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Currently, manufacturing industries focus on intelligent manufacturing. Prediction and monitoring of tool wear are essential in
anymaterial removal process, and implementation of a tool conditionmonitoring system (TCMS) is necessary.Tis work presents
the fank wear prediction during the hard turning of EN8 steel using the deep learning (DL) algorithm. Te turning operation is
conducted with three levels of selected parameters. CNMG 120408 grade, TiN-coated cemented carbide tool is used for turning.
Cutting force and fank wear are assessed under dry-cutting conditions. DL algorithms such as adaptive neuro-fuzzy inference
system (ANFIS) and convolutional auto encoder (CAE) are used to predict the fank wear of the single-point cutting tool. Te DL
model is developed with turning parameters and cutting force to predict fank wear. Te diferent ANFIS and CAE models are
employed to develop the prediction model. Grid-based ANFIS structure with Gauss membership function performed better than
ANFIS models. Te ANFIS model’s average testing error of 0.0074011mm and prediction accuracy of 99.81% are achieved.

1. Introduction

Te required component can be manufactured through
conventional and unconventional machining processes
[1, 2]. Automated industries focus on conventional ma-
chining processes such as turning, milling, and grinding.
Tool wear monitoring is essential to enhance product quality
during the machining process. To monitor the machining
process with high precision, the tool condition monitoring
system (TCMS) should be an integral part of the automated
manufacturing systems. TCMS can enhance production and
enrich the performance of the machining system by im-
proving the tool life, diminishing downtime and scrappage,

and avoiding damage through continuous monitoring and
predictive analysis [3]. Tool condition has been monitored
by measuring the various sensor signals like cutting force,
vibration [4], and sound signals [5]. Cutting force (CF) can
be measured with piezoelectric or strain gauge-based sensors
[6, 7]. Te I-Kaz method analyzed a low-cost strain gauge
sensor that measured the CF signals. Te investigational
outcomes were compared with the adaptive neuro-fuzzy
inference system (ANFIS) based prediction model, which
produced a maximum of 5.08% error [8]. Te ANFIS model
with “gbellmf” was used to forecast the surface roughness in
milling operation by considering the spindle speed, feed, and
depth of cut as input parameters [9].
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Tool wear is more sensitive to CF signals, and CF signals
are used to indicate tool conditions. Also, CF signals are
gradually increased with a rise in tool wear. CF is measured
directly through a dynamometer, and the tool wear is
measured indirectly by analyzing the CF signals [10]. Pre-
diction of tool wear and optimization of drilling parameters
were carried out by ANFIS and genetic algorithm (GA),
respectively. A smaller feed was suggested to minimize the
thrust force and torque [11]. Response surface methodology
(RSM) was employed to investigate process parameters’
efects on CF, surface roughness (Ra), and cutting tem-
perature. Out of two forecasting models, such as an artifcial
neural network (ANN) and ANFIS, the ANFIS model
predicts the response more accurately.Te optimum process
parameters were selected using the RSM [12].

Estimation of tool life was carried out by the ANFIS
model using the surface roughness and CF. Te accuracy of
the proposedmodel was 92.62% [13]. ANFISmodel was used
to estimate the material removal rate (MRR) and surface
roughness (Ra) while turning stainless steel 202. Te depth
of cut and spindle speed was found as the most infuencing
parameter for MRR and Ra, respectively [14]. CF was es-
timated using ANFIS with spindle speed, feed, and depth of
cut during the turning process, and the CF was predicted
with an average error of 2.59% [15].

Te neural network was used to forecast the CF, Ra, and
tool wear while turning the CP-Ti grade II workpiece. Te
proposed model was suitable for predicting the responses
within a 5% error [16]. A discrete and continuous moni-
toring, hybrid policy-based tool replacement mechanism
was developed. Te hybrid policy was optimized by particle
swarm optimization (PSO) algorithm. All policies’ results
were analyzed, and PSO performed better than the others
[17]. Online monitoring of grinding wheel wear was in-
vestigated in the grinding of Ti-6Al-4V titanium alloy. Te
result indicated that the Gaussian membership function-
based ANFIS model was more intelligent for monitoring the
grinding process [18].

Prediction and optimization of drilling parameters for
Ra were investigated while drilling galvanized steel. ANFIS
model with the “gbellmf” membership function produced
the minimum error. Te output of the ANFIS model was
given as input to the GA to fnd the optimum process pa-
rameter. Te spindle speed and tool angle was Ra’s most
infuencing parameters [19]. Prediction of CF and Ra was
carried out in the Al-20Mg2Si-2Cu metal matrix composite
with ANFIS. Feed, speed, and particle size were the inputs,
and Ra was the output. Te ANFIS model was suitable for
forecasting the Ra with minimum error [20]. An investi-
gation was conducted to compare the wear of ceramic tools
during the machining of AISI D2 steel and glass fbre
reinforced plastics (GFRP) material. Te fank wear was
smooth and higher for machining the GFRP, whereas low
fank wear was observed while machining the AISI D2 steel
[21].

An experimental study was carried out on ASTM A36
mild steel, and the wavelet denoising technique was used to
decompose the noise signals, and then, the thresholding was
done. Te decomposed signals were trained with the ANFIS

to investigate the relationship between the machining pa-
rameters and chatter. Te depth of cut was the most
infuencing parameter on the chatter severity [22].An in-
vestigation was carried out to measure the CF, Ra, cutting
power, and MRR while turning EN-GJL-250 cast iron using
coated and uncoated silicon nitride ceramic tools. Te study
observed that Ra was afected by feed followed by speed than
the depth of cut, and the CF was infuenced mainly by the
cutting depth followed by feed and cutting speed. ANN
model was used for better prediction, and the RSM was used
to identify the optimal process parameters and analyze their
interactions [23]. RSM was used to perform the regression
analysis and optimize the multiresponse problems [24].

Inconel 690 was machined with TiAlN-coated solid
carbide insert under minimum quantity lubrication (MQL).
Te two models, gene expression programming (GEP) and
ANN, were used to predict tool wear. Te analysis reported
that a speed above 100m/min was not desirable for ma-
chining [25]. Te surface morphology and chip were ana-
lyzed while turning the functionally graded (FG) specimen
under nanofuid-assisted minimum quantity lubrication
(NFMQL) conditions. Tey observed that the NFMQL
method provided an ecofriendly, green, clean, and sus-
tainable manufacturing process [26]. Te tool vibration, Ra,
and chip morphology was analyzed during the hard turning
of hot work AISI H13 steel under multiwalled carbon
nanotubes (MWCNTs) mixed nanofuid with MQL condi-
tion. Tey observed segmented-type serrated saw-toothed
chip morphology and increased fank wear and tool vi-
bration responsible for machined surface fnish degradation
[27]. Te experimental investigation was carried out using
Taguchi’s L27 orthogonal array. Inconel 718 was turned with
a carbide-coated insert. Te Mamdani inference system with
rule reduction and Sugeno subtractive clustering method
was used to model the CF, in which the latter produced the
minimum error [28].

Acoustic emission (AE) and CF signals were used to
predict the built-up edge formation during AISI 304 stainless
steel machining. Te discrete wavelet and wavelet packet
transform flter the noise signals. Finally, the ANFIS model
was used to predict the built-up edge height [29]. A new
method of diagnosing the tool wear using the stacked sparse
autoencoder is proposed.Te diferent signals obtained from
various sensors like accelerometer, dynamometer, and AE
sensor were used as inputs. Te signals were analyzed with
wavelet analysis. Te accuracy of this model is 99.63%, and it
is more suitable for predicting the values very shortly [30].

During the hard turning of AISI D6 steel, the responses
like Ra, CF, crater wear length, crater wear width, and fank
wear were measured. Diferent machine learning algorithms,
such as polynomial regression, random forests regression,
gradient-boosted trees, and adaptive boosting-based re-
gression, were used to predict the machining characteristics.
Polynomial and random forests regression performed better
than other algorithms [31]. Te spindle structure autoen-
coder wraps the signal without any parameter mining, and
the high ratio compression can be transmitted with a low
bandwidth cost [32]. A conditional autoencoder was applied
to monitor the wind turbine blade condition. Te
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performance of the conditional autoencoder was compared
with the classical and convolutional autoencoder methods.
From the analysis, the conditional autoencoder’s accuracy
was higher than the other two methods [33]. A deep network
method is used to forecast the tool wear with the help of
motor power using the deep learning neural network theory,
which can increase learning speed and enhance the training
process [34].

Furthermore, most of the earlier research works exposed
that fank wear was forecasted based on the control factors
and CF. Many research articles have reported the prediction
of fank wear during the turning operation with vibration
signals using machine learning and deep learning algo-
rithms. To the authors’ best knowledge, the utilization of CF
signals and turning parameters with the CAE model are not
found in the literature.Tis work aims to develop the ANFIS
and CAE model to forecast the fank wear during the dry
turning of EN8 medium carbon steel. Te prediction ac-
curacy of ANFIS is compared with the CAE model.

Te rest of the paper has been structured as follows:
Section 2 deals with the experimental method, design of
experiments, and measurement process. Te modeling and
prediction using ANFIS and CAE models are presented in
Sections 3 and 4. Te obtained results are discussed in
Section 5.

2. Materials and Methods

2.1. Workpiece and Tool. Te workpiece was EN8 medium
carbon steel with a Brinell hardness of 255 BHN. EN8 has
good tensile strength, is used for manufacturing various
machine parts, and is easy to machine [35]. Te TiN-coated
cemented carbide tool (CNMG120408) was selected as the
cutting tool. Te tool insert was attached to a tool holder
(PCLNR2525M12), which has a −6° of back rake angle, 5° of
clearance angle, −6° of negative cutting-edge inclination
angle, 95° of signifcant cutting edge, 0.8mm nose radius,
and 3.9Nm of insert tightening torque.

2.2. Experimental Setup. Te experiment was performed in a
conventional lathe, as shown in Figure 1. Te CF during the
turning operation was captured using a lathe tool dyna-
mometer. For acquiring the CF, a data acquisition system
with the necessary software and hardware [36] was arranged
and is shown in Figure 2.

2.3. Design of Experiments. With the help of central com-
posite design (CCD), the efectiveness of the turning process
was studied. A suitable variant in the CCD is the face-
centered CCD, in which α� 1 [37, 38]. Te design matrix is
presented in Table 1.

2.4. Flank Wear Measurement. Flank wear was measured
with profle projector PJ-A3000 (Make: Mitutoyo). Te XY
measurement range and resolution were 100mm× 100mm
and 0.001mm, respectively. Te instrument used for mea-
surement is shown in Figure 3.

3. Modeling Using an Adaptive Neuro-Fuzzy
Inference System

ANFIS is a well-known hybrid neuro-fuzzy inference system
to model intricate problems was established [26]. ANFIS is a
benefcial neural network (NN) method for afording the
result for nonlinear and approximating functions. ANFIS
employs diferent learning approaches to a fuzzy logic (FL)
system [39].

3.1. ANFIS Prediction Model. Te ANFIS catches the merits
of both NN and FL principles, and the ANFIS model can
efciently and optimally forecast the response. Te pa-
rameters related to the membership functions (MF) are
changed through the learning process. Te parameter
computation is simplifed by a gradient vector that measures
the fuzzy inference system (FIS), which is used to model the
given input/output parameters. ANFIS uses a back propa-
gation neural network (BPNN) or a combination of least
squares estimation and BPNN (hybrid) for MF parameter
estimation [40]. With the help of MATLAB, the ANFIS
model was developed, and the graphical user interface was
used for training and testing the model.

3.1.1. ANFIS Methodology. Te following steps are to be
considered for developing the ANFIS model to predict fank
wear:

Step 1. Defne the architecture of the ANFIS.
Te architecture of ANFIS is displayed in Figure 4. Te

input parameters, such as speed, feed, and depth of cut, were
controlled, and fank wear was recorded. Te corresponding
cutting force was measured using the strain gauge dyna-
mometer coupled with an amplifer and was given as one of
the input parameters for the ANFIS model to forecast the
fank wear. Te dynamometer data were acquired using a
USB 6221M series, NI DAQ Card.

Step 2. Set the input and output parameters and MF.
An MF describes how every data in the input is drawn to

a membership value between 0 and 1. Several MFs are used
for modeling, including trapezoidal, triangular, piecewise
linear, and Gaussian. Te selection of MF is based on the
nature of the problem and their experience. Te triangular
MF was used for the distribution of the input variable. Te
triangular membership function (trimf) was just a curtailed
triangle. It is a straight-line MF and has the beneft of
easiness.Te number of data points should be larger than the
number of tuning parameters; hence, the three MFs were
considered for every input.

3.1.2. Input and Output Parameters. Tere are four input
parameters for the ANFIS model: speed, feed, depth of cut,
and CF. Cutting speed has a signifcant infuence on tool life.
When the cutting speed increases, the cutting temperature
increases, increasing the fank wear [26]. Te initial MF for
speed is presented in Figure 5.
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Control factors and CF were considered input param-
eters for predicting the tool wear during this study. Te CF
was increased when tool wear also increased. Te CF pro-
duced during the metal cutting impacted the heat generation
in the cutting zone, tool wear, machined surface quality, and
workpiece accuracy [27, 41].

3.1.3. Output Parameter of the ANFIS. Te response of the
ANFIS is fank wear which is the gradual failure of the tool
due to continuous contact with the workpiece during the
machining operation. Te fank wear was considered as
output.

Figure 6 displays the fuzzy architecture of the ANFIS
model where the triangular membership function was
implemented. Figure 7 is the rule editor where all the rules
were fed into the fuzzy system [42]. It consists of 81 fuzzy
rules (4 input parameters with three membership functions).
ANFIS architecture is shown in Figure 7.

Step 3. ANFIS model training with the given input data.
For the training of the ANFIS model, 14 sets (out of 20

sets—70%) of experimental data were selected, and the
training was performed with the chosen ANFIS model. Te
epoch was regulated until the error reached <0.001 [7]. Te
ANFIS learning scenario for the prediction can be analyzed
from Figure 8 with epoch 20.Te average error was achieved
as 0.00067123mm.

Step 4. Testing of the ANFIS model with the experimental
data.

Te turning data sets (6 sets—30%) obtained from
the experiments were used to test with the trained ANFIS
model. Te response values were loaded into the ANFIS
GUI and tested across the parametric value. Te user can
use checking data and demo data to be loaded into the
GUI and can be used for prediction. Testing data
was applied to the developed ANFIS model and found

Figure 1: Cutting force measurement during the turning process.

Strain Z Graph

Strain X Graph

Strain X

Strain Z

stop

Figure 2: Illustration of signal acquisition.
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an average error of 0.0074011mm, shown in Figure 9.
Te blue circles were the actual data, and the red star was
the predicted one with the same input parameters
criterion.

Step 5. ANFIS model testing with experimental data.
Te ANFIS model was tested with the experimental

data to validate the accuracy of the model. Te ANFIS can
predict any value between this range. Finally, the output
obtained from the ANFIS was compared with the ex-
perimental data obtained from the turning operation. Te
close assent displayed that the developed ANFIS can be

employed to forecast fank wear. To assess the accuracy of
the ANFIS model, the error Ei is defned using the fol-
lowing equation:

Ei �
Actual valuei − Predicted valuei

Actual valuei

× 100. (1)

4. Modeling Using Convolutional Autoencoder

Convolutional auto encoder (CAE) is an unsupervised
model with convolutional layers. CAEs are typically used to
reduce and compress the size of the input dimension and
extract robust features. CAE is distinguished from tradi-
tional autoencoders by convolutional layers. Tese layers
stand out for their appealing ability to extract knowledge and
learn the internal representation of data. CAE system
comprises two convolutional neural network (CNN)
models, the encoder and the decoder. Te primary function
of the encoder is to convert the original input data into a
lower-dimensional latent representation. Te decoder is in
charge of reconstructing the compressed latent represen-
tation to generate output data. Training of the CAE is nearly
identical to the standard ANN. Te backpropagation
method minimizes the cost function and the enhanced
weight and bias matrix. Te structure of the purported
model is shown in Figure 10.Temean square error function
(MSE) and cross-entropy loss function, which can defne
reconstruction error, are frequently used as the cost function
in autoencoder training.

Te model is built in Google Colab, a free Jupyter
notebook environment used to implement the CAE. Colab is
a free cloud-based service provided by Google, and the best
feature of Colab is that no prior installation is required.

Table 1: Experimental layout.

Std. order Cutting speed (mm/min) Feed rate (mm/rev) Depth of cut (mm) Cutting force (N) Modeling
1 90 0.2 0.3 959 Training
2 270 0.2 0.3 1137 Testing
3 90 0.4 0.3 1047 Testing
4 270 0.4 0.3 1062 Training
5 90 0.2 0.6 996 Training
6 270 0.2 0.6 1084 Testing
7 90 0.4 0.6 1002 Training
8 270 0.4 0.6 1033 Training
9 90 0.3 0.45 1037 Testing
10 270 0.3 0.45 1034 Training
11 180 0.2 0.45 1042 Training
12 180 0.4 0.45 1043 Training
13 180 0.3 0.3 1040 Testing
14 180 0.3 0.6 1081 Training
15 180 0.3 0.45 1015 Testing
16 180 0.3 0.45 971 Training
17 180 0.3 0.45 1190 Training
18 180 0.3 0.45 1032 Training
19 180 0.3 0.45 997 Training
20 180 0.3 0.45 983 Training

Figure 3: Profle projector for fank wear measurement.
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Many data science and machine learning libraries are pre-
installed in Colab, including Pandas, NumPy, TensorFlow,
Keras, and OpenCV [43].

4.1. End-to-End-Framework. Unlike the conventional
compression methods, the CAE is an end-to-end standard
that combines compression and encoding methods. CAE
model can persistently encode the input into small-size data
by mapping the hidden layers without requiring signal
transformation. Convolutional encoding (CE) and con-
volutional decoding (CD) are linked together during the
training phase to learn mapping functions for compression
and reconstruction. In CE, the input data is encoded into the
compressed data as given by the following equation:

y � fw,b(x). (2)

In the hidden layers, x is the input signal, y is the
compressed data,w is the weight, and b is the bias. In CE, f (.)
signifes the compression mapping function. In CD, the
compressed data y are reconstructed to form the initial signal
x, as defned below.

x � gw′,b′(y). (3)

In CD, wʹ is the weight, and b′ is the bias. Te re-
construction mapping function is denoted by g(.). As a
result, this end-to-end standard can condense the input to
a small-scale set using the CE mapping function without
an independent encoding method. Furthermore, the
compressed data can be restored in CD to obtain the
actual output, as shown in Table 2. It overcomes the
compression quality limitation imposed by programmed
expansion biases and mined parameters in conventional

Figure 7: Rule editor.

Figure 8: Training error.

Mathematical Problems in Engineering 7



Figure 9: Testing error.
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Figure 10: Structure of the CAE model.

Table 2: Te details of layers and parameters using the CAE model.

Section No Layer name Filters× kernels Activation function Output size Parameters

CE

1 Input layer — — — —
2 1D convolution 64× 2 Sigmoid (None, 1, 64) 448
3 Dropout — — — 0
4 1D convolution 32× 2 Sigmoid (None, 1, 32) 4128

CD

5 1D transposed convolution 32× 2 Sigmoid (None, 1, 32) 2082
6 Dropout — — — 0
7 1D transposed convolution 64× 2 Sigmoid (None, 1, 64) 4160
8 1D transposed convolution 1× 2 Sigmoid (None, 1, 1) 129

Reconstructed output 9 — — — (None, 1, 1) —
Total no. of parameters 10,945
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ways. Te end-to-end model, operated through mapping
functions in hidden layers, attempts to obtain adequate
compressed data that recreate the actual data with minor
errors.

4.2. Training. Te training of the CAE takes place using the
backpropagation technique and adjusting the parameters to
decrease the loss functions based on a minibatch of training
models given in equation (4). Te batch is randomly chosen
from the training dataset. Training can be accomplished by
repetitions of the forward and backward pass.

L � 
N

n�1
Dn − F Dn( ( 

2
, (4)

where N is the minibatch size; Dn is the nth input; F (·) is a
function of CAE consisting CE and CD; and L is the loss
function. Te loss function (4) is known as the square loss,
which is efective in regression analysis. Let φ be trainable
matrix parameters and rules can be updated using

φt+1 � φt +
η
N



N

n�1
∇φtL Dn( , (5)

where η is the learning rate; ∇ is the gradient operator; and t
is the -training step. Parameters, including batch size and the
number of iterations, impact the accuracy. After training,
CAE can be divided into CE and CD to accomplish com-
pression and restoration.Te tuning parameters like w,wʹ, b,
and bʹ are regulated in training to curtail the modifcation
between the restored output and actual output to attain the
optimal parameter settings.

4.3. Performance Evaluation. Te evaluation criteria for
assessing the proposed method’s reconstruction quality are
mean squared error (MSE) and percentage error.

(1) Mean squared error: the mean squared error (MSE) is
the standard metric for assessing the performance of
most regression algorithms. Te less data there are,
the smaller the aggregated error, MSE, as shown in

L �
1
N

(Y − Y)
2

 . (6)

Table 3: Prediction accuracy of diferent membership functions.

S. no. Membership function-ANFIS structure Optimization method Training error (mm) Testing error (mm)
1 Gauss MF BPNN 0.18915 1.9795
2 Gauss MF Hybrid 0.000 34 0.0704
3 TRAF MF Hybrid 0.000966 0.0849
4 Gauss 2MF Hybrid 0.000164 0.0783
5 PRINMF Hybrid 0.000166 0.0788
6 DSIGMF Hybrid 0.000165 0.0784
7 PSIGMF Hybrid 0.000407 0.0783
8 Subtractive clustering Hybrid 0.002239 0.0929

Table 4: Experimental vs. Predicted values.

Std. order Flank wear (experimental)
Predicted
fank wear-
ANFIS

% Error
Predicted
fank wear-

CAE
% error

1 0.071 0.067 5.63 0.078 −9.86
2 0.067 0.073 −8.96 0.072 −7.46
3 0.081 0.083 −2.47 0.09 −11.11
4 0.098 0.093 5.10 0.08 18.37
5 0.085 0.090 −5.88 0.082 3.53
6 0.078 0.083 −6.41 0.085 −8.97
7 0.086 0.083 3.49 0.085 1.16
8 0.083 0.083 0.00 0.085 −2.41
9 0.079 0.083 −5.06 0.083 −5.06
10 0.082 0.083 −1.22 0.083 −1.22
11 0.079 0.083 −5.06 0.082 −3.80
12 0.082 0.083 −1.22 0.083 −1.22
13 0.082 0.083 −1.22 0.085 −3.66
14 0.082 0.083 −1.22 0.081 1.22
15 0.084 0.090 −7.14 0.083 1.19
16 0.081 0.077 4.94 0.082 −1.23
17 0.092 0.098 −6.52 0.083 9.78
18 0.082 0.083 −1.22 0.082 0.00
19 0.078 0.083 −6.41 0.081 −3.85
20 0.087 0.090 −3.45 0.078 10.34
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(2) Percentage error: the percentage error is the dif-
ference between the actual and predicted values, as
described in equation (7). It can be expressed as an
absolute or relative error.

δ �
]A − ]E

]E




× 100%. (7)

5. Results and Discussion

Te analysis was carried out between the actual data and the
prediction model that depends on the various input pa-
rameters such as cutting speed, feed, depth of cut, and CF.
Te various MF used in ANFIS modeling reports diferent
results. Optimizing methods like BPNN and hybrid were
employed to fne-tune the membership functions. Initially,
modeling was performed with the “Gauss” membership
function with BPNN and the hybrid optimization method.
Te hybrid optimization method performed better than
BPNN.

A hybrid method comprises backpropagation for theMF
parameters related to the input MF. It estimates the least
squares for the MF parameters connected with the output
MF, which is used to reduce the error values. Te grid-based
ANFIS structure performed better than the subtractive
clustering-based ANFIS structure; hence, grid-based model
was selected [40]. Te training and testing error for various
MF are presented in Table 3. From Table 3, it was found that
“Gauss” MF performed better than other functions. Te
comparison of the actual and predicted tool wear values is
given in Table 4.

TeCF is a signifcant parameter to be examined in the
machining processes to determine the machined com-
ponent’s tool life, tool breakage, fank wear, and Ra.
When the prediction value produced from the model is
within the prescribed limit, the cutting tool is in satis-
factory condition and can do the machining operation. If
it exceeds the limit, the cutting tool is not in good
condition, so it needs to be replaced. Te CAE model was
trained for data compression on 20 sets. Each value
contains three measurements for training and three
measures for validation. In the initial training phase, the
model’s training error reduced from 0.0035mm to
0.001mm during the 25 iterations. Te validation error
reduced from 0.008mm to 0.001mm during the 25 it-
erations, and the training error and validation error for
the trails are shown in Figure 11.

6. Conclusions

Te turning of EN8 steel was performed in dry conditions to
accelerate the tool wear. Te CF and fank wear were
measured during the turning operation. Te DL model was
developed with speed, feed, cutting depth, and CF signals to
predict fank wear. Based on the investigational results, the
subsequent conclusions have arrived.

(i) Flank wear was mainly dependent on cutting speed
and depth of cut.

(ii) An increase in CF indicates an increase in tool
wear. Hence, CF is used as an indicator.

Tool Wear
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Figure 11: Fluctuation of the loss value vs. epochs for the proposed CAE.
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(iii) Te hybrid optimization method performed better
than BPNN in regulating the membership func-
tions in ANFIS.

(iv) Various MFs were used to train the ANFIS model,
in which the grid-based structure with Gauss MF
reveals the best minimum training and testing
error.

(v) Grid-based ANFIS structure performed better than
subtractive clustering-based ANFIS structure.

(vi) ANFIS model was used to predict the fank wear
with the minimum and maximum average error of
0.602% and 5.77%, respectively.

(vii) Te overall prediction accuracy of the ANFIS
model was 99.81% with the Gauss membership
function.

(viii) Te average prediction error for ANFIS and CAE
models is 4.131% and 5.273%, respectively.

(ix) Te CAE model fourishes the limitations of
conventional neural networks, which arbitrarily
initialize the weights of the network; hence, the
proposed method can be efciently used to predict
the fank wear of the tool under various machining
conditions.

(x) Compared with the conventional backpropagation
method, the proposed method is more appropriate
for describing the hidden wear feature from the
collected data and provides better prediction
accuracy.

(xi) In the future, the proposed method can monitor
tool wear states online under diferent machining
conditions. Terefore, this method is expected to
be more widely used in tool wear monitoring in
metal cutting processes.

(xii) For other processes like milling and drilling, the
model has to be trained with selected input pa-
rameters and used to predict the tool condition.

Data Availability

Te data used to support the fndings of this study are in-
cluded within the article.
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