until the magnitude of LNDt reaches the aggregated
value of all participants’ PIL. Te (λt

buy) under AMC
strategy-2 is expressed as follows:

λt
buy �

GSPt
+ GBP2

2
. (19)

Based on the computed price of λt
buy, the λt

sell for an
interval t under AMC strategy-2 can be calculated as follows:

λt
sell �

TDEt
× λt

buy􏼐 􏼑 + LNDt
× GBPt

􏼐 􏼑

TGEt ; if LNDt
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ N × PILt
􏼐 􏼑,

TDEt
× λt

buy􏼐 􏼑 + N × PILt
× GBPt

􏼐 􏼑

N × PILt
􏼐 􏼑

; if LNDt
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌> N × PILt
􏼐 􏼑,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(20)

Te proposed AMC strategy is simple; hence, the
computational time for market clearing is less for any
number of participants. Further, the AMC-based LEM is
easily predictable, making the participants more interested
in energy trading. However, the exporters (in AMC strategy-
1) and importers (AMC strategy-2) have more proft irre-
spective of the amount of contribution in the locality net
demand. To overcome this weakness and make proftable

transactions for all participants, the generation-to-demand
ratio is proposed as a market clearing approach in the
following subsection.

3.2. GDR-Based Market Clearing Strategy. Considering the
net demand of individual participants, the locality genera-
tion-to-demand ratio (GDR) for an interval t can be
computed as follows:
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GDRt
�
TGEt

TDEt . (21)

Te value of GDRt decides the nature of locality with
respect to utility as an importer (GDRt < 1) or exporter
(GDRt > 1). Hence, two strategies are proposed under the
generation-to-demand ratio market clearing (GDRMC)
strategy.

3.2.1. GDRMC Strategy-1. When the locality acts as an
importer for utility (GDRt < 1), the market clearing price for
exporters and importers of the locality can be computed as
follows:

λt
sell �

GSPt
+ GBPt 1 − GDRt

􏼐 􏼑

2
,

λt
buy � λt

sell × GDRt
􏼐 􏼑 + GSPt 1 − GDRt

􏼐 􏼑􏼐 􏼑.

(22)

Te demand of individual importers highly infuences
the economic beneft of the individual participants in the
proposed strategy. Further, quoting more demand in LEM
may lead to nonproftable trading. Hence, the proposed
strategy will be used only when the net locality demand is
maintained within the utility’s defned locality demand limit.
If the demand constraint is violated, the importers are re-
stricted from sharing the excess demand in LEM. Consid-
ering this limitation, the proposed GDRMC strategy-1 is
modifed concerning the importer demand limit. Te
modifed generation-to-demand ratio for an interval t is
computed as follows:

MGDRt
�

TGEt

N × CDLt . (23)

Considering MGDRt, the market clearing price for the
exporter (λt

sell) and the importer (λt
buy) of an interval t can be

calculated as follows:

λt
sell �

GSPt
+ GBPt 1 − MGDRt

􏼐 􏼑

2
,

λt
buy � λt

sell × MGDRt
􏼐 􏼑 + GSPt 1 − MGDRt

􏼐 􏼑􏼐 􏼑.

(24)

3.2.2. GDRMC Strategy-2. When the value of GDRt is
greater than 1, the locality will act as an exporter concerning
utility, and the market clearing prices for importers and
exporters can be calculated as given in (25) and (26),
respectively:

λt
buy �

GSPt
− GBPt 1 − 1/GDRt

􏼐 􏼑

2
, (25)

λt
sell �

λt
buy + GBPt GDRt

− 1􏼐 􏼑

GDRt . (26)

Consequentially, the utilities are imposing time-varying
PIL limits to reduce operational difculties. Hence, the
exporters are constrained to trade their excess generation by
considering the utility-defned locality net export limit. Te
modifed GDR for the locality when the net export exceeds
the utility limit can be computed as follows:

MGDRt
�

N × PILt

TDEt . (27)

Subsequently, the market clearing prices for importers
and exporters can be calculated as expressed in (28) and (29),
respectively:

λt
buy �

GSPt
− GBPt 1 − 1/GDRt

􏼐 􏼑

2
, (28)

λt
sell �

λt
buy + GBPt MGDRt

− 1􏼐 􏼑

MGDRt . (29)

Considering diferent pricing strategies, the traded
electricity bill of participant n during a trading interval t can
be computed as follows:
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TEBt
n �

NDt
n · λt

buy · ∆t;

N × CDLt

NI

· +

λt
buy NDt

n −
N × CDLt

NI

􏼠 􏼡 · βt
· GSPt

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

· ∆t;

NDt
n · λt

sell · ∆t;

−
N × PILt

NE

· λt
sell · ∆t;

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

NDt
n ≥ 0

TDEt ≤ N × CDLt
􏼐 􏼑

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

or

0≤NDt
n ≤

N × CDLt

NI

TDEt > N × CDLt
􏼐 􏼑,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

NDt
n >

N × CDLt

NI

TDEt > N × CDLt
􏼐 􏼑,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

NDt
n < 0

TGEt ≤ N × PILt
􏼐 􏼑

⎧⎪⎪⎨

⎪⎪⎩
or

−
N × PILt

NE

≤NDt
n < 0

TGEt > N × PILt
􏼐 􏼑,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−
N × PILt

NE

>NDt
n

TGEt > N × PILt
􏼐 􏼑.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(30)

Te proposed market strategies are developed based on the
participants’ quoted demand.Te quoted electricity demand of
individual participants merely depends upon the accurate
prediction of RERs and the optimal scheduling of fexible loads.
However, the user cannot maintain the quoted demand strictly
for all the trading intervals due to sudden changes in end-users’
requirements. Hence, false demand quotations may ruin the
LEM’s proftable power trading in TEMS. To overcome this

issue, a trading agreement violation cost (Γtn) is introduced for
the calculation of the electricity bill. Further, the deviation in
quoted demandmay increase or decrease the trading electricity
bill. Te change in electricity bill is referred to as the deviation
cost (DCt

n). Te values of Γtn and DC
t
n for any user n during an

interval t can be computed with due consideration to actual net
demand (ANDt

n), quoted demand, market clearing prices, and
false data penalty rate (δt) as shown in
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Γtn � ANDt
n − ENDt

n􏼐 􏼑 ·
λt
buy + λt

sell

2
· δt

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, (31)

DCt
n �

ANDt
n − ENDt

n􏼐 􏼑 · λt
buy; if ANDt

n > 0 ENDt
n > 0

ANDt
n − ENDt

n􏼐 􏼑 · λt
sell; if ANDt

n < 0 ENDt
n < 0

ANDt
n · λt

sell􏼐 􏼑 − ENDt
n · λt

buy􏼐 􏼑; if ANDt
n < 0 ENDt

n > 0

ANDt
n · λt

buy􏼐 􏼑 − ENDt
n · λt

sell􏼐 􏼑; if ANDt
n > 0 ENDt

n < 0.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(32)

Considering the trading electricity bill, deviation cost,
and agreement violation cost, the net electricity bill of a user
during a trading interval can be computed as follows:

EBt
n � TEBt

n + DCt
n + Γtn. (33)

4. Simulation Study

Te proposed market strategies are validated concerning
various case studies to emphasize the signifcance of TEMS
on the end-user’s electricity bill savings.

4.1. Study Environment. Te considered locality consists of
ten residential prosumers actively participating in TEMS.
Currently, residential buildings are furnished with a nu-
merous modern electrical equipment to make life easier. Te
most common and essential appliances and their power
ratings are given in Table 1 [35].

To lessen the dependency on the grid and improve
electricity bill savings, residential consumers are recom-
mended to build in-house RERs. Considering various re-
sources, for instance, residential consumers highly prefer
renewable power generation using rooftop solar PV and
small wind turbines. Further, the residents are interested in
battery storage to reduce the electricity bill by meeting es-
sential demands during peak intervals [24]. Te RERs and
batteries are optimally sized with due consideration to the
total investment cost, space availability, and intermittence in
renewable resources as formulated in the author’s previous
work [35]. Te variations in utility energy selling and buying
prices over a month are depicted in Figure 2. For a better
view of utility dynamics, per day variations in electricity
prices are given in Figure 3. Te utility CDL factor for
crossing CDL is considered as 2.5 times the nominal cost.
Te false data penalty rate for violating the trading agree-
ment (not supporting the grid with quoted generation/de-
mand) is 0.2.

On account of the end-users’ comfort and desire, the
operation of various household appliances is optimally
scheduled by solving the objective function defned in (7),
subject to the constraints given in (8)–(12) and (14). Con-
sidering the individual user inside the studied locality, the
optimal demand pattern and available generation from RERs
over a month are shown in Figure 4.

4.2. Study Results. Te economic analysis of individual
participants is evaluated in the following cases: prosumers
under the peer-to-grid (P2G) scheme without PIL (Case 1);
prosumers under the P2G scheme with PIL (Case 2); pro-
sumers under the P2P scheme with the AMC strategy (Case
3); and prosumers under the P2P scheme with the GDRMC
strategy (Case 4).Te participants’ per day electricity bills for
diferent cases are shown in Figure 5. To show the efec-
tiveness of the proposed architecture, the study is extended
for a period of one month and the monthly electricity bills
for diferent cases are listed in Table 2.

In-house RER installation merely depends on the con-
sumers’ economic background and space availability. Few
consumers in the locality may not aford it. However, those
users can also actively participate in LEM as consumers and
reduce their electricity bills signifcantly. To validate this, the
simulation study has been extended to the locality in which
50% of the residential buildings are not installed with any
additional energy resources. Te monthly electricity bill of
all the participants under diferent market cases is listed in
Table 3.

Active participation and accurate prediction of expected
electricity demand signifcantly increase the participants’
profts. However, deviations in the quoted electricity de-
mand and injecting false data will severely afect the elec-
tricity market. Hence, the market operators introduce
trading agreement violation costs to regulate the partici-
pant’s deviations from the quoted demand. To validate this,
the case study is evaluated for a trading interval considering
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Table 1: Household appliances.

S. no. Load Power (kW) Type
1 Fan 0.10 NFL
2 Lighting 0.02 NFL
3 Television 0.25 NFL
4 Mobile and laptop charger 0.05 NFL
5 Air conditioner 1.0 NFL
6 Refrigerator 0.5 NFL
7 Cloth washer 0.8 FL
8 Cloth dryer 2.2 FL
9 Dish washer 1.5 FL
10 Well pump 1.2 FL
11 PHEV charging 2.3 FL
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Figure 2: Utility monthly electricity price variation. (a) Selling price. (b) Buying price.
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diferent deviations, and the corresponding results are
tabulated in Tables 4 and 5.

4.3. Discussions. Te outcomes shown in Tables 2 and 3
express the economic signifcance of the transactive energy
systems in the smart grid paradigm. Cases 1 and 2 are ex-
amined using the P2G scheme, whereas Cases 3 and 4 are
evaluated using the P2P scheme. Furthermore, in Case 1, the
participants saved more money on their electricity bills since
the utility provides unconditional grid assistance. However,
in order to address operational issues caused by the sig-
nifcant penetration of small scale in-house RERs, utilities

are placing numerous constraints in the P2G system. Case 2
results show that implementing grid limits such as the PIL
constraint has a detrimental impact on end consumers’
electricity bills. Participants in P2P schemes using AMC
(Case 3) and GDRMC (Case 4) approaches save signifcantly
more than in P2G schemes (Case 2). Furthermore, the
percentage reductions in electricity bill for the AMC and
GDRMC schemes compared to the P2G scheme demon-
strate the usefulness of the recommended market strategies.
Participants can increase this proportion by optimizing the
timing of domestic appliance use while considering end-user
dynamics, power generation from in-house RERs, utility
limits, and predicted market net demand. Aside from the
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Figure 3: Utility energy price variation.
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Figure 4: Monthly variations. (a) Optimal demand pattern. (b) Available generation.
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economic benefts, the recommended strategies protect end-
users’ privacy by supporting them in sharing just demand
information.

Te extended case study assumes that 50% of the
community’s participants do not have any in-house RERs,
and the recommended techniques result in considerable
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Figure 5: Participants’ per day electricity bill.

Table 2: Participants’ monthly electricity bill.

PID Case-1 Case-2 Case-3 Case-4
BPID ($) BPID ($) BPID ($) SPID (%) BPID ($) SPID (%)

1 96.53 98.91 94.8 4.16 92.76 6.22
2 97.67 100.18 96.16 4.02 93.78 6.39
3 78.07 85.17 82.17 3.53 79.55 6.6
4 81.59 87.23 84.22 3.46 81.48 6.6
5 79.96 87.12 83.34 4.34 80.52 7.58
6 82.96 87.49 84.05 3.94 81.62 6.71
7 99.87 101.85 96.4 5.36 94.42 7.3
8 85.66 90.21 87.13 3.42 84.61 6.21
9 80.25 86.04 83.25 3.25 80.76 6.14
10 99.14 101.61 97.28 4.27 94.96 6.55
PID: participant’s ID. BPID: participant’s monthly electricity bill. SPID: percentage saving of electricity bill when compared to Case-2.

Table 3: Participants’ monthly electricity bill.

PID Case-1 Case-2 Case-3 Case-4
BPID ($) BPID ($) BPID ($) SPID (%) BPID ($) SPID (%)

1 96.53 98.91 94.9 4.06 90.4 8.61
2 97.67 100.19 95.49 4.7 91.75 8.43
3 78.07 85.17 78.97 7.28 75.53 11.32
4 81.59 87.23 81.4 6.69 77.95 10.64
5 79.96 87.13 79.88 8.33 76.43 12.29
6 148.93 148.93 135.13 9.27 125.58 15.68
7 147.26 147.26 133.44 9.39 124.54 15.43
8 149.81 149.81 136.25 9.06 127.17 15.12
9 150.76 150.76 137.3 8.93 127.91 15.16
10 153.74 153.74 139.58 9.22 129.76 15.6
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electricity bill reductions for both prosumers and con-
sumers. Tese fndings support the viability of the proposed
P2P energy market. Furthermore, the computations re-
quired by the suggested market strategies are straightfor-
ward for any number of players which makes the real-time
implementation of LEMO simple. Finally, the penalty
analysis fndings in Tables Z andW demonstrate the impact
of erroneous demand quotations on the electricity bill.
Participants are penalized based on the percentage di-
vergence from the real demand. Furthermore, the partici-
pants’ misleading data have a signifcant infuence on the
market clearing parameters λt

sell and λt
buy. However, the

participant is strongly penalized to make up for the eco-
nomic loss. Tis expense can be used for operation and
maintenance by the LEMO and/or grid operator. Even if any
advanced computing technique precisely anticipates the
predicted demand and generation of the participants, var-
iations in the user demand pattern are unavoidable. Par-
ticipants must reschedule battery operations depending on
market conditions to overcome variances and thereby de-
crease penalty costs.

5. Conclusions and Future Scope

An optimal scheduling algorithm is proposed at the end-
users’ premises, considering the depreciation of the total
electricity bill as the objective function. Considering the end-
user’s requirements, utility dynamics, and expected gener-
ation from the installed in-house RERs, the proposed al-
gorithm assisted the end-user in controlling the operation of
fexible loads and batteries. Further, the end-users are
motivated through the transactive energy technique to share
the surplus generation/demand with other participants in
the community for a higher proft than the utility. To
manage the local energy trading, a framework for the locality
electricity market is also proposed with two strategies: an
average market clearing strategy and a generation-to-
demand ratio-based market clearing strategy. Te proposed
architectures are validated through various case studies
considering ten residential participants. Compared to the
P2G approach with utility-defned PIL, the AMC technique
increases the community average savings in participants’
monthly electricity bills by 3.97%. However, by using the

Table 4: Penalty analysis for fault data injection attack under the AMC strategy.

UEM
GSP� 5.4 cents/kWh LND� 4 kW

LEM
λt
sell � 3.5 cents/kWh

GBP� 1.6 cents/kWh CDL� 3 kW λt
buy � 4.4 cents/kWh

PID END (kW) EEBill (cents) AND (kW) UEBill (cents) TEBill (cents) P-cost (cents) TEB (cents)

1 1.5 6.6 1.7 9.18 7.48 0.24 7.72
2 −1 −3.5 −0.8 −1.28 −2.8 0.24 −2.56
3 1.5 6.6 1.5 8.1 6.6 0 6.6
4 2 8.8 2.5 13.5 11 0.6 11.6
5 −1.5 −5.25 0.5 2.7 2.2 2.37 4.57
6 2.5 11 1.5 8.1 6.6 1.19 7.79
7 0.5 2.2 0.8 4.32 3.52 0.36 3.88
8 −2 −7 −2 −3.2 −7 0 −7
9 −0.5 −1.75 −1.8 −2.88 −6.3 1.55 −4.75
10 1 4.4 1 5.4 4.4 0 4.4
EEBill: expected electricity bill under P2P scheme. UEBill: expected electricity bill under P2G scheme. TEBill: trading electricity bill; P-cost-agreement
violation cost.

Table 5: Penalty analysis for fault data injection attack under the GDRMC strategy.

UEM
GSP� 5.4 cents/kWh LND� 4 kW

LEM
λt
sell � 3.1 cents/kWh

GBP� 1.6 cents/kWh CDL� 3 kW λt
buy � 4.2 cents/kWh

PID END (kW) EEBill (cents) AND (kW) UEBill (cents) TEBill (cents) P-cost (cents) TEB (cents)

1 1.5 6.3 1.7 9.18 7.14 0.22 7.36
2 −1 −3.1 −0.8 −1.28 −2.48 0.22 −2.26
3 1.5 6.3 1.5 8.1 6.3 0 6.3
4 2 8.4 2.5 13.5 10.5 0.55 11.05
5 −1.5 −4.65 0.5 2.7 2.1 2.19 4.29
6 2.5 10.5 1.5 8.1 6.3 1.1 7.4
7 0.5 2.1 0.8 4.32 3.36 0.33 3.69
8 −2 −6.2 −2 −3.2 −6.2 0 −6.2
9 −0.5 −1.55 −1.8 −2.88 −5.58 1.43 −4.15
10 1 4.2 1 5.4 4.2 0 4.2
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GDRMC approach, the average percentage savings is in-
creased to 6.63%. Furthermore, the percentage savings for
the community with 50% of participants who do not own
any in-house RERs are 7.69% and 12.83% for AMC and
GDRMC approaches, respectively. Tese fndings highlight
the signifcance of TEMS in improving end-user social
welfare. Furthermore, the penalty analysis for fault data
injection threats to provide the cyber security and reliability
of the P2P energy market.

Since the recommended techniques anticipate co-
operation from all players, the proft obtained by each
member during every trading interval is restricted in relation
to the community’s net demand. When community demand
exceeds generation, importers may not get signifcant eco-
nomic gains from LEM. On the other hand, exporters may
earn less when the generation is higher. In the future, as an
extension of this work, TEMS shall be developed with more
complex market clearing strategies to overcome the
abovementioned issue. Besides, with the proposed central-
ized power management system, the third-party agent
(LEMO) is required to coordinate the power balance be-
tween local generation and demand. Hence, a decentralized
system can be incorporated to eliminate third-party in-
tervention (LEMO) while implementing P2P power trading
in a microgrid community.

Nomenclature

AMC: Average market clearing
CDL: Consumer demand limit
DSM: Demand side management
FiT: Feed-in tarif
FLs: Flexible loads
GDR: Generation-to-demand ratio
GDRMC: Generation-to-demand ratio-based market

clearing
LEM: Local energy market
LEMO: Local energy market operator
NFLs: Nonfexible loads
PIL: Power injection limit
PID: Participant’s ID
P2G: Peer-to-grid
P2P: Peer-to-peer
RERs: Renewable energy resources
RTP: Real-time pricing
SEMS: Smart energy management system
SoC: State of charge.
TEMS: Transactive energy management systems.
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