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Te choice and the dimensioning of the controller for the maximum power point tracking (MPPT) are determined for the ideal
energy efciency of the photovoltaic (PV) systems. Many works have been developed in the feld of MPPTmethods, especially
fuzzy logic controllers. However, these are robust if the parameters of the membership functions have been well designed. In this
paper, the performances of an intelligent fuzzy logic controller (FLC)-based MPPT method have been optimized by an evo-
lutionary genetic algorithm (GA). Te works presented in the literature have shown the efciency of the proposed method
compared to classical methods. In our paper, the validation of the experimental results obtained is given with respect to a reference
signal. Te control of the simulated PV source and the proposed method are built using the Simulink/Matlab environment and
implemented on the dSPACE DS1104 controller to validate the practical execution of the suggested method. Te standalone PV
system has been tested in an emulated test bench experimentation. Experimental results confrm the efciency of the proposed
method and its high accuracy in handling fast varying load conditions.

1. Introduction

Renewable energy is critical to sustainable development
around the globe. Photovoltaic (PV) energy is one of the
most abundantly available and cost-efective renewable
energy sources. PV power is utilized in grid-integrated,
standalone, and hybrid energy systems [1]. Standalone PV
systems are utilized in distant locations where power from
the main AC grids is not available. PV systems that include
an energy storage system. PV power is also integrated into

a grid using power converters, and in order to meet the
standards of grid codes, the integration of such power source
needs sophisticated control techniques. Hybrid power sys-
tems can be produced by combining solar photovoltaic
systems with wind, tidal, and thermal energy [2]. However,
due to the stochastic nature of solar/PV energy, the output
power produced by PV systems is also fuctuating.

Te solar panel can give the maximum amount of power
to the load at its ideal operating point. Maximum power
point (MPP) is the common name for the specifc operating
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point. Because solar irradiation and cell temperature have
a signifcant impact on the current-voltage characteristic of
PV modules, the locus of MPP exhibits nonlinear change.
Te MPPT is to be created for the PV system due to the
nonlinearity of PV modules. At any solar irradiation and
temperature, MPPT is able to determine the PV panel MPP
operating voltage. Te PV system controls the PV module’s
voltage to theMPP operating voltage. It is possible to draw as
much power as you can. As a result, the PV system’s ef-
fectiveness can be increased [2, 3].

Several research algorithms have been reported to ex-
tract themaximumpower from solar panels under stochastic
environmental conditions. A number of techniques have
been presented in recent years as examples, including
perturb and observe (P&O) [4], incremental conductance
(INC) [5], and fuzzy logic controller (FLC) [6].

Te simplest algorithms are P&O and INC. However,
due to the fact that the disturbance continues even when the
system is functioning at the MPP, these techniques lead to
power oscillations around the MPP. Te duty cycle step
might be decreased to address this problem. However, in this
scenario, as atmospheric circumstances change, the system
will track the MPP slowly. Te PV system’s total efciency is
decreased as a result of the power losses. A slight change in
the step size in the P&O algorithm disrupts algorithm
control. Te measurement of PV system output power
causes a slight modifcation to the direction of the step size
specifed by the P&O technique. Common problems could
occur if a PV panel’s output power is increased or decreased
abruptly [7].

Alternatively, the FLC is used to track anMPPwith more
accuracy due to its inherent advantages in handling non-
linearity and the lack of a mathematical model, but this
algorithm is greatly related to user experience with the PV
panel characteristics. As reported in [8], an MPPTalgorithm
based on the FLC has been applied successfully for a pho-
tovoltaic generator system with a variable resistive. From the
presented results, the FLC-based MPPT algorithm ensured
enhanced performance as compared to the P&O technique.
Similarly, in [9], an FLC-based MPPT controller is tested
under variable atmospheric conditions. Te FLC MPPT
controller proposed in [9] guaranteed the optimal operation
and performance of the autonomous PV system. In [10, 11],
authors reported fuzzy controllers to regulate the power
generated in a hybrid system containing PV and wind
turbine systems. Te study of interval type-3 fuzzy logic
controllers (IT3 FLCs) has gotten a lot of attention recently.
Numerous studies have demonstrated that IT3 FLCs can
manage uncertainties better than their type-1 (T1) and type-
2 (T2) counterparts [12].

Even though FLC controllers have many advantages,
building them is still challenging since there is no stan-
dardized method for locating fuzzy control rules and fne-
tuning the membership function parameters of the con-
trollers. To get the better of this limitation, the design
procedures are formulated as optimization problems that are
typically solved using evolutionary algorithms [13–15], such
as genetic algorithms (GAs). GAs are widely regarded as one
of the most efective optimization techniques. Te GA is

capable of solving a wide range of complex optimization
problems, including those with nonderivable cost functions
[16]. Genetic algorithms attempt to simulate the evolu-
tionary process of species in their natural environment: an
artifcial transposition of basic concepts of genetics and the
laws of survival stated by Darwin.

A GA is constructed in quite analogous way. In the
solution set of an optimization problem, a population of size
N consists of N solutions (the individuals in the population)
suitably marked by coding that identifes them completely.
An evaluation procedure is necessary to determine the
strength of each individual in the population. Ten, there is
a selection phase (in which individuals are chosen in pro-
portion to their strength) and a recombination phase (in
which artifcial operators of crossing and mutation are used
to generate a new population of individuals with a good
chance of being stronger than those in the previous gen-
eration). From generation to generation, the strength of the
individuals in the population increases, and after a certain
number of iterations, the population is entirely composed of
strong individuals, that is to say, of quasi-optimal solutions
to the problem.

Teoretical work on the optimization problem of fuzzy
controllers has been widely reported in the literature. A GA-
based optimization problem is solved in [17] to fnd the
optimal scaling parameters of a fuzzy logic-based MPPT
controller that maximizes the efciency of a PV pumping
system. In [18], the algorithm GA is used to optimize the
following two controllers: the fuzzy PI (proportional and
integrator) and the P&O PI.Te simulation results presented
in this article have demonstrated that the fuzzy PI-GA is
better than the P&O PI-GA in terms of response time.
Similarly, in [19], theoretical simulations have been carried
out. Te authors have used a hierarchical genetic algorithm
to design a fuzzy controller for the command of a photo-
voltaic conversion system.

Te implementation aspect of optimized fuzzy controllers
has been reported in [20–25]. An experimental study on the
MPPT controller using the FPGA (feld programmable gate
array) has been presented in [21]. Based on the obtained
results, the authors concluded that the optimized FLC out-
performs the conventional P&Omethod in terms of response
time and steady-state fuctuations. In [23], FPGA imple-
mentation of MPPT-based fuzzy logic is investigated for
standalone PV conversion systems. In [24], FPGA imple-
mentation of a fuzzy controller is reported for a PV system.
Te authors in [25] discuss the MPPT technique based on
GAs for a standalone PV conversion system. Te results have
been compared with the conventional techniques. Te results
have been validated experimentally using a dSPACE control
board. Another two hardware implementations of fuzzy
controllers for MPPT of PV systems have been described in
recent works [26, 27]. Te experimental results obtained have
been compared to a conventional P&O method. Te fuzzy
controller design has been better than the P&O. However, it
shows signifcant oscillations at the optimal point.

Tis paper discusses the hardware implementation of
a fuzzy controller optimized by the GA algorithm for MPPT
tracking using the dSPACE 1104 control board. Te
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proposed MPPTmethod is tested for maximum harvesting
power under real-time environmental conditions. Te fol-
lowing is a summary of the primary diferences between the
current work and the related literature:

(i) Te fuzzy controller is optimized to improve the
convergence speed for maximum power harvesting
of the PV system. Te suggested technique can also
track the global MPP (GMPP) efciently, which is
very benefcial in variable atmospheric conditions.

(ii) Te proposed algorithm is tested for fast-changing
solar irradiation and a variable resistance load.

(iii) In the cited literature [20–25], the design of a fuzzy
MPPT controller using the GA optimization algo-
rithm is accomplished for a learning profle of
constant conditions (T� 25°C and S� 1000W/m2).
However, atmospheric conditions are constantly
changing. In this work, diferent variations of the
irradiance (600W/m2, 1000W/m2, and 800W/m2)
are adopted to test the robustness of the optimized
control utilized.

Te paper’s sections are structured as follows: Section 2 is
a description of the system. Section 3 shows the design
procedures of the fuzzy controller. Section 4 shows the
proposed optimized control strategy. Section 5 presents the
steps of the details of the experimental real-time platform.
Te result discussion is also presented in this section. Finally,
Section 6 presents a general conclusion that will summarize
the content of this work and put forward the results
obtained.

2. Standalone PV System Description

Figure 1 shows a block diagram of a standalone PV system.
Te components of the system are the PV panel connected to
a variable resistive load through a matching stage. Te latter
is composed of a boost converter.Te switch of the converter
is controlled by the signals generated by the proposed
method.

2.1. PV Panel Model’s Mathematical Equation. Tere are
a few diferent sorts of models, such as single-diode and two-
diode models [28, 29]. Te two-diode model accounts for
a second diode that is wired in parallel with the frst diode in
the circuit that functions as a single diode’s equivalent.
Compared to a two-diode model, the one-diode model has
fewer parameters and is simpler to model. Te electrical
properties P (V) and I (V) of the solar panel as simulated and
experimental data clearly demonstrate that the results are
identical, according to the paper [29]. Te one-diode model
of the solar cell is used in this paper [29].

Te PV panel model’s mathematical equation is for-
mulated according to the cell’s number in series only, and
the cell’s number in parallel is equal to 1 according to our BP
SX150S model in the following equation:

Ipv � IPh − Is exp
Vpv + IpvRs

NsVT

􏼠 􏼡 − 1􏼠 􏼡 −
Vpv + IpvRs

Rsh
􏼠 􏼡, (1)

where VT is equal to (a.k.T/q).
Te PV panel electrical parameters shown in equation (1)

are reported in Table 1.
Table 2 lists the BP SX150S solar panel from BP solar,

which is reported at the Standard Test Condition (STC, i.e.,
25°C and 1000W/m2).

2.2. Boost Power Converter. Te boost power converter is
inserted between the PV panel and the load as an
impedance-matching stage. Te PV output voltage (Vpv) is
regulated to keep it at the nominal voltage (VMPP) by means
of an MPPT controller. Voltage regulation is equivalent to
controlling the opening and closing of the IGBT power
switch through a pulse width modulation (PWM) tech-
nology. Te IGBT switching frequency is 8 kHz.

To get the most power out of the PV panel that is now
available, a new duty ratio D of the PWM signal must be
generated in real-time. Table 3 lists the parameter values for
the boost converter that was designed. Te mathematical
equation of the boost converter’s output voltage and current
has been given as follows [30]:

Vo �
1

1 − D
Vi,

Io � (1 − D)Ii,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(2)

where Vo and Io are the output’s voltages and currents of
boost converters, respectively, and Vi and Ii are the input’s
voltages and currents of boost converters, respectively.

3. Fuzzy MPPT Controller

Te fuzzy MPPT controller is an intelligent method of
tracking a PV system’s maximum power point. In lieu of
a precise mathematical model, it uses the fuzzy set theory.
Te internal functioning of a fuzzy controller of the
Mamdani type is based on the structure presented in
Figure 2, which includes four blocks [31].

Te fuzzifcation consists in calculating, for each real input
value, the degrees of membership to the associated fuzzy sets
predefned in the database of the fuzzy system. Tis block
carries out the transformation of the real inputs into symbolic
information that can be used by the inference mechanism.

Te inference mechanism consists, on the one hand, in
calculating the degree of truth of the diferent rules of the
system and, on the other hand, in associating an output value
to each of these rules. Tis output value depends on the
conclusion part of the rules, which can take several forms. It
can be a fuzzy proposition, and we will speak of a rule of type
Mamdani “IF-THEN” in this case:

IF (. . .)THENY is X, X is set f lou. (3)

Te defuzzifcation consists in replacing the set of output
values of the various rules resulting from the inference by
a single real value representative of this set.

Te inputs and outputs of the FLC controller are rep-
resented by the triangular and trapezoidal MFs. In Table 4,
the letters P and N stand for positive and negative linguistic
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variables, respectively. Te letters B, S, and ZE additionally
stand for Big, Small, and Zero. Five separate linguistic
variables are allocated to each input variable, e(k) and e(k).
As a result, there are 25 diferent fuzzy rules in the suggested
set of fuzzy rules. Te entire set of fuzzy rules is presented in
Table 4 [31].

Te two input variables that are characterized by the
following expressions at a sampling instant k are the error
equation (4) and error variation equation (5):

e(k) �
Ppv(k) − Ppv(k − 1)

Vpv(k) − Vpv(k − 1)
, (4)

∆e(k) � e(k) − e(k − 1). (5)

Based on these two inputs, the FLC calculates the
subsequent operating point using MFs and a rule table. Te
operating point will be on the right or left side of the MPP,
depending on whether E is positive or negative. When E
equals zero, the MPP is reached. Te operational point
moves in the MPP direction according to the e-input.

Te duty ratio D is computed as follows:

D(k) � GD × ∆DN(k) + D(k − 1), (6)

where ∆DN is the duty ratio at the controller output and GD

represents the factor’s scaling output.

4. Proposed Optimized Fuzzy-Based MPPT

Generally speaking, the following steps can be used to defne
the genetic algorithm.

4.1. Procedure Genetic Algorithm

Step 1 (initialization). Generate an initial population Pop (t)
of size N of chromosomes in a random manner.

Table 1: PV panel electrical parameters.

Parameters Designations
VT Diode thermal voltage
a Diode ideality factor
K Boltzmann constant
T Cell’s temperature
Q Electron charge
IPh Light generated current
Is Diode saturation current
Rs Series equivalent resistances
Rsh Parallel equivalent resistances

Table 2: Te BP SX150S solar panel.

Parameters
Nominal power (PMPP) 150W
Output power tolerance ± 5%
Nominal current (IMPP) 4.35A
Nominal voltage (VMPP) 34.5V
Open circuit voltage (Voc) 43.5V
Short circuit current (Isc) 4.75A
Cells number in series (Ns) 72

Table 3: DC-DC boost converter specifcations.

Electrical specifcations
Inductor (L) 0.6mH
Input capacitor (Ci) 500 μF
Output capacitor (Co) 2200 μF
Switching frequency (fs) 8 kHz
IGBT SKM50GB12T4

BP SX150S
Panel

Boost
converter

Variable
resister

PWM

Ipv

Vpv

Fuzzy MPPT
controllerFiltering

Optimization algorithm
GA

Filtering

e Δe ΔDN

Figure 1: Te illustrative diagram of the implemented PV system.
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Step 2 (evaluation). Each chromosome is decoded and
evaluated Pop (t).

Step 3 (Selection). Production of a new population of N
chromosomes with the use of a suitable selection technique,
select Pop (t) from Pop (t-1).

Step 4 (recombination). According to their probability,
crossover, and mutation of some chromosomes within the
new population.

Step 5 (termination). To phase 2, as long as the problem stop
condition is not satisfed.

4.2. Structure of Chromosomes. In this paper, the mem-
bership functions of the fuzzy MPPT controller are opti-
mized. Te inputs and output membership functions are
each defned by fve parameters. For a fuzzy controller with
two input variables and one output variable, the membership
function numbers are in order 3× 5. Terefore, the GA
chromosome’s structure is given as a vector of ffteen pa-
rameter values, as shown in Figure 3.

4.3. Initial Population. Te chromosomes of the original
population are set to random variables. A sequence of
random numbers ri,j between 0 and 1 is created for each
element Xi,j of particle i. Ten, by projecting [0, 1] into [XL

j ,
XU

j ], Xi,j is determined as follows:

Xi,j � X
L

j
+ ri,j × X

U
j − X

L
j􏼐 􏼑, (7)

where XL
j represents the inferior limit of Xi,j and XU

j

represents the upper limit of Xi,j.

4.4. Optimization Criterion. Te goal of designing a fuzzy
MPPT controller is to discover the optimal settings that
minimize energy loss in the PV system, which is mostly caused
by meteorological conditions. Te optimization criterion’s
objective function given in equation (8) describes an integral
squared error (ISE) function. At each learning step, an ISE
value is calculated, and at the end, the best value is returned.

ISE � 􏽚
tf

0
(e(t))

2dt, (8)

where e(t) � Pmax(t) − Ppv(t), Pmax is the PV panel’s rated
power, Ppv is the PV panel’s instant power, and tf is the
simulation time.

4.5. Selection Process. Te selection process is applied to the
chromosomes of the algorithm. Tis process is the frst step
in the selection of the best chromosomes suitable for rep-
lication. Te tournament selection is used in this work. Tis
selection technique uses proportional selection on chro-
mosome’s pairs and then chooses from these pairs the
chromosome with the best adaptation (ftness) score.

4.6. Crossover and Mutation Operators. In this study, for
a real-coded genetic algorithm, the Laplace crossover op-
erator is suggested [32, 33]. For the real string, a real value
mutation has been created. Each parameter Xi,j receives an
addition of a randomwith the probability rate pm.Te direct
application of this mutation can create new parameters
outside the interval [XL

j , XU
j ]. Terefore, we propose the

following mutation equation (9) for keeping parameters in
their range of variation:

Xi,j �
Xi,j + rand1 × X

U
j − Xi,j􏼐 􏼑 if rand3 < 0.5,

Xi,j + rand2 × X
L
j − Xi,j􏼐 􏼑 if rand3 ≥ 0.5,

⎧⎪⎨

⎪⎩
(9)

where rand1, rand2, and rand3 are random numbers between
[0, 1].

5. Experimental Results and Discussion

Te experimental test bench for the simulated PV system is
depicted in Figure 4. Te GREAH laboratory in France is
where the hardware implementation was developed. Te
implementation in real time of the proposed MPPT

Δe
ΔDNFuzzification

Fuzzy
involvement

Defuzzification

Decision-making mechanism

Fuzzy rules’s inference
IF...THEN...

Rules
aggregation

Fuzzy controller

e

Figure 2: Te synoptic diagram of a fuzzy controller.

Table 4: Te rule base table for the fuzzy MPPT controller.

e
∆e

NB NS ZE PS PB
NB ZE ZE PB PB PB
NS ZE ZE PS PS PS
ZE PS ZE ZE ZE NS
PS NS NS NS ZE ZE
PB NB NB NB ZE ZE
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controller has been given by a dSPACE DS1104 board. Te
Simulink model of the PV panel as well as the solar radiation
and temperature profles were implemented on a Dspace
1104 board. Te reference current and voltage signals
computed by the panel control an adjustable DC power
supply. Figure 5(a) shows the acquisition chain of the PV
source emulator (EPVS). Te emulated system involves the
use of a boost converter to connect an EPVS to a variable DC
load, and the boost’s converter specs are illustrated in Ta-
ble 3. Te block for generating PWM signals from the duty
ratio values is given in Figure 5(b). Te two sensors for
measuring voltage and current are Cleqee A622 and TA057,
respectively. Te sensors have been connected to the
dSPACE acquisition board through the ADC ports. Te
measurements of the sensors have been fltered with digital
flters implemented on the dSPACE board, as can be seen
through Figure 5(a). Te experimental results in Figure 6
have been given at a varying load profle. Te load variation
was controlled from a dSPACE signal. Figure 5(a) shows the
blocks providing the load variation. Te observed voltage
and current signals are rescaled using gain scales of 10 and
20, respectively. Te sample step time in this study is set to
50 μs.

Elgar 5500, a programmable DC power supply, has been
used to emulate the electrical characteristics of the PV panel.
With the help of this panel emulation, it is possible to make
up for the absence of the PV panel and simulate variations in
the diferent profles. A dSPACE DS1104 controller with
a 50 μs sample period is utilized to create the PV panel
Simulink model.Te boost converter is controlled by the last
via PWM signals with an 8 kHz switching frequency. A DAC
output is used to create the analog signal (0-10V range)
needed to command the Elgar 5500 source. Te practical
properties of the EPVS, as determined by adjusting the
power DC supply’s output current, are shown in Figure 7

5.1. Optimized Fuzzy MPPT Controller Using dSPACE
Implementation. As discussed in the introduction, the
reason for implementing the fuzzy MPPT approach is to
verify the proposed algorithm experimentally using
a dSPACE control board. Te fuzzy MPPT controller is
computed and optimized under Matlab/Simulink. Te
control system is set up in accordance with the confguration
described in Section 3.

Five membership functions are used to calculate the
output variable (ΔDN) for the FLC as well as the input
variables (e and Δe)).Te variation’s ranges for Δe, e, and the
output are [−50, 50], [−35, 5], and [−1.5, 1], respectively.

Te dSPACE board is the appropriate hardware pro-
totyping improvement solution for doing real-time simu-
lations in many domains and prototyping high-speed digital
controllers. Tese controllers use the MATLAB real-time
interfacing toolbox to connect the SIMULINK model to the
actual hardware models. Control desk software is used as an
acquisition management tool to facilitate real-time analysis
of system performance and visualization of PV output
waveforms. It is simple to adjust the controller’s settings,
manage the output load, or change the PV panel’s model’s
mimicked weather patterns using the control desk software.
Te obtained currents and voltages may also be easily stored
and displayed. Te main points in the fuzzy MPPT-GA
designing in this article are as follows:

(1) GA learning algorithm
(2) Experimental testing results

5.1.1. GA’s Learning Profle. It is important to note that the
optimal parameters of the fuzzy MPPT controller obtained
by the GA are strongly related to the adopted methodology.
Te richer the learning profle and the more real variations
in atmospheric conditions are taken into account, the higher
the performance of the GA should be. At each step of the
algorithm, we have to compromise between exploring the
search space to avoid stagnating in a local optimum and
exploiting the best individuals obtained to reach better
values in the surroundings. If the individuals of a population
are too similar, the following populations may become more
and more homogeneous. In this case, the evolution of
a population may be reduced to the evolution of a single
dominant individual, thus reducing the exploration of the
search space (premature convergence). In order to be able to
efciently search, it is, therefore, required to maintain
a balance between the exploitation of the good solutions
encountered and the exploration of unknown areas. An
excess of exploitation can lead to a premature convergence
(bogging down in a local optimum), just as an excess of
exploration could lead to a quasi-random search (no
convergence).

MFs of Error (e) MFs of Change in Error (Δe) MFs of Output (ΔDN)

X1 X2 Xi

Xi,1 Xi,2 Xi,3 Xi,4 Xi,5 Xi,6 Xi,7 Xi,8 Xi,9 Xi,10 Xi,11 Xi,12 Xi,13 Xi,14 Xi,15

XNXN–1... ....

Figure 3: Te N chromosome’s real coding structure.
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Figure 4: Te experimental real-time platform.
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Te learning profle of the GA adopted is important for
an optimal parameter result and must include any scenario
that the system may encounter in the irradiance variations
and from the values returned by the objective function ISE.
A selection of the best chromosome (individuals) has been
made by the algorithm. For this purpose, the parameters of
the best chromosome were introduced to the fuzzy MPPT
controller.

Te value in the learning profle begins at 600W/m2 and
changes at 1100W/m2 after 2 s; this value is maintained until
4 s after another change occurs to reach the value of 800W/m2.

Te simulation results are given at a population of 20
chromosomes, and the training of the algorithm has been
given at 200 iterations. Te values of the ftness function
ISE evolve in a decreasing way from iteration 01 to it-
eration 50. Beyond this iteration, the evolution of the
curve is constant until it reaches the value ISE 0.372. Te
fact of training the algorithm beyond 50 iterations tells us
that the algorithm has found a global optimum. Te
evolution of the ISE function curve per iteration is shown
in Figure 8.

5.1.2. Experiments Testing Results. After the learning process
is accomplished, we can see the tracking performance
corresponding to the optimal solution obtained by the GA.
Te experimental testing results are obtained using the
following two scenarios. Te studied EPVS system has been
evaluated in a 2 s total duration with a 50 μs fxed step size
during the testing phases.

(i) In the frst test, the solar irradiance and tempera-
ture are kept constant at STC conditions, but an
instantaneous load change is performed at 1s. Te
resistance goes from a value of 20Ω to 14Ω.

(ii) In the second test, the load is kept constant at
R� 20Ω. However, the goal of this test is to study the
impact of the fast-changing of solar irradiance on the
performance of the proposed MPPT algorithm.

(1) Performance Test at Standard Conditions and Fast
Varying Load Conditions. An interface controls the

Figure 6: Te control desk interface of the EPVS system.
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parameters of the experimental test bench of the EPVS
system and thus displays the curves and results of the
electrical characteristics. Te control of parameters is given
by two buttons: STARTand PWMSTOP. In order to activate
the control part, the START value is set to 1, and the PWM
STOP value is set to 0. Te values of the electrical charac-
teristics represented are voltage (V), power (W), and current
(A). Te curves shown are the power-voltage curve, the duty
cycle of the proposed controller, and thus the voltage, power,
and current.

Te results represented in this interface have been given
for a temperature of 25°C and sunshine 1000W/m2 as well as
a fast-varying resistance load. Figure 6 shows the control
desk interface of the EPVS system.

Figures 6 and 9 show the results of the generated EPVS
power of the proposed fuzzy MPPT-GA. In the presented
results, during the transient load step of R� 20Ω between 0 s
and 0.5 s, it can be seen that the proposed fuzzy MPPT-GA
converges rapidly to the MPP at a time of 0.08 s with
a tracking error of 3% and a steady state-error of 99.87% and
then the power is maintained around 150W with an ex-
tremely low steady-state error of about ±0.13%. Te total
error between the tracking error and the steady-state error is
about 96.87%.

In the second transient load step of R� 14Ω between
0.5 s and 1 s, it is clearly observed that the proposed fuzzy
MPPT-GA shows better power generation, which much
perfectly rated around 150W with an extremely low steady-
state error of about ±0.13% (99.87%) as depicted in Figures 6
and 9. It can be concluded that the proposed fuzzy
MPPT-GA completely follows the maximum power of
150W to the STC test profle and also to the fast-varying
load conditions.

Figure 10 shows the result of the duty ratio of the
proposed fuzzy MPPT-GA at the STC. It can be observed
a variation in the duty ratio value as soon as 0.5 s. In the
presented results, during the transient load step of R� 20Ω
between 0 s and 0.5 s, it can be seen that the proposed fuzzy
MPPT-GA generates a duty ratio of the value D� 0.25. It is
evident that the proposed fuzzy MPPT-GA generates the
corresponding new duty ratio D (D� 0.15) for each trans-
action period in the second transient load level of R� 14Ω
between 1 s and 2 s, which establishes the new position of the
desired MPP inversely. In this case, the duty ratio of the
proposed fuzzy MPPT-GA is optimally adjusted. It is clearly
shown that a perfect duty ratio is generated in order to keep
the power produced at its desired value.

(2) Performance Test under Fast-Changing Solar Irradiation.
Te test at standard conditions, as well as at the fast variation
of the load, has been successfully performed. Now, a test at
fast variation solar irradiation has been performed. Te load
was held fxed at R� 20Ω. Te choice of the value between
R� 20Ω or R� 14Ω is not important since the result given in
Figures 6 and 9 clearly shows that the power is maintained at
150Wwith an error of 0.13% at the static regime for both the
resistance values.

Figure 11 shows the irradiance profle, which varies
between 1000W/m2 and 1100W/m2, and both the

temperature and the load charge are kept constant during
the experiments at 25°C and R� 20Ω, respectively.

Te experimental performance test has been carried out
at the fxed charge 20Ω and the fast-changing solar irra-
diance, as shown in Figure 11. In this test case, the objective
has been to evaluate and observe the response of the pro-
posed fuzzy MPPT-GA only to the fast-changing solar ir-
radiance and at the constant ambient temperature 25°C.
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Figure 12 shows the results of the generated EPVS
power of the proposed fuzzy MPPT-GA. In the presented
results, during the transient irradiance value between 0 s
and 0.5 s, it can be seen that the proposed fuzzy MPPT-GA
converges very rapidly to the MPP at a time of 0.06 s with
a tracking error of 2.6% and a steady-state error of 99.85%
and then the power is maintained around 150W for
a 1000W/m2 with an extremely low steady-state error of
about ±0.10%. Te total error between the tracking error
and the steady-state error is about 97.25%. In the second
step, the transient irradiance value is between 0.5 s and
1.4 s. It can be seen that the proposed fuzzy MPPT-GA
also converges at the MPP with an extremely low steady-
state error of about ±0.12% (99.82%). In the last step,
during the transient period of 1.4 s to 2 s, it can be seen
that the proposed fuzzy MPPT-GA also converges at the
MPP with an extremely low steady-state error of about
±0.14% (99.79%). Te efciency of the EPVS system in the
three transient irradiance values has been given at 98.95%.
It can be clearly observed that the result, when the MPP
abruptly changes, is that the proposed fuzzy MPPT-GA
may immediately push the EPVS system to the new MPP.

Figure 13 shows the result of the duty ratio of the
proposed fuzzy MPPT-GA under fast-changing solar
irradiation. It can be clearly observed that a new value of
the duty cycle has been generated at each variation of
the irradiance. In this case, the duty ratio of the pro-
posed fuzzy MPPT-GA has been optimally adjusted in
order to keep the operating point at each instant at
the MPP.

Now, the proposed fuzzy MPPT-GA has been com-
pared with a few strategies which have been published in
recent works to optimize FLC-based MPPT meths. Au-
thors in [18, 24, and 25] have performed the performance
tests of standalone PV systems only at STC conditions
with a fxed resistance load.Te results of tests for a profle
of variable irradiance that present overshoots when
changing the values of irradiance more or less diferent
from one paper to another have been presented in [18, 19,
and 21].

For a more logical comparison, the optimization algo-
rithms should use the same objective function (equation (7)),
the same initial population, and also the same number of it-
erations.Te advantages of our design strategy, which provides
the best objective function (ISE) value at the conclusion of the
optimization process, have been shown in Figure 8.

6. Conclusion

Tis paper presents a modeling and experimental validation
of a standalone PV system. Te system under investigation
consists of a DC power source that simulates a solar panel,
a DC/DC boost converter, a resistive load, and a real-time
maximum power point tracking controller integrated into
a dSPACE DS1104 board. Te GA has been successfully
applied in this study to optimize the productivity of a fuzzy
MPPT algorithm by improving the controller’s membership
function parameters. From the objective function values
obtained in the simulation, it is seen that the GA provides
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a good approach for designing efcient fuzzy MPPT. Te
following are the main highlights of the current work:

(i) Te proposed GA algorithm’s learning profle was
extremely important.Te results obtained during the
tests using the various profles clearly show that the
parameters of the fuzzy controller’s input/output
membership functions determined during the op-
timization process accurately follow the GMPP with
a steady-state error of around ±0.13%.

(ii) Similar to that, a reference signal has been used to
compare the proposed approach. Te outcomes
demonstrated the suggested algorithm’s capability to
track the GMPP with quicker convergence and fewer
power fuctuations than before. Te suggested fuzzy
controller optimized-based MPPT’s viability and
efcacy have been tested experimentally, and the
fndings unmistakably show that it is capable of
tracking the GMPP with an average efciency of
98.66% and an average tracking time of 0.08 s and
0.06 s under the STC and the fast-changing solar
irradiance, respectively.

Te outcomes demonstrated that the suggested approach
was workable and that it was capable of tracking themaximal
power point with high efciency that exceeded 97.8% in all
tested scenarios.Temethod proposed has been described in
some detail and can be used in other similar systems.
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Te data supporting the fndings of the current study are
available from the corresponding author upon request.
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