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In the helicopter transmission system, because the two-speed gear planetary transmission system without power interruption adopts
the design of a double planetary gear system, the complexity of the structure leads to the time-varyingmeshing stiffness, tooth surface
friction and the interaction between components and other nonlinear factors are uncontrollable, and causes the helicopter trans-
mission system vibration noise, unstable operation, and other problems. To solve the above problems, the inherent characteristics of
the two-speed planetary gear transmission system without power interruption were studied and analyzed to find out the influence
law of its inherent characteristics. The inherent characteristics of a planetary gear drive system are mainly related to the integrated
stiffness such as component mass, support stiffness, and meshing stiffness in the system. Based on the centralized mass method, the
translation-torsional coupling dynamics model of the double planetary gear drive system was established. According to the dis-
placement coordination relationship between the components of the system, the dynamics equation of the double planetary gear
drive system was constructed. The mass matrix and stiffness matrix were obtained using MATLAB, and the system’s natural
frequency was obtained by solving the dynamics equation. The results show that the low-order natural frequency is mainly the
torsional vibration mode of the center component and the torsional vibration mode of the center component. The influence of the
mass of the component on the natural frequency is more complex and has a certain influence on both the high- and low-order natural
frequency. The support stiffness in the systemmainly affects the low-order natural frequency and the meshing stiffness in the system
mainly affects the high-order natural frequency.

1. Introduction

Planetary gear transmission has the advantages of large ratio,
lightweight, input and output coaxial, and power separation
to improve the carrying capacity. It is widely used in trans-
mission and reduction devices. With the development of
high-performance, high-power gear transmission system,
especially the two-stage planetary gear transmission system
without power interruption, the structure of the planetary
gear transmission system is more and more complex, and the
analysis of its dynamic performance is more and more com-
plicated. Therefore, in order to study the influence law of
each factor on the dynamic performance and ensure the

safety and reliability of the planetary gear system with com-
plex structure, analyzing the intrinsic frequency of the plan-
etary gear system is the basis of the research on the dynamics
of the planetary gear system, and further provides theoretical
support for the control of its vibration damping and noise
and other performance.

There have been many studies on the vibration charac-
teristics of conventional planetary gear systems. The main
methods currently used to study the dynamic modeling of
planetary gear systems are classified into the centralized
parameter method and the finite element method. According
to the finite element model established by the semianalytical
finite element column type used by Ambarisha and Parker
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[1], the intrinsic frequencies and vibration modes of the
system in question were obtained. However, considering
the complexity that follows the drive train, the dynamics
modeled based on the finite element method places higher
demands on high-performance hardware and software.
Therefore, applications of the finite element method are
rarely published [2]. Since a planetary gear system can be
regarded as a point with concentrated mass, the concentrated
parameter method has been applied in studies related to
planetary gear systems [3]. Kahraman [4] proposed a pure
torsional model for a single-stage planetary gear system and
obtained the torsional intrinsic frequency equation. Kahra-
man [5] modeled the pure torsional dynamics of a series of
composite planetary gear trains and predicted the free vibra-
tion characteristics of each configuration separately. Guo and
Parker [6] modeled the rotational degrees of freedom of a
general planetary gear system and investigated its intrinsic
frequency and vibration pattern. Qiu et al. [7] established a
unified mathematical model based on the kinematic, hydro-
static, and structural characteristics of state-space gear trains.
Finally, digital identification and automatic analysis of any
complex gear train are realized.

The pure torsional model only considers the rotational
moments of the planetary gear system, and the model estab-
lished is simple and concise. Compared with the finite ele-
ment model, the pure torsional model based on the
centralized mass method loses more accuracy, so it is crucial
to establish a fine dynamics model with lateral-torsional
coupling. And most of the studies on planetary gear systems
are simple single-stage planetary gears, and there are fewer
studies on multistage planetary gears, such as Abousleiman
[8] proposed a model combining the lumped-parameter
method and the finite element method, which is able to
model the dynamical behaviors of planetary system. Gong
et al. [9] developed a 23 degree of freedom translational-
torsional nonlinear dynamics model based on the set-total
parameter theory in order to investigate the effects of various
parameters on the dynamic characteristics of a concentric
face gear split-torque transmission system. Kai et al. [10]
established a translational-rotational coupled dynamics
model of a two-stage enclosed planetary gear set based on
linear time-invariant premises to predict the intrinsic fre-
quency and vibration modes, and realized the compounding
of simple two-stage planetary gear stages through the setting
of the ratio, stiffness, and other parameters, but it could not
be applied to a complex planetary gear system with two
speeds and no power interruptions.

Many scholars have studied the dynamic characteristics
of planetary gear trains and the dynamic performance of
each operating condition [4, 11–13], aiming to explore the
inherent characteristics of the planetary gear system itself.
Mbarek et al. [14] considered the effect of meshing stiffness
and developed a 2K-H planetary gear system translational-
torsional coupled nonlinear dynamics model using the cen-
tralized parameter method, and analyzed the effect of mesh-
ing stiffness on the system dynamics performance. Sun and
Hu [15] developed a centralized parametric model of a mul-
tistage planetary gear system considering the effects of

meshing and support stiffness and investigated the dynamic
performance of the system under time-varying meshing stiff-
ness and time-varying support stiffness. Lin and Parker [16]
used two independent models, a centralized mass parameter
mathematical model, and a finite element model, to investi-
gate the nonlinear performance of planetary gears in differ-
ent Wei et al. [17] developed a planetary gear transmission
dynamics model using Newtonian theory, which considered
key factors such as time-varying meshing stiffness, phase
relations, and tooth contact characteristics, and systemati-
cally investigated gear axial overturning. Ericson and Parker
[18] studied the effect of operating torque on the dynamic
response of the system through experimental methods and
analyzed the effect of the stiffness of planetary gear bearings
on the intrinsic frequency, which was verified using finite
element simulation. Ambarisha and Parker [1] and Ericson
and Parker [19] discussed the tendency to combine planetary
gear intrinsic frequencies into sets with similar intrinsic fre-
quencies. Each ensemble contains the inherent frequencies of
a central member rotation, translation, and planetary wheel
mode. When the system parameters were changed, the
intrinsic frequencies remained within the ensembles, and
the clustering phenomenon was demonstrated experimen-
tally using custom planetary gears and further investigated
using numerical analysis. Among them, Xiao et al. [20] ana-
lyzed the dynamic characteristics of a two-stage planetary
wheel system to establish a torsional dynamics model, stud-
ied the effects of time-varying meshing stiffness, friction, and
other factors on the dynamic characteristics, and solved the
vibration response by numerical methods when parametric
excitation was applied. The literature [21] presented a non-
linear pure rotational dynamics model of a multistage closed
planetary gear set consisting of two simple planetary stages.
The model includes time-varying mesh stiffness, excitation
fluctuations, and gear backlash nonlinearities. Yang et al.
[22] has modeled the dynamics of a clad shell differential
gear train with radial bearings by considering the time-
varying meshing stiffness and the integrated transmission
error factor. A translational-rotational coupled dynamics
model of a two-stage enclosed planetary gear set to predict
the intrinsic frequencies and vibration modes based on linear
time-invariant consideration of torsion, bearing, and inter-
stage coupling stiffness in the literature [10].

Considering that the unpowered interrupted two-speed
planetary gear system directly determines the performance of
a two-speed helicopter, an accurate dynamic model of the
two-speed planetary gear system is needed to enhance the
development of high-speed and high-performance helicop-
ters. Therefore, on the basis of the established transverse-
torsional coupled free vibration model, the study focuses
on the intrinsic frequency and vibration pattern of the plan-
etary gear system, as well as the sensitivity analysis of the
factors influencing the intrinsic characteristics of the plane-
tary gear system.

The rest of the paper is organized as follows: Section 2
introduces the dynamics model of the double planetary gear
system. In this section, a translational-torsional coupled
dynamics model of the planetary gear system is developed
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based on the concentrated mass method, taking into account
the friction of the spur gear tooth surfaces and the interac-
tion of the components, the gear meshing stiffness. Section 3
analyzes the intrinsic characteristics for the established
dynamics model and verifies the established dynamics model
by finite element model. The reliability of the kinetic model is
verified. The results of the sensitivity analysis of the factors
affecting the intrinsic properties of the planetary gear system
and a short discussion are explained in Section 4. Section 5
contains the summary and conclusion of the study.

2. Dynamics Model of Double Planetary
Gear System

2.1. System Equivalent Dynamics Model. The mechanism
diagram of the double planetary gear drive system is shown
in Figure 1. Composed of solar wheels, double planetary gear
p1–p2 (where the number of planetary wheels n can be 1, 2…
N), and the first and second gear rings r1 and r2, and the
planetary shelf c is constituted. Double planetary gear p1–p2
is an integral component, representing the first and second
planetary gear respectively. In the system, the first stage gear
ring rotates freely, the second stage gear ring is fixed, and the
solar wheel and the planetary shelf are input and output
components respectively, A is input and B is output.

The variable speed principle is as follows:

(1) High-speed working condition. The second row of
the gear ring locks, as the second row of the gear
ring has more teeth than the first row of the gear
ring, at this time the first row of the gear ring rotates
in the same direction as the input.

(2) Low-speed working condition. The second row of the
gear ring rotates freely, and the first row of the gear
ring will have the tendency to rotate in the opposite
direction with the input shaft (there is one external
engagement).

Figure 2 shows the parameter model of the double plan-
etary gear transmission system based on the centralized mass
method. In the parameter model, the solar wheel, double
planetary gear, the first stage inner gear ring, the second stage
inner gear ring, and the planetary frame are regarded as rigid
bodies. The supports on and between components are sim-
plified into springs with supporting stiffness in three direc-
tions, and the meshing between gears is simplified into
springs with meshing stiffness. The damping effects at the
positions of the simplified springs above are ignored because
the undamped natural frequency is considered in this paper.

In Figure 2, the radial support stiffness of the solar wheel,
planetary shelf, first stage and second stage inner gear, and
double planetary gear in the x and y directions shown in
Figure 2 are ksx, ksy, kcx, kcy, kr1x, kr1y, kcnx, and kcny.

r1

sA B
c

r2

p1 p2

ðaÞ

s
cA B

r1

r2

p1 p2

ðbÞ
FIGURE 1: Schematic diagram of double planetary gear transmission mechanism. (a) High-speed gear and (b) low-speed gears.
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Respectively, kcny represents the radial support stiffness
between the NTH double planetary gear and the planetary
shelf, with the same size. To represent multiple meshing, n is
used to represent the double planetary gear. The circumfer-
ential supporting stiffness of the solar wheel, planetary shelf,
first stage, and second stage inner gear ring in the u direction
is ksu, kcu, kr1u, kr2u. The meshing stiffness between the solar
wheel and the first stage planetary gear, the first stage plane-
tary gear and the first stage inner gear ring, and the second
stage planetary gear and the second stage inner gear ring are
ksn, kr1n, kr2n. The circumferential displacement of the first
stage planetary gear around the axis of rotation is us, uc, ur1,
ur2, and un.

2.2. Relative Displacement between Components. Each com-
ponent has displacement in the three directions shown in
Figure 2, and the default direction of motion is by the three
positive directions. Since the radial displacement between the
two components will affect the relative displacement in the
direction of the meshing line, the relative displacement equa-
tion between the components is projected along the mesh-
ing line.

The sun wheel and relative displacement between the
NTH planetary gear along the meshing line direction projec-
tion:

Δsn¼ xs − xnð Þ sin φsnð Þ þ ys − ynð Þ cos φsnð Þ þ us þ un:

ð1Þ

The relative displacement of the NTH planetary gear and
the inner gear ring r1 is projected along the meshing line:

Δnr1¼ − xn − xr1ð Þ sin φr1nð Þ þ yn − yr1ð Þ cos φr1nð Þ
þun − ur1:

ð2Þ

The relative displacement between the inner gear ring r2
and the NTH planetary gear is projected along the meshing
line:

Δr2n¼ − xr2 − xnð Þ sin φr2nð Þ þ yr2 − ynð Þ cos φr2nð Þ
þ ur2 − un

rn2
rn2

:

ð3Þ

The relative displacement of the planetary shelf and the
NTH planetary gear in the x, y, and u directions:

Δcnx ¼ xc − xnð Þ − uc sin φnð Þ
Δcny ¼ yc − ynð Þ þ uc cos φnð Þ
Δcnu¼ − xc − xnð Þ sin φnð Þ þ yc − ynð Þ cos φnð Þ þ uc

;

ð4Þ

where n is the NTH double planetary gear (n can be 1, 2 …

N) is the first stage planetary gear when interacting with r1,
or that is the second stage planetary gear when interacting
with r2, rn1, and rn2 are the base circle radius of the first stage
and second stage planetary gear. xs, xc, xr1, xr2, and xn are the
displacements of the solar wheel, the planetary shelf, the first
stage, the second stage inner gear, and the double planetary
gear along the x direction; ys, yc, yr1, yr2, and yn are the
displacements of the above components along the y direc-
tion; us, uc, ur1, ur2, and un are the displacements of the above
components along the u direction.

To analyze the angle between different components and
the xy direction, the following related derivation is carried
out, φn is the angle between the center line of the NTH
double planetary gear and the center wheel, and the positive
direction of x, αs is the external engagement angle between
the first planetary gear and the center wheel s, αr1 is the
internal engagement angle between the first planetary gear
and the first inner gear ring r1, αr2 is the internal engagement
angle between the first planetary gear and the first inner gear
ring r2, φsn, φr1n, φr2n are, respectively, the angle between
the solar wheel, the first stage inner gear ring, the second
stage inner gear ring and the first stage planetary gear, and
the meshing line of the second stage planetary gear and the
positive direction y. The relationship between the above
angle is as follows:

φn ¼ 2π n − 1ð Þ=N
φsn ¼ αs − φn

φr1n ¼ φn − αr1
φr2n ¼ φn þ αr2

: ð5Þ

us uc ur1 ur2

y

x
ksy

ksx

kcnx

ksn
un

kcny

kr1n
kr2n

kcy

kr1y

kr2y

kcxkr1xkr2x

ksu
kcu

kr2ukr1u

FIGURE 2: Double planetary gear system dynamics model.
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2.3. Each Component Controls the Equation. Based on the
concentrated mass method, the force equilibrium equations
of components in three directions are constructed. To analyze
the natural frequency, the damping of the component and
the input and output loads are ignored, and only the inertial
force and the elastic force generated by the simplified spring
are considered. The mass of the solar wheel, the planetary
frame, the first stage, the second stage inner ring, and the
double planetary gear are ms, mc, mr1, mr2, and mn, respec-
tively, and the moment of inertia are Is, Ic, Ir1, Ir2, and In,
respectively. The radius of rotation of each component,
namely the radius of the base circle, is rs, rc, rr1, rr2, rn1, and
rn2. rc is the distance between the axis center of the twin planetary
gear, namely the center line, and the geometric center of the
planetary frame, namely the center of gravity. The differential
equation ofmotion is obtained according to the relative displace-
ment equation and the stress of the component.

Differential equation of solar wheel motion:

ms ẍs þ ksxxs þ ∑N
n¼1ksnΔsn sin φsnð Þ ¼ 0

ms ÿs þ ksyys þ ∑N
n¼1ksnΔsn cos φsnð Þ ¼ 0

Is
r2s

üs þ ksuus þ ∑N
n¼1ksnΔsn¼ 0:

ð6Þ

Differential equation of planetary shelf motion:

mc ẍc þ kcxxc þ ∑N
n¼1kcnΔcnx ¼ 0

mc ÿc þ kcyyc þ ∑N
n¼1kcnΔcny ¼ 0

Ic
r2c

üc þ ∑N
n¼1kcnΔcnuþ kcuuc ¼ 0:

ð7Þ

Differential equation ofmotion of the first inner gear ring:

mr1 ẍr1 þ kr1xxr1 þ ∑N
n¼1kr1nΔnr1 sin φr1nð Þ ¼ 0

mr1 ÿr1 þ kr1yyr1 − ∑N
n¼1kr1nΔnr1 cos φr1nð Þ ¼ 0

Ir1
r2r1

ür1 þ kr1uur1 − ∑N
n¼1kr1nΔnr1 ¼ 0:

ð8Þ

Differential equation of motion of the second inner gear
ring:

mr2 ẍr2 þ kr2xxr2 − ∑N
n¼1kr2nΔr2n sin φr2nð Þ ¼ 0

mr2 ÿr2 þ kr2yyr2 þ ∑N
n¼1kr2nΔr2n cos φr2nð Þ ¼ 0

Ir2
r2r2

ür2 þ kr2uur2 þ ∑N
n¼1kr2nΔr2n¼ 0:

ð9Þ

Differential equation of motion of the NTH planetary
wheel:

mn ẍn − ksnΔsn sin φsnð Þ − kr1nΔnr1 sin φr1nð Þ þ kr2nΔr2n sin φr2nð Þ − kcnΔcnx ¼ 0

mn ÿn − ksnΔsn cos φsnð Þ þ kr1nΔnr1 cos φr1n

� �
− kr2nΔr2n cos φr2nð Þ − kcnΔcny ¼ 0

Inr−2n1 ün þ ksnΔsn ⋅ rn1 þ kr1nΔnr1 ⋅ rn1 − kr2nΔr2n ⋅ r2 ¼ 0:
ð10Þ

2.4. Mathematical Model of System Dynamics. To obtain the
dynamic mathematical model of the double planetary gear
transmission system, the kinematic differential equations
above can be arranged into matrix format. In this paper,
only three degrees of freedom in each component are con-
sidered, so the total degree of freedom is 3x (4+ n). The free
vibration equation of the system can be obtained without
considering external excitation and damping.

M q̈ þ Kb þ Km½ �q¼ 0; ð11Þ

where M is the mass matrix of the system, Kb is the support
stiffness matrix of the system, Km is the meshing stiffness
matrix of the system, K is the stiffness matrix of the system,
and q is the displacement vector of each component of the
system: q= [xs, ys, us, xc, yc, uc, xr1, yr1, ur1, xr2, yr2, ur2, xp1,
yp1, up1, … xpN, ypN, upN].

3. Inherent Characteristics of Two-Speed
Planetary Gear Systems

By solving Equation (11), the mass matrix M and stiffness
matrix K of the double planetary gear transmission system

are obtained. Then eig function is used to calculate the eigen-
values and eigenvectors of the matrixM−1K. After processing,
the natural frequency value of the system and the correspond-
ing formation coordinates of each natural frequency are
obtained.

The meshing stiffness was used as the average value of
the meshing time-varying stiffness of the gears. The support
stiffness cannot be directly measured due to the existing
conditions, so the values [8] in the literature are adopted.
The parameters of the dual-planetary gear transmission sys-
tem are shown in Table 1.

Based on the above analysis, the natural frequency anal-
ysis of the double planetary gear system is carried out. The
first six order natural frequencies of the system and each part
are shown in Table 2.

Based on the established finite element model, the intrin-
sic frequency results obtained from the finite element analy-
sis are compared with the results of the analytical model. The
finite element model is based on the formula from the litera-
ture [23], the network division boundary conditions accord-
ing to the literature [24] in the setting of the way, the gear
ring and gear teeth, and other key parts of the mesh refine-
ment, and set the appropriate boundary conditions, in order
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to realize the high-speed gears and low-speed gears in a free-
running state, the material properties and gears and other
components of the setup parameters, refer to Table 1.

The specific results are shown in Figure 3, it can be seen
that the inherent frequency difference between the two
methods is 5%, which verifies the reliability of the analytical
model. It can be seen that the inherent frequency of the two
methods differs by 5%, which verifies the reliability of the
analytical model. The reason for this difference may be the
idealization of the boundary conditions and load conditions,
the difference between the two, and the treatment of the
material as a rigid body in the centralized parametric model
of the gear, which is different from the finite element model.

4. Analysis of Influence Law of Dynamic
Characteristics of Double Planetary
Gear System

In the dynamic system without damping, the natural fre-
quency of the system is only related to the mass and the
comprehensive stiffness of each component in the system.
To study the influence of the mass parameters and stiffness
parameters of each component on the natural characteristics
of the system. The mass and stiffness were set at 0.01 times,
0.1 times, 10 times, and 100 times equal span, and the natural
frequencies f0.01, f0.1, f10, and f100 before and after the change
were discussed.

TABLE 2: Planet gear trains other parts of the natural frequency (Hz).

Natural frequency order

1 2 3 4 5 6

Input shaft 3,475 3,684 4,584 5,892 5,939 6,477
Planet carrier 534 608 616 1,290 1,679 2,093
Planet wheel 2,921 5,444 6,347 7,836 9,930 10,705
First stage inner gear ring 256 263 373 893 1,469 2,018
Second stage inner gear ring 257 395 471 574 616 975

TABLE 1: Basic parameters of double planetary gear transmission system.

Parameter Solar wheel Annular gear r1 Annular gear r2
Double planetary

gear
Planet carrier

Mass (kg) 4.79 12.17 12.66 2.90 3.52
Rotational inertia (kg/m) 0.0376 0.1767 0.3422 0.0039 0.0191
Base radius (mm) 102.19 144.48 173.84 21.14 50.51 131.25
Pressure angle (°) 20 –

ðaÞ
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FIGURE 3: Validation of natural frequencies. (a) Finite element model and (b) comparison of results.
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FIGURE 4: The influence of mass on natural characteristics of high-speed gear. (a) The solar wheel, (b) the planetary shelf, (c) the first inner
ring, (d) the second inner ring, and (e) the planetary wheel.
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FIGURE 5: The influence of mass on natural characteristics of low-speed gear. (a) The solar wheel, (b) the planetary shelf, (c) the first inner ring,
(d) the second inner ring, and (e) the planetary wheel.
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FIGURE 6: Effect of support stiffness on the inherent characteristics of high-speed gears. (a) Sun wheel, (b) planetary frame, (c) first stage gear
ring, (d) second stage gear ring, (e) the planetary frame and planetary wheel, and (f ) secondary internal gear ring.
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FIGURE 7: Effect of support stiffness on the inherent characteristics of low-speed gears. (a) Sun wheel, (b) planetary frame, (c) first stage gear
ring, (d) second stage gear ring, (e) the planetary frame and planetary wheel, and (f ) secondary internal gear ring.
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4.1. Component Quality.When the mass changes, the moment
of inertia also changes. The influence law of component mass
on the natural frequency of the system is studied by changing
the mass of the solar wheel, planetary frame, first stage, second
stage inner gear ring, and planetary wheel.

4.1.1. Influence of Quality on Inherent Characteristics of
High-Speed Gear. Figure 4 shows the influence law of com-
ponent quality on the inherent characteristics of high-speed
gear. It can be seen from the figure that the mass of the solar
wheel will affect the natural frequency values of orders 1, 3–5,
and 9–16, and the effect on the higher-order natural fre-
quency values is more significant. The mass of the planetary

shelf will affect the natural frequencies of orders 1, 3, and
6–10, and the effect on the natural frequencies of orders 6–10
is more significant. The quality of the first inner ring has
significant effects on the natural frequencies of orders 1,
3–5, 10–12, and 14–16. The quality of the second inner
gear ring will affect the natural frequency values of orders
1–5, 10–12, and 14–16, and the effect on the natural fre-
quency values of orders 1, 3, and higher is significant. The
mass of the planetary wheel has a significant effect on the
natural frequency values of each order.

In summary, at high-speed gear, the mass of the solar
wheel has a great influence on the high-order natural fre-
quency, the mass of the planetary shelf has a great influence
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FIGURE 8: Effect of engagement stiffness on the inherent characteristics of high-speed gears. (a) Sun wheel and planetary gear meshing
stiffness, (b) the first stage internal gear ring and planetary gear, and (c) the second stage internal gear ring and planetary gear.
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on the middle-order natural frequency, the mass of the two-
stage gear ring has a great influence on the high- and low-
order natural frequency, and the mass of planetary wheel
influences the natural frequency of each order.

4.1.2. Influence of Quality on Inherent Characteristics of Low-
Speed Gear. Figure 5 shows the influence law of component
quality on the inherent characteristics of low-speed gear. It can
be seen from the figure that the mass of the solar wheel will
affect the natural frequency values of orders 1, 3–4, and 10–16,
and the effect on the higher-order natural frequency values is
more significant. The mass of the planetary shelf will affect the
natural frequencies of orders 1, 3, and 6–10, and the effect on
the natural frequencies of orders 6–10 is more significant. The

quality of the first inner ring has significant effects on the
natural frequencies of orders 1, 3–5, 10–12, and 14–16. The
quality of the second inner gear ring will affect the natural
frequency values of orders 1–5, 10–12, and 14–16, and the
effect on the natural frequency values of orders 1, 3, and higher
is significant. The mass of the planetary wheel has a significant
effect on the natural frequency values of each order.

In summary, at low speed, the mass of the solar wheel has
a great influence on the high-order natural frequency,
the mass of the planetary shelf has a great influence on the
middle-order natural frequency, the mass of the two-stage
gear ring has a great influence on the high- and low-order
natural frequency, and the mass of the planetary wheel influ-
ences the natural frequency of each order.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
Ra

tio
 b

ef
or

e a
nd

 aft
er

 co
m

pa
ris

on

Natural frequency order

f0.1ksn/fksn
f10ksn/fksn

ðaÞ

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0.0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

Ra
tio

 b
ef

or
e a

nd
 aft

er
 co

m
pa

ris
on

Natural frequency order

f0.1kr1n/fkr1n
f10kr1n/fkr1n

ðbÞ

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0.0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

Ra
tio

 b
ef

or
e a

nd
 aft

er
 co

m
pa

ris
on

Natural frequency order

f0.1kr2n/fkr2n
f10kr2n/fkr2n

ðcÞ
FIGURE 9: Effect of engagement stiffness on the inherent characteristics of low-speed gears. (a) Sun wheel and planetary gear meshing stiffness,
(b) the first stage internal gear ring and planetary gear, and (c) the second stage internal gear ring and planetary gear.
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4.2. Support Stiffness

4.2.1. Influence of Support Stiffness on Natural Characteristics
of High-Speed Gear. It can be seen from Figure 6 that the
radial support stiffness of the solar wheel affects the natural
frequency values of orders 2–6. The radial stiffness of the
planetary shelf will affect the natural frequencies of orders
2–4 and 7. The radial support stiffness of the first inner gear
ring will affect the natural frequencies of orders 2–6. The
radial support stiffness of the second inner gear ring will
affect the natural frequencies of orders 1–6. The stiffness of
the radial support between the planetary shelf and the twin
planetary gear will affect the natural frequencies of orders
2–10. The circumferential supporting stiffness of the second
inner gear ring will affect the natural frequencies of orders
1–2. It can be seen that, at high-speed gear, the radial sup-
porting stiffness of the planetary gear system has a great
influence on the first eight natural frequencies of the system,
and the circumferential supporting stiffness of the planetary
gear system has a great influence on the first two natural
frequencies of the system.

4.2.2. Influence of Support Stiffness on Natural Characteristics
of Low-Speed Gear. As can be seen from Figure 7, the radial
support stiffness of the solar wheel affects the natural fre-
quency values of orders 2–5. The radial stiffness of the plan-
etary shelf will affect the natural frequencies of orders 2–4
and 7. The radial support stiffness of the first stage inner gear
ring will affect 2–5 natural frequencies. The radial support
stiffness of the second inner gear ring will affect the natural
frequencies of order 1–5. The stiffness of the radial support
between the planetary shelf and the double planetary gear
will affect the natural frequencies of order 3–11. The circum-
ferential supporting stiffness of the second inner gear ring
will affect the natural frequencies of order 1–2.

It can be seen that, at low speeds, radial support stiffness
basically has a great influence on the first eight orders of natural
frequency, and circumferential support stiffness only has a
great influence on the first two orders of natural frequency.

4.3. Mesh Stiffness

4.3.1. Influence of Mesh Stiffness on Natural Characteristics of
High-Speed Gear. As can be seen from Figure 8, the meshing
stiffness between solar gear and planetary gear will affect the
natural frequencies of orders 4–6 and orders 9–16. The
meshing stiffness between the first gear ring and the plane-
tary gear will affect the natural frequencies of order 4–6 and
8–16. The meshing stiffness between the second inner ring
and the planetary gear will affect the natural frequencies of
order 8–16. The results show that the meshing stiffness has
no effect on the first three natural frequencies at high speed,
and the effect of meshing stiffness on the higher natural
frequencies is more significant than that on the lower natural
frequencies.

4.3.2. Influence of Mesh Stiffness on Natural Characteristics of
Low-Speed Gear. As can be seen from Figure 9, the meshing
stiffness between solar gear and planetary gear will affect the

natural frequencies of orders 5–7 and 9–16. The meshing
stiffness between the first gear ring and the planetary gear
will affect the natural frequencies of order 7–16. The mesh-
ing stiffness between the second gear ring and the planetary
gear will affect the natural frequencies of order 5–16. The
results show that the meshing stiffness has no effect on the
first four natural frequencies at low speed, and the effect of
meshing stiffness on the higher natural frequencies is more
significant than that on the lower natural frequencies.

5. Conclusion

Through the established dynamic model of the double-gear
planetary transmission system, the influence law of each
component and the system’s intrinsic frequency is derived.
The research results are expected to provide theoretical guid-
ance for the structural design and working condition selec-
tion of the double-gear planetary transmission system. It is of
wide significance for the optimization of helicopter transmis-
sion system performance, and further plays a significant role
in vibration damping and noise control in the transmission
system.

(1) The parts quality of the system has a certain influence
on the high and low order of natural frequency,
among which the mass of the solar wheel, the first
stage, and the second stage inner gear ring has a
greater influence on the higher-order frequency, the
mass of the planetary frame has a greater influence
on the middle order frequency, and the planetary
gear has a greater influence on all the frequencies.

(2) The support stiffness of the system has a greater
influence on the natural frequency of the low-order
system.

(3) The meshing stiffness of the system has a greater
influence on the high-order natural frequency of
the system.

(4) Considering that the system generally pays more
attention to low-order natural frequencies, when res-
onance occurs in the current system, the system
dynamics characteristics are optimized mainly by
changing the mass of corresponding components
and the supporting stiffness of the system, espe-
cially the supporting stiffness of the second stage
inner gear ring.
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