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Tis paper proposes an efcient short-time probability approximation with Lévy excitation to capture the transient probability
distribution and its evolving path. Using principal component analysis (PCA), the method constructs a probability core to exclude
outliers beyond it. Te statistics of samples that fall inside the core are treated, with a prescribed fducial probability, as an easy-to-
estimate Gaussian type.Te idea is verifed numerically by compared withMonte-Carlo results.Ten, it is integrated into the path
integral (PI) method, combined with evolving probabilistic vector (EPV) techniques, to efciently obtain probability distributions
in each time step of PI.Tis scheme is semianalytical, only dependent on a relatively small amount of response samples to form the
probability core; thus, it can have very computational advantages over full Monte-Carlo simulation to capture transient responses
and probability distributions. Te application to investigating response transitions of a nonsmooth system driven by Lévy shock
and jump has revealed the performance of the proposed method. Also, the exit times of stochastic response are characterized
quantitatively from the perspective of global dynamic transition. Tese investigations will be helpful to achieve the efcient
probability estimation for nonlinear system with non-Gaussian inputs and quantify the reliability of the mechanical system.

1. Introduction

Noise, which is ubiquitous in engineering, inevitably dis-
turbs the dynamics of mechanical systems. Non-Gaussian
Lévy noise with diferent relevant parameters is a more
general form to describe various types of specifc distur-
bances such as intermittent shock and jump, which has been
observed in sea wave motion [1], turbulent fuid fows [2],
plasmas [3], and heartbeat dynamics [4]. Te uncertainty,
applied to a strong nonlinear system like a nonsmooth
dynamical structure, may arouse some potential dynamic
behaviors underlying intrinsic global structure to induce a
switch or even a transition betweenmultiple responses. For a
nonsmooth system, of course, the change of dynamics might
be intentional design (such as a stopper in an energy har-
vesting device [5, 6]) or undesired trouble (such as clear-
ances in a gear system [7, 8]). Anyway, plenty of studies and

their results have uncovered the fact that the noise, under a
basic frame of global structure, dominates the fnal forms of
responses. Terefore, it is of signifcance to develop an ef-
fcient method for investigating the disturbance efects of
noise on dynamical responses, particularly to determine
when the response of the system likely escapes from current
motion and where it will go from an engineering standpoint,
which can gain insight into predictions of fatigue life and
reliability, as well as structural design of a complex nonlinear
system.

Noise-induced behaviors could trigger a large-range
transition in the transient process [9–11]. Generally, the
probabilistic description of the stochastic response is gov-
erned by Fokker–Planck–Kolmogorov (FPK) equation, but
it is difcult to obtain the exact solution for the second-order
parabolic partial diferential equation. Te most direct
methods to estimate the random characteristics of the

Hindawi
Mathematical Problems in Engineering
Volume 2023, Article ID 4135812, 11 pages
https://doi.org/10.1155/2023/4135812

mailto:lzghsfy@hotmail.com
https://orcid.org/0000-0002-9941-9869
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/4135812


response are the statistical approaches based on the Monte-
Carlo simulation (MCS), but it exhibits the widely known
drawback that the accuracy of the estimates depends on the
number of samples, increasing the related computational
efort. Some alternative approximation methods consider
the solving input–output relations of probability density
function (PDF), for example, cumulant-neglect closure
schemes [12] based on evolutive moments, but it is efcient
only when the responses process is Gaussian. Te stochastic
perturbation methods [13] based on Taylor expansion can be
applied to formulate the statistics’ governing equations with
uncertainties, but restricted to local dynamics. Te proba-
bility transformation method [14] and its variants [15, 16]
have yielded much in describing the response probabilistic
characterizations of linear structures with non-Gaussian
input process, but it still faces a computational challenge
with respect to the evolution of PDF, above all for large
nonlinear systems. It is well known that the path integral
method in terms of the Markov rule can work nicely to
numerically estimate the probabilistic evolution of re-
sponses. Nevertheless, the computation of a one-step
transition probability matrix is quite time-consuming in the
traditional method. A short-time Gaussian approximation,
which was proposed by Riske in the 1980s [17], has been
reported in many published references [18]. It suggests that
the response PDF of a nonlinear system subject to Gaussian
noise approximately follows a Gaussian distribution with the
low-order moments determined by moment equations
[19, 20] or statistical simulations [21] when the time step is
sufciently small. Te error of the short-time Gaussian
approximation is within an error of order O(τ2). However,
for non-Gaussian cases such as Lévy process with shock and
jump in presence of sea wave and Hurricane, the outliers
may lead to the deviation of estimated mean value and
variance from the core of real PDF, resulting in a failure of
the short-time Gaussian approximation in probability
evolution. Recently, Xu et al. [22] derived theoretically an
approximated short-time solution aimed at a class of smooth
fractional FPK equation with one-dimension, which pro-
vides a theoretical feasibility of achieving the non-Gaussian
short-time approximation. Te method in the cited work
requires the participation of the analytic expressions of
stochastic diferential equations; however, the efciency
could sufer when the specifc expressions are complex.

In this paper, we present an efcient numerical esti-
mation method for approximating the distribution char-
acteristics of short-time responses of a nonlinear system
subject to Lévy noise, which is then used to compute the one-
step transition probability matrix of the PI formulation. In
this manner, the PCA is utilized to identify a probability
core, and the short-time PDF in the core can be analytically
estimated using just a small number of samples. Te overall
process is thus rather efcient, compared with full MCS.
When a transient-state large transition is dealt with, a
strategy of evolving probabilistic vector [23] is also
employed in this paper to enhance the performance in
storage and efciency of computation.

Tis paper is devoted to promoting the idea of short-time
probability approximation to the case of non-Gaussian input,

by which to quantitatively uncover how the Lévy disturbance
with shock and jump takes efect on response transitions in a
nonsmooth system with bilateral clearances and piecewise
elastic restoring forces. Te interest of the paper is to detect
the occurrence of response transition and uncover its path of
PDF in the complex nonsmooth system, taking advantage of
the proposed method. Also, the idea of the proposed method
is applicable to the investigation of short-time probability
approximation for other types of non-Gaussian inputs.

Tis paper is organized as follows: In Section 2, the idea
of the proposed short-time probability approximation for
non-Gaussian inputs is introduced in the frame of PI. In
Section 3, the stochastic response transitions of a nonsmooth
systemwith additive Lévy noise are investigated based on the
deterministic global structure that is treated as a basic frame
of responses. Te performance of the proposed method is
verifed by comparing it with MCS. In Section 4, the con-
clusions are summarized.

2. Methodology

2.1. Formulation of the Short-Time Path Integral. Recall that
the path integral method is used for obtaining the proba-
bility evolution of the stochastic system from a given initial
distribution on a N-dimensional state space RN, following
the difusion Markov process:

p(n + 1) � P(n) · p(n), (1)

where p(n) denotes probability at n th instant time step,
which is a probability vector distributed on the space CN

with Nc discrete grids. P(n) is a one-step transition prob-
ability matrix, and its (i, j) th element of Pij can be de-
termined by the following formula:

Pij(n) � 
CN

i

p x(n), tn

 xj(n − 1), tn−1 dx(n − 1)

� 

Si

k�1
p x(n), tn

 xj(n − 1), tn−1 ,

(2)

where CN
i is i th grid on CN, S denotes the total number of

samples whose initial points are uniformly selected within
CN

j domain, and Si is the number of samples that fall in CN
i

domain.
An intractable difculty is how can estimate the con-

dition probability p(x, τ
xj, 0) of Pij efciently. Tradition-

ally, it can be statistically obtained by direct MCS Si/S.
Tough this way is very attractive due to its versatility and
simplicity, a vast number of samples, up to hundreds for
each initial state and even more for higher dimensions, are
required to achieve an acceptable accuracy level of Pij, which
will result in a huge time consumption in the computation of
whole evolutions of P(n). Te idea of short-time probability
distribution approximation is a great way to evaluate ef-
ciently a one-step transition probability matrix by an ana-
lytic probability density function (PDF). In reference
[17, 18], when the evolving time step τ is sufciently small,
the response PDF of a nonlinear system under excitations of
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Gaussian noise is considered approximately as Gaussian
within an error of order O (τ2), and then, the distribution
p(x, τ

 xj, 0) is specifed by the short-time mean value vector
m(τ) and the short-time variance matrix B(τ) determined
by moment evolution equations at time τ, which can be
denoted as follows:

p x, τ|xj, 0  �
1

(2π)
N/2

|B(τ)|
1/2

× exp −
1
2
[x − m(τ)]

TB(τ)
−1

[x − m(τ)] .

(3)

Te success of the previous short-time Gaussian ap-
proximation is based on the cumulant-neglect closure of
low-order moments. Yet, it is far from obtaining the ex-
pression of moment evolution equations for a nonsmooth
system. What is more, due to the Lévy jump, low-order
moments directly evaluated by statistical simulations may
fail to depict the profle and core of the response distri-
bution, resulting in an unacceptable deviation from its true
PDF. Tis deviation will be illustrated in Figure 4(a)
hereafter.

2.2. Idea of Short-Time Probability Estimation Based on PCA.
To address the aforementioned problem with the devia-
tion in estimating probability distribution due to isolated
outliers, the principal component analysis is employed
here to fnd a core region covering the majority of sample
realizations. To characterize the short-time PDF
p(x, τ

 xj, 0) evolving from j th grid, the data set DS×N

whose row denotes S samples with N dimensions is ini-
tially centered as DS×N by

DS×N
� H · DS×N

,

H � Is −
1
S
1s1

(T)
s ,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(4)

whereH defnes a matrix centering for raw samples evolving
from j th grid, Is is a identity matrix with s dimensions, and
1s represents a s-dimensional column vector whose elements
are all one and 1(T)

s is its transpose.Ten, the eigenvalues and
eigenvectors of DS×N can be obtained by singular value
decomposition

DS×N
� UΣ2VT

, (5)

where U and V are orthogonal matrices. Columns of V are
eigenvectors representing the principal components of the
centered data, and the diagonal matrix Σ2 consists of cor-
responding eigenvalues representing the magnitudes of
principal components. Tus, a hyperellipsoid whose center
is at the 1/s(DS×N)(T)1s is formed in a N-dimensional state
space. Te coverage of its core is determined by axial di-
rections denoted by the eigenvectors V and axial lengths
denoted by the corresponding scaled eigenvalues εΣ (ε is a

chosen scale factor). Of course, the dimensions of the
hyperellipsoid may be reduced to be less than N if there are
parts of eigenvalues close to zero. Te number of samples
covered by the hyperellipsoid’s core is predominant in
statistics, and its distribution on the core can be approxi-
mated to be Gaussian. In this manner, therefore, the short-
time probability distribution can be characterized semi-
analytically by equation (3), where the mean value vector
and variance matrix are estimated by only a few samples that
fall into the hyperellipsoid in the short-time interval,
avoiding lots of whole long-time integrals for governing
equations to reduce computation cost.

To further efciently capture the transient-state re-
sponses and large probability transition, the strategy of
evolving probabilistic vector is introduced into the above PI
method based on the short-time approximation. In this
manner, by a prescribed fducial probability Pf, the grids are
classifed into the active region covered by Pf and the in-
active region outside of Pf. Usually, the number of grids that
reside in the inactive region is considerable, yet their joint
probabilities are tiny [23]. For this reason, the inactive re-
gion will dose not be involved in the computation and
storage to reduce computational efort. Te iterative prob-
ability evolution rule is as follows:

Pij · pj(n) � 0, j � r,

Pij · pj(n) � pi(n + 1), j≠ r,

⎧⎨

⎩ (6)

where i, j � 1, 2, . . . , Nc, r denotes the index of grids oc-
cupied inactive region. Te fducial probability Pf in each
short-time step is expressed by

Pf � 
i


j≠r

Pijpj(n). (7)

Here, in the evaluating process, the one-step transition
probability matrix is no longer a fx-sized matrix corre-
sponding to grid resolutions, but rather a dynamical
probability vector whose size is far less than the whole,
depending on the scope of the active region. Te perfor-
mance of the proposed short-time probability approxima-
tion method can thus be enhanced signifcantly to capture a
large-range probability transition.

3. Stochastic Dynamics of a Nonsmooth System

3.1. Stochastic Modeling. In this paper, we focus on a
nonsmooth dynamical system with base motion xb(t) and
displacement constraint, which is a simplifed model derived
from a vibration isolation system with an amplitude limiter
or an energy harvesting device with a designed stopper. Te
model is for qualitative discussion on stochastic dynamics.
As shown in Figure 1, an object with lumped mass m is
supported vertically by a linear spring and damping. Also,
the bilateral springs with stifness coefcients kn are installed
symmetrically along its direction of motion to exert a dis-
placement restriction by an additional restoring force with
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cubic nonlinearity when themotion of mass x(t) exceeds the
amplitude of clearances. Te bilateral clearances are denoted
by Δl and Δu. Ten, the restoring force is modeled by a
piecewise formula:

FKN �

kn |x| − Δu 
3
, x> Δu,

0, −Δl ≤x≤Δu,

−kn |x| − Δl 
3
, x< − Δl.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(8)

With base motion xb(t), the clearances between object
and bilateral springs both are time-varying; that is, Δl(t) �

δ − xb(t) and Δu(t) � δ + xb(t), where δ is a constant
denoting the initial value of clearances. In some cases, such
as disturbances from sea waves, hurricanes, and environ-
mental noise might not be typically Gaussian. Te inter-
mittent shocks in the persistent disturbances could be
considered as an additive Lévy process with jump. Ten, the
mathematical model of the dynamic system can be derived
in the Cartesian coordinates:

m €x + c _x − _xb(  + k x − xb(  + FKN � η(t), (9)

where c and k are the linearized damping and stifness
coefcients. Here, the base motion xb is treated as a periodic
excitation with amplitude A and frequency f; that is, xb �

A · cos (f · t). Meanwhile, η(t) defnes a random process
obeying Lévy probability distribution to simulate an un-
certain disturbance with shock and jump, which satisfes the
characteristic function (k):

ϕ(k) �

exp iμk − σα|k|
α 1 − iβsgn(k) tan

πα
2

   ,

α≠ 1,

exp iμk − σ|k| 1 + iβsgn(k)
2
π
ln |k|  ,

α � 1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

where α ∈ (0, 2] is a stability index, indicating the
thickness of the tail of the Lévy distribution. β ∈ [−1, 1]

denotes the skewness parameter, indicating the direction
of the random jump. μ and σ are the mean and the
generalized difusion coefcient of random walks. Te
sgn(·) is an operator of the sign function. Actually, the
Lévy process can be viewed as a compound of Wiener
motion and compensated Poisson process. In particular,
the Lévy process degenerates to be Gaussian for the case of
parameters α � 2 and β � 0.

For the simplifcation and wide applicability of the
following analysis, the nondimensional parameters are in-
troduced as follows:

X �
x

l
, A �

A

l
, Xb �

xb

l
� A cos (Ω · τ),ωn �

��

k

m



,

Ω �
f

ωn

, δ �
δ
l
, τ � ωnt,Δ u � δ + Xb,Δ l � δ − Xb,

(11)

where l denotes the characteristic length used for dimen-
sionless. Equation (9) becomes

€X + C _X + KX + FKN � KXb + C _Xb + η(τ), (12)

where C � c/mωn denotes nondimensional linearized
damping, K � k/mω2

n be nondimensional stifness coef-
cient, and KN � kn/mω2

n is nonlinear stifness item, and
then,

�FKN �

�KN |X| − �Δu 
3
, X> �Δu,

0, −Δl ≤X≤ �Δu,

− �KN |X| − �Δl 
3
, X< − Δl.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(13)

Although the expression in equation (12) should be
regarded primarily as a model one for illustrating the
analysis of basic efects involved in the case of nonsmooth
characteristics and impact excitation, it may have potential
application to the dynamics of suppression or utilization of a
vibration device equipped on the moored body under ocean
waves.

3.2. Short-TimeProbabilityApproximation for theNonsmooth
System. To validate the efectiveness of the proposed
method for the nonsmooth system and determine the ap-
propriate estimation parameters, namely the scale factor ε
and the time step τ, the coverage of the semianalytical
probability core is here examined by overlapping 5000
stochastic samples of short-time responses obtained by MCS
as a benchmark. In the following, the basic properties of the
system in equation (12) are set as C � 0.01, K � 0.6, KN �

3000, A � 0.20,Ω � 1.0, unless otherwise indicated. Figure 2
illustrates that when τ � π/2 in equation (12) with param-
eters of noise σ � 1.0 and α � 1.5, 89.6%, 92.6%, 95.7%,
97.6% (orange points) of 5000 samples generated by
MCS from the identical initial state fall inside the cores of

m

xb (t)
k

kn
c

base

x

x

y
kn

Δu

Δl

Figure 1: Te nonsmooth dynamic system with bilateral
constraints.
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Figure 2: Short-time response samples obtained by MCS and cores of 2D-ellipsoid determined by PCA with ε � 1.0, ε � 1.2, ε � 1.5, and
ε � 2.0, respectively.
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Figure 3: Continued.
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2D-ellipses determined by two principal components with
ε � 1.0, 1.2, 1.5, and 2.0, respectively. Clearly, the smaller the
scale factor, the more the number of samples that are ex-
cluded, resulting in a drastic truncation of the probability
distribution tail. However, if the scale factor is set to a too
large value, the isolated outliers it contained may distort the
Gaussian distribution within the core. Tus, both of the two
cases will bring in an unacceptable loss of accuracy. In the
stochastic analysis of the nonsmooth system, ε � 1.5 is se-
lected to surround as many dispersed samples as there are in
the ellipse denoting Gaussian core.

Based on this, Figure 3 reveals an optimal short-time
interval for mapping. It can be seen that the majority of
response realizations congregate in the given Gaussian core
when τ ≤ π/2, in accordance with the expectancy of the
Gaussian core, yet the escape of responses from the esti-
mated ellipse has occurred to the samples when τ > π/2,
indicating the onset of dynamic transition that leads to the
failure of short-time approximation. In other words, τ being
π/2 is appropriate and suitable for the system.

Take S � 30 to be the number of samples used in our
method to estimate a probability core, which is much less
than that of full MCS. Figure 4 shows a comparison of the
short-time PDFs estimated by the proposed method, the
direct low-order moments method, and the full MCS using

106 samples as a benchmark. As can be seen, the PDF de-
scribed by the frst two order moments (see Figure 4(a))
based on a very small amount of samples shows a consid-
erable deviation especially at the peak of probability, while
the proposed short-time approximation technique com-
bined with the PCA strategy (see Figure 4(b)) has a great
accuracy of estimation, as compared with full MCS (see
Figure 4(c)).

3.3. Probability Transition Induced by Lévy Noise. Below, the
dynamics of the nonsmooth system is investigated in an in-
teresting state space [−0.6≤X≤ 1.0, −1.0≤dX≤ 1.0], which is
discretized into 5120 × 5120 grids with resolution
0.000312500 × 0.000390625. Te full MCS will inevitably en-
counter a huge computation cost for such a high resolution.

When noise is absent, that is, D � 0, the deterministic
global structure of the nonsmooth system is frst examined
using the generalized cell mapping method [24]. Te purpose
of the investigation is to understand the underlying basic
frame that the stochastic response will obey, which involves
what types of responses (attractors) exist and how attractive
they are (basins of attraction). As seen in Figure 5(a), for a
given designed initial clearance δ � 0.60, there are six
attractors coexisting in the state space, including two period-1
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dX
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First principal component
Second principal component
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First principal component
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Figure 3: Short-time response samples obtained by MCS and cores of 2D-ellipsoid determined by PCA with (a) τ � π/4, (b) τ � π/2,
(c) τ � π, (d) τ � 2π, respectively.
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attractors (“ + ” and “⋆”) labeled by symbols “ + ” and “⋆”,
two period-2 attractors by “◆” and “ × ” as well as two period-
3 attractors by “△” and “•”. Corresponding orbits of steady-
state responses after 400 evolution periods are obtained by
numerical integral from initial states locating in the diferent
basins of attraction (see Figures 5(b)–5(d)). Te response
corresponding to the period-1 attractor (“ + ”) does not reach
the minimum amplitude of dynamical clearance
|Δmin| � δ − A � 0.40, indicating that the system runs
without collision when staying in the basin of the attractor,
while other responses mean bilateral elastic collision hap-
pened. Also, it is observed in Figure 5(a) that one chaotic
saddle (red points) and isolated saddle points (red “⊙ ”) are
embedded in a wide range of fractal boundaries separating the
corresponding basins of attraction. Obviously, the basin
boundary is wrinkled and interweaved, and every grid dis-
cretized on the boundary has the nature that the points inside
will go into at least three diferent basins. In other words, the
basin boundary is Wada, which is drawn by colorful points.

Taking the Lévy excitation into account, the stochastic
probability evolutions are then simulated numerically
using the proposed method in Section 2. Consider that the

system is initially working in the state of collision-free. It
is easy to image that when a small noise is present, the
response PDF can still stay around the initial basin of
attraction for a long time. For a relatively large uncer-
tainty of impact and jump in Lévy noise, as shown in
Figure 6 with the parameters σ � 1.0 and α � 1.5, the
probability distribution around the initial state is ex-
plosive increasingly, and rapidly, most response realiza-
tions are pushed out of the basin of the period-1 attractor.
Tis suggests that a signifcant qualitative change in dy-
namics occurs since the stochastic period-1 attractor
under fducial probability touches the saddle on its basin
boundary (isolated red point in Figure 6), leading to the
blue-sky disappearance of the stochastic responses around
the period-1 attractor. Eventually, the PDF of response
escapes and fows along the unstable manifold of the
saddle to where another distant period-1 attractor resides,
after about 400 periods of responses.

Te transient results obtained by the proposed method
are compared to those by full MCS. Here, the absolute error
(AE) and accuracy (Acc) are used to quantify the validity of
the proposed method, that is,
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Figure 4: Comparison of short-time PDF estimated by (a) direct low-order moments by statistical simulations with 30 samples, (b)
proposed probability core with 30 samples, (c) full Monte-Carlo simulations with 106 samples as a benchmark.
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Figure 6: Continued.
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where Pg and Pg denote the grid probabilities estimated by
the proposed method and full MCS with 106 samples, re-
spectively. With a given fducial probability Pf � 95% in
EPV, the AE contour maps shown in Figure 6 demonstrate
that the maximum AE throughout the whole transient
process is under the magnitude of 10− 3, and overall Acc
reaches 99.96%, indicating the proposed method performs
well.

In engineering, the exit time in evolution is regarded as a
measurement for evaluating the stochastic stability of the
system. In this paper, it is defned as a time period during
which the response PDF continues to remain in an initial

basin of attraction under a certain probability threshold Pt,
which can be written as follows:

Pt � 

NBoA

i�1
P

i
BoA, (15)

where PBoA denotes probabilities of NBoA grids that cover a
basin of attraction. Taking the proposed method, the exit
times of transient response PDF escaped from initial col-
lision-free motion are investigated with diferent noise pa-
rameters and Pt � 90%. Figure 7(a) reveals that the response
transition from one state to another in response slows down
as the parameter σ increases.When σ is greater than 1.10, the
response transition apparently gets put of. On the contrary,
a small α might hasten the transition. From the Figure 7(b),
the parameter β has negligible infuence on the response
transition, though. Tese investigations evidence that the
proposed method performs well in capturing the large-range
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Figure 6: Transient evolutions of response joint PDFs, where isolated red point is saddle point near period-1 attractor and pseudocolor
maps indicate response PDFs with evolving time: (a) (c), (e) (g), (i) (k) results of the proposed method; (b) (d), (f ) (h), (j) (l) AE contour
map.
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Figure 7: Exit times of responses PDF for diferent parameters of Lévy noise with a probability threshold Pt � 90%: (a) parameter plane α-σ;
(b) parameter plane α-β.
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response transitions of a nonsmooth nonlinear system
subject to the Lévy input process.

4. Conclusions

Tis paper develops a short-time probability approxi-
mation strategy in the PI frame for efciently estimating
one-step transition probability for a stochastic system
with input of Lévy noise. In this manner, the PCA method
based on data is employed to establish the principal di-
rections of distribution and their magnitudes so that
forming a probability core of hyperellipsoid dominates
the majority of the probability of samples, and the dis-
tribution in the core is considered as Gaussian. Te
proposed method presents two advantages: by PCA, just a
small amount of response realizations are necessary, and
by EPV, a prescribed fducial probability signifcantly
reduces the region to be examined in state space.
Terefore, the method takes much less computing cost
than full simulations when capturing a large probability
transition to predict the fatigue life and reliability of the
mechanical system. Meanwhile, the proposed method has
the potential for further application to the efcient in-
vestigation of transient-state probability evolution for
other cases of nonsmooth and non-Gaussian excitation.

By the proposed method, the large-range probability
transition of a Lévy-induced nonsmooth system is efciently
captured. Troughout this process, using just 30 samples to
estimate a probability core, as opposed to hundreds of
samples in MCS, the computation cost is relatively cheap,
and the overall accuracy can approach 99.96%. Meanwhile,
the exit time of response PDF in transition from a basin of
attraction is denoted as an evaluation of the stochastic
stability of the system. It is discovered that the α index of
Lévy noise can infuence the transition speed signifcantly.
From the perspective of engineering, the noise-induced
phenomena cause a large-range transition of responses
between diferent attractors, which may be benefcial to the
structure design of vibration utilization devices such as
energy harvesting system.
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