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The main goal of this work is to propose an efficient and accurate modern methodology to estimate the useful life of industrial
assets used in oil and gas industry suffering from generalized corrosion. It merges the convolutional neural networks, extreme value
theory, and bootstrap methods to handle the available corrosion data obtained through nondestructive inspection techniques for
structural integrity assessments. It is due to the high cost of inspection techniques actually used in many industries to generate a
reliable large amount of data to be analyzed by traditional statistical tools and technical factors, such as the inaccessibility of certain
zones of the assets. First, the most appropriate extreme value distribution is determined to best fit the available inspection data,
aiming to generate sufficient information for the training and testing processes of a one-dimensional convolutional neural network
model to improve the accuracy of the useful life estimation. To demonstrate the main features and capabilities of the methodology,
the dataset of AISI 1018 steel tubes of a heat exchanger used in a Brazilian refinery subjected to a general corrosion-type extreme
process is retained herein. The results demonstrate that it is an interesting tool for inspection process to assist engineers and/or
users in predictive maintenance phases to access the structural integrity of industrial assets subjected to extreme events such as
general corrosion.

1. Introduction

Many industrial assets such as heat exchangers used in refin-
eries and oil production units are frequently subjected to a
variety of environmental and operational conditions that
impact significantly their corrosion process and, conse-
quently, their useful life. Thus, it is observed an increased
demand for the development of more accurate and efficient
statistical tools to analyze the corrosion data for structural
integrity assessments. For example, Lemos et al. [1] have
used the generalized Pareto distribution (GPD) with the
peak-over-threshold (POT) and the first-order reliability
method (FORM) to predict the remaining useful life (RUL)
of heat exchangers used in Brazilian refineries. Tan [2] has
applied the block maxima (BM) and POT to estimate the
defect depth for uninspected areas of piping dead legs and

the future growth of the defects. Shibata [3] has used the
extreme value analysis (EVA) to predict the pit depth in an
oil tank. In the same way, Kasai et al. [4] have proposed a
method to assess the structural integrity of bottom floors of
storage tanks using the EVA method. The same strategy has
been applied by the Melo et al. [5] in study the internal pite
corrosion in pipelines. Other interesting practical applica-
tions of EVA can be found in a study by Yamamoto and
Shibata [6] and McNeil [7].

In the quest for corrosion process in industrial assets
used in oil and gas industry, a comprehensive review of it
can be found in a study by Popoola et al. [8]. Mohd et al. [9]
and Bai et al. [10] have studied the generalized corrosion in
subsea pipelines using traditional statistical tools to construct
a nonlinear model to characterize the corrosion rate. In par-
ticular, Mohd et al. [9] have developed an empirical model
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for the corrosion rate occurred in well pipes using the avail-
able information obtained by inspection for a period of time.
After analyzing a number of well-known probability distri-
butions to characterize the corrosion data, the authors have
concluded that the Weibull function is the most adequate
distribution for the corrosion process occurred in these types
of systems. The study proposed by Ossai [11] suggests the
use of a Monte Carlo simulation (MCS) in conjunction with
a degradation model to estimate the possible failures of
petroleum and gas pipelines. Zangenehmadar and Moselhi
[12] have applied an artificial neural network (ANN) to pre-
dict the thickness’ loss of steel tubes subjected to generalized
corrosion. Le Son et al. [13] and Le Son et al. [14] have
developed stochastic degradation models for a gamma deg-
radation process to assess the RUL. Gong and Zhou [15]
have used the FORM method to access the time-dependent
reliability index of a pressurized segment of a pipeline having
multiple active corrosion defects. They have adopted a linear
model for the corrosion rate.

Hence, due to the current developments in the computer-
aided and statistical tools combined with inspection technol-
ogies, the corrosion data obtained by nondestructive testing
(NDT) such as Internal Rotating Inspection System (IRIS),
eddy currents (EC), and remote field (RF) [1, 16] can be used
for structural integrity analyses of various industrial assets.
However, in practice, the integrity analyses of industrial assets
using traditional approaches do not lead to accurate results in
terms of RUL predictions, since the inspection data contain a
limited number of corrosion data, especially for the heat
exchangers used in oil and gas industry. It is due to the
high cost of inspection techniques required to generate a reli-
able large amount of inspection data and technical factors
such as the inaccessibility of certain zones of the assets. Con-
sequently, it is observed a lack of reliable histories of inspec-
tion data to use traditional statistical tools to characterize the
corrosion rate of such systems to be used to estimate their
RUL with accuracy.

Therefore, modern methodologies based on artificial
intelligence (AI) emerge as an interesting strategy to predict
the RUL of industrial assets suffering from corrosion with
reasonable accuracy. Clearly, in this field, it is still a challenge
that has motivated this study.

At this time, it is important to recall the works by Mohd
et al. [9], Zhao et al. [17], and Yamamoto et al. [18] regarding
the determination of the most adequate distribution func-
tions to characterize the corrosion process occurred by many
industrial assets. In fact, the results by Mohd et al. [9] have
demonstrated that the Weibull function is the most adequate
probability distribution for modeling the generalized corro-
sion observed in gas pipelines. Thus, based on it and accord-
ing to the previous study by Lemos et al. [1], the Weibull

function will be used in this work to generate sufficient
information for the training and testing of a neural network.

In summary, in oil and gas industries, corrosion data are
typically obtained through NDT techniques, usually available
in technical maintenance reports. For heat exchanger sys-
tems frequently used in refineries, these data are formed by
remaining wall thicknesses of AISI 1018 carbon steel tubes.
However, due to the lack of sufficiently representative
inspection histories, it is not an easy task to extract the
meaningful information of these data to characterize the
corrosion rate and to estimate the RUL of the system.

In the literature, it can be found a few works dealing with
the application of traditional statistical tools making use of
run-to-failure or time-to-failure approaches [19–22] for
structural integrity assessments. However, few works have
used AI approaches to access the structural integrity of
heat exchangers tubes used in oil and gas industry subjected
to corrosion. Thus, it is used herein a one-dimensional con-
volutional neural network (1D-CNN) model with the EVA
and bootstrap methods [23] to estimate the minimum wall
thicknesses of the heat exchangers tubes and the correspond-
ing RUL. It’s worth mentioning that EVA methods play an
important role in determining and estimating the most ade-
quate nonlinear probability distribution used in data sub-
sampling via bootstrap method. Figure 1 shows correlation
between the described procedures. Details of the entire pro-
cess can be found in Section 3.

2. Background on CNN Model

The CNN models have been used successfully in image pro-
cessing and machine learning operations [24, 25], where the
input data are normally in 2D format. In the case in which the
input data are in 1D format, the CNN approach used must be
also in 1D format [26, 27], being very attractive for dealing
with the corrosion data of the heat exchangers addressed
herein, which is formed by the remaining wall thicknesses
of their steel tubes, as discussed in previous section.

According to a study by Coppe et al. [21], the CNNs are
used for the abstract resources learning, alternating and stack-
ing convolutional layers, where several filters are applied to
extract themost significant spatial features of the data, and the
grouping operations are responsible for choosing the signifi-
cant information features [28]. More recently, the grouping
layers are continuous replaced by fractionally and strided
convolutions to keep the most useful information from
resource maps, as discussed in a study by Coppe et al. [21].
The 1D-CNN approach retained in this study is summarized
below.

Consider a vector, x¼ x1;½ x2;…; xn�, with n data that
characterize the state of corrosion in a certain operating time,
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data
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Bootstrap
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1D-CNN
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FIGURE 1: Illustration of the connection between EVA, bootstrap, and 1D-CNN network.
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where, for example, the corrosion rate of the wall of a certain
steel tube, i, obtained for inspection of a campaign, thus the
input predictors for the network will be operating time and
the respective corrosion rate inspected via NDT and the
remaining thickness is the label that the network aims to
predict the results. In the CNN model, the convolution oper-
ation in a convolutional layer is performed through multi-
plications between kernel functions, w2RD×1, of dimension,
D, where the concatenation vector, xi:iþD−1, is given as:

xi:iþD−1 ¼ xi⊕xiþ1⊕…⊕xiþD−1; ð1Þ

where⊕ indicates the concatenation operation of the sample
data in a vector and xi:iþD−1 is a window of size, D. In this
case, the convolution operation is established as follows:

zl ¼ φ wTxi:iþD−1 þ bð Þ; ð2Þ

where φ and b represent the nonlinear activation and bias
functions, respectively, and zj designates the learned feature
of function, w. By sliding the filtering window from the
sample points, the feature map can be defined as follows
[29]:

zj ¼ z1;…; zl−Dþ1½ � : ð3Þ

Figure 2 illustrates the sequence for prognosis of heat
exchangers based on supervised learning, and Figure 3
defines the architecture of the CNN encoder model adopted
in this study. The first two layers are formed by 10 filters
(3× 8) and (3× 16), respectively, and the relation between
the spatial neighborhood features in the sample is captured
by adopting two convolutional layers with 3× 32 filters.
Here, the functions relu and batch normalization are retained
herein for the grouping of convolution layers. It results in a
total of four convolutional layers for the CNN encoder
model.

3. Proposed Methodology

For the purposes of training and testing the network model,
the inspection dataset was divided into two subsets, where

each of it contains a percentage of 70 and 30 of the total
inspection data for training and testing process, respectively.
The steps of the procedure based on supervised learning for
RUL estimation of heat exchangers are shown in Figure 4
and summarized as follows:

(1) Generating the subsamples using the available data, x,
obtained by inspection of n steel tubes for a given
campaign. For the purposes of this study, the time
of each campaign is divided in m cycles in order to
preserve the important information of the corrosion
process. For example, for a campaign of 1 year, it can
be divided in 12 cycles of 1 month. Then, the corro-
sion depth for each steel tube as function of time is
modeled by using the followingWeibull function [10]:

xi tð Þ ¼
β

α

t − tc
α

� �β−1
exp

t − tc
α

� �β� �
; ð4Þ

where tc is the time of the beginning of the corrosion, with
t −ð tcÞ≥ 0 and t¼ tc; tcþ1;…tcampaign, and α¼ ffiffiffiffiffiffiffiffiffiffiffi

2σ xð Þp
and

β¼E x½ � are, respectively, the scale and shape parameters,
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FIGURE 2: Architecture of the supervised learning.
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FIGURE 3: Illustration of the CNN encoder model.

Mathematical Problems in Engineering 3



with σ and E x½ � being the standard deviation and mathemat-
ical expectation, respectively.

(2) Selection and normalization of inspection data fea-
tures: The important information usually found in
technical inspection reports of heat exchangers suffer-
ing from corrosion is: nominal diameter and thick-
ness inmm; total number of tubes in the system, n; the
number of tested tubes, m; inspection date; and loca-
tion of the defects (thickness’ loss in mm). Based on
inherent distinct features and properties between each
set of tubes of a heat exchanger, it is performed herein
a preselection process of the data variability. It is
based on the mathematical expectation and its nor-
malization values, given, respectively, by the relations
E x − μð Þ2½ � and x−ð μÞ=σ, where μ is the mean of the
information given by Equation (4). Based on this
strategy, it is possible to choose, among the available
information, the indicators whose change over the
time is used to characterize the corrosion process.

(3) Constructing the dataset for training and testing the
metamodel: In this phase, the remodeling process of
the normalized corrosion data is performed to obtain
a new dataset for training and testing of the 1D-CNN

model. As an example, for a 10 sequence of data, as
shown in Figure 5, it is generated a total of seven new
sequences of data of length four.

(4) Training of the 1D-CNN model: At this time, it is
performed the network training to produce the set of
information to approximate the future remaining
wall thicknesses of the steel tubes.

(5) Testing of the 1D-CNN model.
(6) RUL prediction: It is done for a certain level of reli-

ability, based on the root mean square error (RMSE)
[30]:

RMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
m

i¼1
xi − xestð Þ2

m

vuut
;

ð5Þ

where xest is the wall thicknesses estimated by using the 1D-
CNN model, and xi is the value of remaining wall thickness
subsampled using EVA-bootstrap.

Hence, the RUL of a given steel tube suffering from gen-
eralized corrosion is estimated as:

RUL¼ test − toper; ð6Þ

where test is the estimated time for which the tube reaches the
minimal wall thickness required for a safe operating condi-
tion, and toper is the operating time for the corrosion state.

At this time, it is important to emphasized that, among
the available supervised ANN approaches (similarity, degra-
dation, and survival) focused on RUL predictions, it is
retained herein the so-called degradation models, as shown
in Figure 6. Since, it requires the periodic information on the
equipment operation, which is obtained here by NDT
inspection such as the IRIS testing.
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FIGURE 4: Steps of the procedure for heat exchanger prognostics
based on supervised learning.
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FIGURE 5: Illustration of the remodeling process.
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4. Results and Discussions

This section presents the main features and potentialities the
proposed methodology regarding the prediction of the deg-
radation process occurred on the steel tubes of a real-world
heat exchanger system used in a Brazilian oil and gas refinery
and their RUL. Again, the dataset is formed by the remaining
wall thicknesses of a number of AISI 1018 steel tubes suffer-
ing from generalized corrosion. In practice, these minimal
thicknesses values have been obtained inspection using the
IRIS method [31], which enables to compute the percentage
of loss of material of each tube forming the heat exchanger.

Figure 7 illustrates the inspection process of the heat
exchanger system addressed herein using the IRIS testing
method, whose technical characteristics are given in Table 1.

4.1. Weibull Function and Statistical Tests. From the techni-
cal maintenance reports and the information regarding the
beginning of the system operation (see Table 1) with the
available inspection data at each campaign (in 2006, 2010,
and 2016), it is computed the mean of it for each campaign,
as shown in Figure 8. Next, Equation (2) is used to interpo-
late these available data to characterize the evolution of the
remaining wall thickness of each tube due to the corrosion
process to perform, in the sequence, a bootstrap method to
generate the training and testing dataset needed to construct
the CNN-1D model.

Figure 9(a) enables to compare the histogram of the avail-
able inspection data with the data generated by using Equa-
tion (2) for the following values of shape and scale parameters
1.83 and 11.2, respectively. It has been obtained by per-
forming the so-called maximum likelihood approach. By
comparing the empirical and theoretical curves of probabil-
ities, as shown in Figure 9(b), it is evident the accuracy of
the distribution adopted in this study to characterize the
evolution of the remaining wall thicknesses of the steel
tubes forming the heat exchanger due to the generalized
corrosion process.

The quality of the fitted inspection data to the theoretical
data generated by the Weibull function can be verified by
using the Anderson–Darling (AD) and Kolmogorov–Smirnov
(KS) statistical tests for a significance of 5%. For the purposes
of comparison, Table 2 shows the statistical results obtained by
using the various distribution functions, where the t-Student is
frequently used in oil and gas industry for RUL predictions. It
can be perceived a greater adherence of the inspection data to
the theoretical data generated by using the Weibull function
when compared with the results generated by other distribu-
tions. Thus, it explains its adoption inmanyworks [1, 9, 21, 22]
appearing in the open literature to characterize the evolution of
the remaining wall thicknesses of heat exchanger tubes suffer-
ing from generalized corrosion.

4.2. Bootstrap Method. As shown in Table 1, the considered
heat exchanger is composed of 775 tubes, of which only 177
have any inspection history throughout their operational
period. Consequently, a set of 70% of the inspected tubes
was used for training and the remaining 30% was used for
testing the 1D-CNN model. Thus, based on the adjust shape
and scale parameters of the Weibull function, a subsample of
388 randomized corrosion data per tube is generated in boot-
strap, resulting in a total of 20,564 corrosion data points to be
used in testing phase of the 1D-CNN approach. Figure 10
illustrates the shape and scale parameters of the dataset
tested using the 1D-CNN.

FIGURE 7: Illustration of the IRIS testing on the heat exchanger
system addressed in this study.

TABLE 1: Technical data of the heat exchanger.

Nominal thickness
(mm)

Tube
bundle

Inspection
tubes

Tested
tubes

2.108 775 177 53

Note. Heat exchanger FP-210501-E-10B. Courtesy of REGAP.
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FIGURE 6: Illustration of the adopted ANN model.
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Figure 11(a) shows the theoretical corrosion data of the
tubes generated by the bootstrap, and Figure 11(b) shows the
PDFs of the corrosion over the analyzed period.

Before applying the CNN model to estimate the RUL of
the steel tubes, it is performed herein a nonparametric statis-
tical analysis in order to verify the quality of the theoretical

corrosion data generated by using the bootstrap method.
Within this aim, Figure 12(a) shows the histograms of the
empirical thicknesses and the subsampling obtained by using
the Weibull function for the remaining wall thicknesses. To
verify the model using the plotting tools, as shown in
Figures 12(b) and 12(c), it has been adopted the AD test,
resulting in a p-value of approximately 0.0596. Thus, it can
be concluded that the measured sample comes from a Wei-
bull function for a significance level of 5%.

4.3. RUL Estimation. Figure 13 shows the histogram of the
RMSE distribution, as defined by Equation (5), regarding
the corrosion data given by the IRIS inspection method
and the data estimated by using the 1D-CNN model over
the analyzed period. It can be seen that the RMSE error is
comprised in the range of 0.04–0.05mm, as shown in Fig-
ure 13(b). Also, Figure 13(c) shows the scatter for the net-
work’s performance, enabling to compare the predicted and
true values of thicknesses for the system under investigation.

Figure 14 compares the remaining wall thicknesses pre-
dicted by the CNN model with the corresponding obtained
by the IRIS tool for the best and worst tubes in terms of
corrosion process, which have been obtained from the mini-
mum and maximum RMSE values, respectively.

The tubes having an expected corrosion greater than the
average value for a confidence level of 5% are shown in
Figure 15. In this case, based on Equation (6), it is possible
to establish a confidence interval for the mean and variance
of the population, which are given as follows:

μRMSE − z1−α=2
sRMSEffiffiffi

n
p ; μRMSE þ z1−α=2

sRMSEffiffiffi
n

p
� �

; ð7Þ

s2RMSE gl − 1ð Þ
χsup

;
s2RMSE gl − 1ð Þ

χinf

" #
; ð8Þ

where n indicates the size of the RMSE sample, gl¼ n− 1 is
its degrees of freedom, μRMSE and sRMSE are the mean and
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FIGURE 9: (a) Comparison between the histogram of the available inspection data and the theoretical data generated by the Weibull function;
(b) graph of probability for the fitted data.

TABLE 2: Statistical results for various distribution functions.

Function KS AD

Weibull 0.3086 0.1059
Gamma 0.0814 0.0906
EV 0.0862 0.0881
t-Student 0.0814 0.0426
GEV 0.0385 0.0213
GP 0.0702 0.0010
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FIGURE 10: Shape and scale parameters of the tubes.
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FIGURE 11: (a) Theoretical corrosion data generated by bootstrap; (b) PDFs of the theoretical data.
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standard deviation of the RMSE sample, z1−α=2 ¼ 1:96, and
χinf and χsup are, respectively, the lower and upper χ2 values
for the confidence level of 5%.

Figure 15 represents the analyzed steel tubes with a
RMSE error higher than a significance of 5%, where the steel
tubes having a greater probability of failure over the operat-
ing cycle considered herein can be clearly identified.

Now, to estimate the RUL of the tubes and, consequently,
the heat exchanger, based on Equation (6), it is considered
the period of time of a campaign, toper, and the remaining
time, test, estimated by the 1D-CNN model. Within this aim,
as appearing in Petrobras Norm N-26090 [32] and according
to the technical maintenance reports available by the petro-
leum refineries, it suggests a range of 0.5–12.5mm for mea-
suring the wall thicknesses using the IRIS testing. Thus, for
safe operation, 0.5mm is the minimum value of the wall
thickness used in traditional methods to estimate the RUL.
As an illustration, for a given heat exchanger tube, Figure 16
shows the RUL that is computed herein.

Figure 17(a) shows the estimated RUL in months of
operation of each tested steel tube. It can be perceived a
remaining useful life of at least 7.5 years compared with the
last inspection that has been performed in 2016. Figure 17(b)
shows the remaining thicknesses of each tube in 2016. Table 3
summarizes some important results for the management
engineers for the purposes of integrity analysis of the system.

By examining the results, as shown in Table 4, in terms of
the number of tubes and their respective percentages of RUL, it
is expected that none of the analyzed steel tubes will reach the
minimum wall thickness in a period less than 7.5 years. How-
ever, in a period until 13 years, it is observed that 34% of the
tubes in the bundle will need corrective maintenance to con-
tinue operating safely. On the other hand, it is expected that the
system can operate approximately 16.8 years without the need
of a maintenance. Clearly, it should be mentioned that a correc-
tive maintenance can increase the useful life of the equipment.

4.4. Traditional Method versus Proposed Methodology. In the
quest for the traditional method used in industry which is
based on the small sample theory [32] in conjunction with
the t-Student distribution, the minimum wall thickness and
its thickness as a function of time due to the corrosion phe-
nomenon are established, respectively, as follows:

xmin ¼ x − tα;gl−1
sffiffiffi
n

p
� �

; ð9Þ

x tð Þ ¼ xnom −
xmin − xs
toper

 !
t; ð10Þ

where x and s are the sample mean and standard deviation,
respectively, n is the number of samples, and tα;gl−1 is given
by using the t-Student’s table for a significance level, α.
xnom ¼ 2:108mm is the nominal value of the thickness
obtained from technical maintenance reports, xs ¼ 0:5mm
is the value of the thicknesses adopted in industry for safe
operation, and toper is the operation time. In this case, the
RUL is computed by the relation, RUL¼ t − toper.

For example, for the data acquired in 2010, where 18 steel
tubes of the bundle were inspected, having x ¼ 1:6mm and
s¼ 0:32mm for an operation time of toper ¼ 26:36years, the
industry was found a RUL of 21.5 years, assuming a signifi-
cance level of α¼ 1% with tα;gl−1 ¼ 2:898.

However, by applying the proposed method on the 2006
and 2010 inspection data only, it has been found a RUL of
approximately 5.9 years for the tube of the bundle subjected
to an extreme corrosion process, as shown in Figure 18.

At this time, it is important to discuss the RUL of 21.5 years
estimated by the industry in 2010 for this heat exchanger.
According to the information available by the maintenance
reports, in 2015, some steel tubes of this systemwere completely
replaced by new steel tubes due to their extreme corrosion state.
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Thus, the traditional method is not capable of estimating the
RUL of the systemwith accuracy, since, after 5 years of service, it
was necessary to perform a replacement of some tubes of the
bundle due to their corrosion state. But, the proposed method-
ology has estimated a RUL of approximately 5.9 years, demon-
strating the accuracy of it compared with the traditional
approach used in industry.

5. Concluding Remarks

This work has proposed an interesting method based on the
use of AI to increase the accuracy of RUL prediction of heat
exchangers used in oil and gas refineries suffering from gen-
eralized corrosion. The method uses the Weibull function
and bootstrap method to characterize the corrosion process
and a 1D-CNN model to predict the RUL. From the inspec-
tion data composed by the remaining wall thicknesses of the
heat exchanger tubes, it was constructed a randomized non-
linear temporal series’model to extract the meaningful infor-
mation and the data for the training and testing of the 1D-
CNN model. It is important to address the following points:

(1) The use of traditional approaches based on small
sample theory is not capable of estimating the RUL
of the heat exchanger systems with accuracy, since it
has predicted a RUL of 21. 5 years of operation for
the system addressed herein, but after 5 years of ser-
vice, it was necessary to perform a replacement of
some tubes of the bundle due to their corrosion
process.

(2) The results showed the ability of the proposed pre-
training model to characterize the evolution of the
remaining wall thicknesses of the tubes suffering
from generalized corrosion. However, advances can
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FIGURE 17: (a) Estimation of the RUL; (b) remaining thickness of each tube tested.

TABLE 3: Some results given by the CNN model.

Sample
Mean

population
Mean
sample

Real wall loss Estimated wall loss

21 1.68mm 1.68mm 0.71mm 0.67mm

TABLE 4: Estimated values of the RUL.
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RUL 0 18 19 13 3
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FIGURE 18: RUL estimation by the proposed method using the 2006
and 2010 inspection data.
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be performed in order to refine the 1D-CNN model
proposed in this study to make it more accurate and
effective. Advances in the quality of measurement
data were obtained by NDT testing.

(3) The proposed methodology is a promise tool to help
engineers and users for structural integrity analyses
of various assets suffering from corrosion. Further-
more, it enables to estimate the minimum sample
size required in the inspection phases for statistical
inference.

Clearly, in this study, the proposed strategy has been
applied in a real-world heat exchanger system used in a
Brazilian refinery. However, the authors understand that it
is not limited to it and can be extended with advantage to
other industrial assets subjected to corrosion.
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