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In this study, we examine the dynamics of a discrete-time predator–prey system with prey refuge. We discuss the stability
prerequisite for effective fixed points. The existence criteria for period-doubling (PD) bifurcation and Neimark–Sacker (N–S)
bifurcation are derived from the center manifold theorem and bifurcation theory. Examples of numerical simulations that
demonstrate the validity of theoretical analysis, as well as complex dynamical behaviors and biological processes, include bifurca-
tion diagrams, maximal Lyapunov exponents, fractal dimensions (FDs), and phase portraits, respectively. From a biological
perspective, this suggests that the system can be stabilized into a locally stable coexistence by the tiny integral step size. However,
the system might become unstable because of the large integral step size, resulting in richer and more complex dynamics. It has
been discovered that the parameter values have a substantial impact on the dynamic behavior of the discrete prey–predator model.
Finally, to control the chaotic trajectories that arise in the system, we employ a feedback control technique.

1. Introduction

The predator–prey model has both theoretical and real-world
uses. A predator–prey model allows for the analysis of poten-
tial future events in a dynamicmanner. There are several ways
that interactions between various species can occur, including
competition and predation. The predator–prey relationship is
one of the most crucial relationships. Because of its well-
known prevalence and significance, one of the key themes
in mathematical ecology is the dynamic interaction of preda-
tor and prey. An important population dynamics model that
looks at the dynamics of interacting groups [7] is the
prey–predator paradigm. The Lotka–Volterra model [1, 2],
has been employed by population dynamics to comprehend
the interaction between ecological species [8–14]. Contrarily,
discrete-time models have drawn great interest recently
[15–17, 22, 23] because they are better suited to modeling
populations with nonoverlapping generations and can pro-
duce complex dynamical behaviors than continuous part. The
classic predator–prey relationship is given as follows:

ẋ ¼ xeΥ x; kð Þ − yeΘ xð Þ;
ẏ ¼ y −δþ eΩ xð Þ

� �
;

ð1Þ

with

x 0ð Þ; y 0ð Þ>0; ð2Þ

where the prey and predator population densities are repre-
sented by the time-dependent functions xðtÞ and yðtÞ,
respectively. All constant is assumed to be positive. The
parameter k represents the carrying capacity. The constant
δ represents the predator mortality rate. the functional
response denoted by Θ̃ðxÞ, whereas Ω̃ðxÞ represents the
uptake functions.

Each population in an ecological system employs a
unique strategy, such as refuging, clustering, etc., to locate
food sources and defend itself. Numerous ecological features
and elements are employed to build more accurate mathe-
matical models. In population dynamics, the functional
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response or the ratio of a predator’s prey consumption to the
density of prey per unit of time must be considered in every
prey–predator contact [29, 30]. For the majority of arthro-
pod predators, the functional response of the Holling type I,
II [18], III, and IV is widely used. Later, the Lotka–Volterra
model was investigated by Rosenzweig and MacArthur [24]
using a logistic growth rate for the prey and a Holling type II
functional response to account for the saturation of the pred-
ator. A limit cycle emerges when the stable fixed point
experiences the Hopf bifurcation, which makes the Rosenz-
weig and MacArthur model one of the fundamental models
since prey–predator cohabitation is not restricted to a stable
fixed point. Rosenzweig and MacArthur model’s discrete-
time variant was examined by Hadeler and Gerstmann
[25]. A straightforward discrete-time prey–predator model
with Holling type I incidence was further examined by
Danca et al. [10], who showed how chaotic processes may
be seen in a straightforward discrete model. In their study of
the Rosenzweig and MacArthur prey–predator model with
Holling type I, Liu and Xiao [26] provided more evidence
that the discrete system displays far richer dynamics than the
continuous one. However, a prey refuge offers a more accu-
rate prey–predator model because many prey populations
have some sort of available refuge. Maynard [27] demon-
strated that while a constant number of refugees of any
size changed the neutrally stable behavior into a stable fixed
point, the dynamics of the neutrally stable Lotka–Volterra
model remained unchanged. In addition, Hassel [28] dem-
onstrated that a big refuge in a model, which displays diver-
gent oscillations in the absence of a refuge, substitutes a
stable fixed for the oscillatory behavior. As a result, we
note that numerous studies have demonstrated refugia’s sta-
bilizing influence on predator–prey relations. Prey refuge has
been the subject of certain empirical and theoretical studies,
and some of these studies have suggested that prey refuges
have a stabilizing effect on predator–prey interactions and
can effectively avoid the extinction of prey species
[31–40, 47]. In a study by Seralan et al. [46], it was explored
how the additive type Allee effect in the prey population
affected the dynamic difficulties of the Ricker type
predator–prey model. The analysis and exploration of the
dynamics of a discrete Leslie–Gower predator–prey system
with the Allee effect in the predator’s population and with
fear and Allee effect are observed in a study by Vinoth et al.
[48, 49], respectively. A detailed exploration of discrete
prey–predator model with multistability, torus doubling
route to chaos is investigated in a study by Neverova et al.
[50], Rajni and Ghosh [51], and Ghosh et al. [52].

According to Pusawidjayanti et al. [19], the following
continuous predator–prey model’s behavior has been exam-
ined as follows:

ẋ ¼ r1x −
rx2

K
−

1 − nð Þmxy
1þ x

;

ẏ ¼ 1 − nð Þcxy
1þ x

− r2y:

8>><>>: ð3Þ

In a study by Khan [20], the author has considered the
following discrete-time predator–prey model as follows:

xtþ1 ¼ axt 1 − xtð Þ − xtyt ;

ytþ1 ¼
1
β
xtyt;

8<: ð4Þ

where xt and yt , respectively, stand for the prey and predator
populations. Parameters β and α are the predator and prey’s
natural growth rates. By introducing the Allee effect for the
prey population in terms of dynamic behavior and
Neimark–Sacker (N–S) bifurcation, Kangalgil [21] analyzed
the discrete predator–prey model as follows:

xtþ1 ¼ axt 1 − xtð Þ − xtyt
xt

mþ xt

� �
;

ytþ1 ¼
1
β
xtyt:

8>><>>: ð5Þ

Allee effect is referred to as x
mþx, where m is a positive

constant. Utilizing discrete models is another approach to
comprehend the challenging issue of prey and predator
interaction. In the current work, modification of the model
(5) is considered by introducing the prey refuge as follows:

xnþ1 ¼ rxn 1 − xnð Þ − αa 1 −mað Þxnyn;
ynþ1 ¼ βa 1 −mað Þxnyn − δayn:

ð6Þ

We focus on the dynamics of model (6) and few of the
contributions made by this research include the followings:

(1) The suggested discrete-time prey–predator model
displays complex dynamics than its continuous
equivalent. We looked at the effect of prey refuge
on the community of populations in the model.

(2) We look for potential fixed points in the stability of
the system under study.

(3) The analytical result of period-doubling (PD) and
N–S bifurcations has been proven.

(4) The N–S bifurcation has made the model chaotic,
hence the state feedback control procedure has
been applied to control it.

(5) Some numerical examples for our discrete-time
predator–prey model with prey refuge have been
supplied in order to confirm the validity of our the-
oretical results.

The remaining text is organized as follows: The fixed
point, topological classes are discussed in Section 2. In
Section 3, we analyze the likelihood that the model (6) will
exhibit a PD or N–S bifurcation when a particular parametric
condition is met. To support the conclusions of our analysis,
in Section 4, we quantitatively demonstrate model dynamics
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with bifurcation diagrams and phase portraits. In Section 5,
we employ state feedback management strategies to control
the chaotic model’s disorder. In Section 6, a succinct discus-
sion is offered.

2. Fixed Point Existence and Stability Analysis

2.1. Fixed Point Existence. The fixed points of system (6) are
ζ̃0 ¼ð0; 0Þ, ζ̃1 ¼ðr−1r ; 0Þ, and ζ̃2 ¼ðx ∗ ; y ∗ Þ, where x ∗ ¼
−ð1þδaÞ

βað−1þmaÞ and y ∗ ¼ rð1−x ∗ Þ−1
αað1−maÞ . Table 1 lists all of the fixed

points’ existence criteria.
where M̃0 ¼ βaþrð1þδa−βaÞ

βað1−rÞ

2.2. Analysis of Local Stability for Fixed Points. We evaluate
the system’s stability at the fixed points discovered in the
system (6). It is important to note that, regardless of the
magnitude of the predicted eigenvalues at the fixed point
ζ̃ðx; yÞ, estimated eigenvalues have an effect on the fixed
point’s local stability.

The variational matrix of system (6) is shown as follows:

Weζ x; yð Þ ¼ gw11 gw12gw21 gw22

 !
; ð7Þ

where

gw11 ¼ r 1 − 2xð Þ − αa 1 −mað Þy;gw12 ¼ −αa 1 −mað Þx;gw21 ¼ βa 1 −mað Þy;gw22 ¼ −δa þ βa 1 −mað Þx:
ð8Þ

The characteristic equation can be expressed as the fol-
lowing at ζ̃ðx ∗ ; y ∗ Þ.

Fa λað Þ : ¼λ2a − Tr Weζ� �
λa þ Det Weζ� �

¼ 0; ð9Þ

where TrðWζ̃ Þ and DetðWζ̃ Þ are given as follows:

Tr Weζ� �
¼ gw11 þgw22 ;

Det Weζ� �
¼ gw11gw22 −gw12gw21 :

ð10Þ

The eigenvalues of (9) can be derived as λa1; 2 ¼
TrðWζ̃ ÞÆ

ffiffiffiffiffi
Δ̃aa

p
2 , where Δ̃aa ¼TrðWζ̃ Þ2 − 4∗DetðWζ̃ Þ:

Let,

fM0 ¼ βa þ r 1þ δa − βað Þ
βa 1 − rð Þ ;

fM1 ¼ βa þ r −1þ δa − βað Þ
βa 1 − rð Þ ;

fM2 ¼ 2βa þ r 1þ 2δa − 3βað Þ þ r2 −δa þ βað Þ
βa 2 − 3r þ r2ð Þ ;

fM3 ¼ 3βa − βaδa þ r −3 − 4δa þ βaδa þ βað Þ − δar2

βa 3 − δa þ δ1r þ rð Þ ;

fM4 ¼ r 2þ δa − βað Þ þ βa
βa 1 − rð Þ :

ð11Þ

One can get the stability requirement of fixed points ζ̃0 , ζ̃1 ,
and ζ̃2 easily from the Jury’s criterion (see [45]) Fað− 1Þ>0,
Fað0Þ− 1<0, Fað1Þ>0 and proofs are omitted. Table 2 shows
the stability conditions of fixed points, and Figures 1 and 2 show
more information. The eigenvalues are real in the right part of
the region in ðma; rÞ space separated by the dashed line and on
the opposite part, the eigenvalues are complex.

3. Bifurcation Analysis

3.1. Period-Doubling Bifurcation. We take the system (6) at
the fixed point ζ̃2ðx ∗; y ∗ Þ where the parameters ðr; a; βa; αa;
δaÞ are chosen at random.

Let, ma ¼ M̃3 ¼maPD. Then, the eigenvalues of Wζ̃ are
provided as follows:

λa1 fM3

� �
¼ −1; and λa2 fM3

� �
¼ −

−6þ δa −4þ rð Þ þ r
3þ δa

:

ð12Þ

For jλa2ðM̃3Þ ≠ 1j to be implied as follows:

−δa þ δa −4þ rð Þ þ r
3þ δa

≠Æ1: ð13Þ

Next, we set AðmaÞ¼Wζ̃ and apply the transformationsbx ¼ x− x ∗ ;by ¼ y− y ∗ . We relocate system (6)’s fixed point
to the starting point. Consequently, the system (6) can be
expressed as follows:

bxby
 !

→ A maPDð Þ bxby
 !

þ Fx1 bx;by;maPDð Þ
Fx2 bx;by;maPDð Þ

 !
; ð14Þ

where Y ¼ðbx; byÞT and

Fx1 bx;by;maPDð Þ ¼ 1
2

−2rbx2 − 2αa 1 −mað Þbxbyð Þ;
Fx2 bx;by;maPDð Þ ¼ βa 1 −mað Þbxby: ð15Þ

TABLE 1: Fixed point existence criteria of system (6).

Fixed points Existence conditions

ζ̃0 Always
ζ̃1 r>1
ζ̃2 r>1;ma<M̃0
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It is possible to express the system (6) as follows:

Ynþ1 ¼ AYn þ
1
2
Be Yn;Ynð Þ þ 1

6
Ce Yn;Yn;Ynð Þ þ O Ynk k4ð Þ:

ð16Þ

As symmetric multilinear vector functions on x; y; u2

R2, Beðx; yÞ¼
 
Be1ðx; yÞ
Be2ðx; yÞ

!
, and Ceðx; y; uÞ¼ 

Ce1ðx; y; uÞ
Ce2ðx; y; uÞ

!
are defined as follows:

Be1 x; yð Þ ¼ ∑
2

j;k¼1

δ2Fx1 ξ;mað Þ
δξjδξk

�����
ξ¼0

  xjyk ¼ − 2rx1y1 − αa 1 −mað Þ x2y1 þ x1y2ð Þ;

Be2 x; yð Þ ¼ ∑
2

j;k¼1

δ2F2 ξ;mað Þ
δξjδξk

�����
ξ¼0

  xjyk ¼ βa 1 −mað Þ x2y1 þ x1y2ð Þ;
ð17Þ
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FIGURE 1: Stability regions of fixed points for model (6) with αa ¼ 3:5; βa ¼ 4:5; δa ¼ 0:25.

TABLE 2: Analysis of system (6)’s local dynamics at fixed points ζ̃i ði¼ 0; 1; 2Þ.

Fixed points

The requisite condition(s)
under which the
mentioned fixed
points exist

Behavior Relative parametric requirements (regions in Figure 1)

ζ̃0 Always

Source r>1; δa>1
Sink r<1; δa<1 (region 1)
Saddle r<1; δa>1 or r>1; δa<1 (regions 2–8)

Nonhyperbolic
r¼ 1; δa ≠ 1 (with fold bifurcation) r ≠ 1; δa ¼ 1 (with PD

bifurcation)

ζ̃1 r>1

Source maxðM̃0 ; M̃2Þ<ma<M̃1 ; r>3 (regions 5, 7)
Sink M̃0<ma<minðM̃1 ; M̃2Þ; 1<r<3 (region 2)
Saddle ma>maxðM̃0 ; M̃1Þ; 1<r<3 or r>3; M̃0<ma<M̃1 (regions 6, 8)

Nonhyperbolic
r¼ 3; orma ¼ M̃1 (with PD bifurcation) r¼ 1; orma ¼ M̃0 (with

fold bifurcation)

ζ̃2 r>1;ma<M̃0

Sink Δ̃aa ≥ 0; M̃4<ma<M̃3 ; Δ̃aa <0;ma>M̃4 (regions 5, 6)
Source Δ̃aa ≥ 0;ma<minðM̃3 ; M̃4Þ Δ̃aa <0;ma<M̃4 (regions 7, 8)
Saddle ma>M̃3 (region 4)

Nonhyperbolic
Δ̃aa ≥ 0;TrðWζ̃ Þ≠0; 2;ma ¼ M̃3 (with PD bifurcation), Δ̃aa<0;

ma ¼ M̃4 (with N–S bifurcation)
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and

Ce1 x; y; uð Þ ¼ ∑
2

j;k;l¼1

δ2Fx1 ξ;mað Þ
δξjδξkδξl

�����
ξ¼0

  xjykul ¼0;

Ce2 x; y; uð Þ ¼ ∑
2

j;k;l¼1

δ2Fx1 ξ;mað Þ
δξjδξkδξl

�����
ξ¼0

  xjykul ¼0:

ð18Þ

Let q̃1 ; q̃2 2R2 the two eigenvectors of A and AT should
be represented by eigenvalue λa1ðmaPDÞ¼ − 1 such that
AðmaPDÞq̃1 ¼ − q̃1 and ATðmaPDÞq̃2 ¼ − q̃2 .

So, using straightforward calculation, we arrive at:

eq1 ¼ 1 − δa − βa −1þmað Þx ∗

βa −1þmað Þy ∗

 !
;

eq2 ¼ 1 − δa − βa −1þmað Þx ∗

−αa −1þmað Þx ∗

 !
:

ð19Þ

For ensuring hq̃1 ; q̃2i¼ 1, where hq̃1 ; q̃2i¼ q̃11 q̃21 þ
q̃12 q̃22 , we have to utilize the normalized vector q̃2 ¼ γPDq̃2 ,
with γPD ¼ 1

ð1−δa−βað−1þmaÞx ∗ Þ2−αaβað−1þmaÞ2x ∗ y ∗ .

We must examine the sign of saðmaPDÞ, the coefficient of
the critical standard form [41], to establish the PD bifurca-
tion’s direction.

s1 maPDð Þ¼ 1
6
eq2 ;Ce eq1 ; eq1 ; eq1ð Þh i

−
1
2
eq2 ;Be eq2 ; A − Ið Þ−1Be eq1 ; eq1ð Þð Þh i:

ð20Þ

The direction and stability of PD bifurcation can be
shown using the following theorem in light of the justifica-
tion presented above.

Theorem 1. For the fixed point ζ̃2ðx ∗ ; y ∗ Þ, assume that (13)
is accurate. If s1ðmaPDÞ≠ 0 and maPD fluctuate its value in a
constrained vicinity to M̃3 , system (6) will experience a PD
bifurcation at ζ̃2ðx ∗ ; y ∗ Þ. Additionally, if s1ðmaPDÞ is positive
or negative, period-2 orbits split apart from ζ̃2ðx ∗ ; y ∗ Þ and
become stable (or unstable).

3.2. Neimark–Sacker Bifurcation. Next, we take the system
(6) at the fixed point ζ̃2ðx ∗ ; y ∗ Þ where the parameters ðr; a;
βa; αa; δaÞ are chosen at random. Let ma ¼ M̃4 ¼
maNS ¼ −βa−2rþβar−δar

βað−1þrÞ .

The system (6)’s eigenvalues are then complex, λ1; 2 2C.
Also,

d λai mað Þj j
dma ma¼ eM4

��� ¼ −
−βa 1þ δað Þ −1þ rð Þ2

2 2þ δað Þr ≠ 0;

− trJ fM4

� �� �
≠ 0⇒

−5þ δa −3þ rð Þ þ r
2þ δa

≠ 0; 1;
ð21Þ
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Saddle

5.5
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4.5
βa

r

4.0

3.5
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1.0

ðaÞ
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ðbÞ
FIGURE 2: Positive fixed point of the model (6) is categorized in (a) ðma; r; βaÞ space and (b) ðβa;maÞ space with r¼ 3:60; αa ¼ 3:5; δa ¼ 0:25.
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and

λka fM4

� �
≠ 1; k¼ 1; 2; 3; 4: ð22Þ

Consider the case where q̃1 ; q̃2 2R2 be two eigenvectors
of AðmaNSÞ and ATðmaNSÞ for eigenvalue λaðmaNSÞ and
λ̄aðmaNSÞ such that:

A maNSð Þ eq1 ¼ λa maNSð Þ eq1 ;  A maNSð Þ ēq1 ¼ λ̄a maNSð Þ ēq1
AT maNSð Þ eq2 ¼ λ̄a maNSð Þ eq2 ;  AT maNSð Þ ēq2 ¼ λa maNSð Þ ēq2 :

ð23Þ

Therefore, by performing simple calculations, we find as
follows:

eq1 ¼ −δa − λa − βa −1þmað Þx ∗

βa −1þmað Þy ∗

 !
;

eq2 ¼ −δa − λ̄a − βa −1þmað Þx ∗

−αa −1þmað Þx ∗

 !
:

ð24Þ

To obtain hq̃1 ; q̃2i¼ 1, where hq̃1 ; q̃2i¼ q̃11 q̃21 þ q̃12 q̃22 ,
we set the normalized vector q̃2 ¼ γNSq̃2 , with
γNS ¼ 1

ð−δa−λ̄−βað−1þmaÞx ∗ Þ2 − αaβað−1þmaÞ2x ∗ y ∗ .

By taking into account how ma can fluctuate close to
maNS and for za 2C, we can decompose Y 2R2 as Y ¼
zaq1 þ z̄a q̄1 . za ¼hq2;Yi is the exact formulation of za. Thus,
for jmaj close to maNS, the system (6) switched to the follow-
ing system as follows:

za 7À! μ mað Þza þ bh za; z̄a ;mað Þ; ð25Þ

where λðmaÞ¼ ð1þcφaðmaÞÞeiθðmaÞ with cφaðmaNSÞ¼ 0 andbhðza; z̄a ;maÞ is an easily computed complex-valued function.

When Taylor expansion is used on the function bh, we get:bhðza; z̄a ;maÞ¼∑kþl≥2
1
k!l!
bhklðmaÞzk−la  with bhkl 2C; k; l¼

0; 1;…:
Symmetric multilinear vector functions can be used to

define the Taylor coefficients.

bh20 maNSð Þ ¼ q2;Be q1; q1ð Þh i;bh11 maNSð Þ ¼ q2;Be q1; q̄1ð Þh i;bh02 maNSð Þ ¼ q2;Be q̄1 ; q̄1ð Þh i;bh21 maNSð Þ ¼ q2;Ce q1; q1; q̄1ð Þh i:

ð26Þ

The first Lyapunov coefficient s2ðmaNSÞ sign determines
the N–S bifurcation’s direction, which is given by the expres-
sion as follows:

s2 maNSð Þ¼ Re
λa2bh21
2

 !
− Re

1 − 2λa1ð Þλa22
2 1 − λa1ð Þ

bh20bh11� �
−
1
2
bh11��� ���2 − 1

4
bh02��� ���2 :

ð27Þ

In light of the preceding explanation, the following theo-
rem can be utilized to show the direction and stability of N–S
bifurcation.

Theorem 2. Assume that (21) is true and that s2ðmaNSÞ≠0 is
true. If the value of ma fluctuates in a specific area around M̃4 ,
system (6) experiences a N–S bifurcation at ζ̃2ðx ∗ ; y ∗ Þ. Addi-
tionally, if s2ðmaNSÞ is negative (resp. positive) and the N–S
bifurcation is supercritical (resp. subcritical), a unique invari-
ant closed curve that is attracting (resp. repelling) bifurcates
from ζ̃2ðx ∗ ; y ∗ Þ as well.

4. Quantitative Study

In order to support our theoretical findings and demonstrate
some novel, intriguing complex dynamical behaviors present
in system (6), numerical simulation work has been done to
exhibit bifurcation diagrams, phase portraits, Lyapunov
exponents, and fractal dimension (FD) of system (6). Before
presenting all the scenarios, we discuss the FD first.

4.1. Fractal Dimension. The idea of FD is frequently used in
the context of dynamical systems to describe the complexity
and self-similarity of the structures inside the system. FD
gives an indication of how a set fills space, capturing complex
patterns and imperfections that may not be well captured by
traditional Euclidean geometry. The FDs measurement,
which is defined by Cartwright [42], is used to determine a
model’s chaotic attractors.

bHfd ¼ kþ ∑k
j¼1tttj
tttkþ1j j ; ð28Þ

where k is the largest integer number such that ∑k
j¼1tttj ≥ 0

and ∑kþ1
j¼1 tttj<0 and ttj’s are Lyapunov exponents. Now, the

model (6)’s fractal dimensions structure is given as follows:

bHfd ¼ 2þ ttt1
ttt2j j : ð29Þ

Given that the chaotic dynamics of the model (6)
(Figure 3) are quantified with the sign of FD (Figure 4(d)),
it is inevitable that the dynamics of the model stabilize as the
parameter ma increases.

In the following situations, we take into account the
bifurcation parameters:

Scenario (i) ranging ma between the ranges of 0 and 1
and fixing other parameters as r¼ 3:55; αa ¼ 3:5; βa ¼ 4:5;
δa ¼ 0:25:

6 Mathematical Problems in Engineering



Scenario (ii) ranging ma between the ranges of 0 and 1
and fixing other parameters as r¼ 3:75; αa ¼ 3:5; βa ¼ 4:5;
δa ¼ 0:25:

Scenario (iii) ranging βa between the ranges of 3:5 and
3:75 and fixing other parameters as r¼ 3:75; αa ¼ 3:5;ma ¼
0:125; δa ¼ 0:25:

For scenario (i), Figures 5(a) and 5(b) show the bifurca-
tion diagrams of system (6) in the ðma − xÞ and ðma − yÞ
planes. We notice that an N–S bifurcation emerges at
ma ¼maNS ¼ 0:303922 around the fixed point ð0:399061;
0:465191Þ of system (6). At ma ¼maNS; we get eigenvalues
λa1; a2 ¼ 0:291667Æ 0:95652i and

d λai mað Þj j
dma

ma¼maNS

�� ¼ −2:28961 ≠ 0;

− tr J eM4

� �� �
ma¼maNS

�� ≠ 0⇒¼ − 0:58333 ≠ 0; 1:
ð30Þ

The Taylor coefficients are given by bh20 ¼ − 1:47917−
0:476808i;  bh11 ¼ 2:21875− 4:27194i; bh02 ¼ 5:91667þ

5:51551i;  bh21 ¼ 0 and s2ðmaNSÞ¼ − 32:9831: The N–S bifurca-
tion is supercritical as a result, which confirms Theorem 2.

The calculated maximum Lyapunov exponent corre-
sponding to Figures 5(a) and 5(b) is shown in Figure 5(c).
The chaotic zone has stable fixed points or stable periodic
windows as a result of certain Lyapunov exponents being
positive and some being negative, as shown in Figure 5(c).
The diagrams, as shown in Figures 5(a) and 5(b), demon-
strate that the fixed point ζ̃2 of system (6) is unstable up to
a scale factor of ma ¼ 0:303922 but becomes stable as the
scale factor increases. Figure 6 is arranged with the phase
portraits related to Figures 5(a) and 5(b) for different
values of ma; it unmistakably illustrates the procedure by
which a smooth invariant circle deviates from the steady
fixed point.

For scenario (ii), Figures 4(a) and 4(b) show the bifurca-
tion diagrams of system (6) in the ðma − xÞ and ðma − yÞ
planes. We observe that an N–S bifurcation emerges at
ma ¼maNS ¼ 0:318182 near the fixed point ð0:407407;
0:512169Þ of system (6). At ma ¼maNS; we find λa1; a2 ¼
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FIGURE 3: The phase diagram for altering the input of ma.
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0:23611Æ 0:971726i; and

d λai mað Þj j
dma

ma¼maNS

�� ¼ −2:52083 ≠ 0;

− tr J eM4

� �� �
ma¼maNS

�� ≠ 0⇒¼ − 0:472222 ≠ 0; 1:
ð31Þ

The Taylor coefficients are given by bh20 ¼ − 1:97917

− 0:483878i;  bh11 ¼ 2:34375− 4:79039i; bh02 ¼ 6:66667 þ
5:478999i;  bh21 ¼ 0 and s2ðmaNSÞ¼ − 39:0015: The N–S
bifurcation is supercritical as a result, which confirms
Theorem 2.

The estimated and displayedmaximum Lyapunov exponent
for Figures 4(a) and 4(b) is shown in Figure 4(c). The chaotic
zone has stable fixed points or stable periodic windows as a result
of certain Lyapunov exponents being positive and some being
negative, as shown in Figure 4(c). The diagrams, as shown in
Figures 4(a) and 4(b), show that the fixed point ζ̃2 of the system

(6) is unstable up to a scale factor ofma ¼ 0:318182 but becomes
stable as the scale factor increases. The phase portraits associated
with Figures 4(a) and 4(b) for various values ofma are arranged
in Figure 3, making it easy to see how a smooth invariant circle
separates from the stable fixed point.

For scenario (iii), the bifurcation diagrams of system (6) in
the ðβa − xÞ and ðβa − yÞ planes are shown in Figures 7(a) and
7(b) and correspondingMLEs and FDs are shown in Figures 7(c)
and 7(d). Figure 8(a) shows the codimension-2 bifurcation dia-
grams in ðβa;ma; xÞ space. The plot of the maximal Lyapunov
exponents for two control parameters is shown in Figure 8(b)
through a 2D projection onto the ðβa;maÞ plane.

5. Chaos Control

The state feedback method, pole placement methodology,
OGY technique, and hybrid control approach are the most
frequently used chaos control techniques for discrete-time
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FIGURE 4: Visualization of NS bifurcation, MLEs, and FDs of species for changing parameter ma for r= 3.75.
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models. The chaos generated by N–S bifurcation, we apply
the state feedback approach to control the chaos [43, 44] to
the system (6) and usingma as a control parameter. We write
system (6) as follows:

xnþ1 ¼ rxn 1 − xnð Þ − αa 1 −mað Þxnyn ¼ f xn; yn;mað Þ;
ynþ1 ¼ βa 1 −mað Þxnyn − δayn ¼ g xn; yn;mað Þ:

ð32Þ

Then, the controlled form of system (32) can be written
as follows:

xnþ1 ¼ rxn 1 − xnð Þ − αa 1 −mað Þxnyn þ Λn;
ynþ1 ¼ βa 1 −mað Þxnyn − δayn;

ð33Þ

where the control force Λn : ¼ − k1ðxn − x ∗ Þ− k2ðyn − y ∗ Þ
is specified as the feedback gains k1 and k2 and ðx ∗ ; y ∗Þ is the
interior fixed point for the system (6). The feedback gains k1
and k2 are critical in stabilizing and modifying the behavior
of discrete dynamical systems under chaos control (see [44]).
The goal of chaos control is to use control techniques to steer
a chaotic system toward a desirable state or trajectory. The
feedback gains k1 and k2 might be compared to regulatory
mechanisms that restore the system to a stable state while
making sure that critical processes stay within reasonable
bounds. Similar to how biological systems are resilient to
outside threats, k1 and k2 in chaos control can be seen as
elements that contribute to the system’s capacity to with-
stand disruptions and return to a desired state.

The following equation gives the Jacobian matrix Wc of
the controlled system as follows:
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FIGURE 5: Visualization of NS bifurcation, MLEs, and FDs of species for changing parameter ma for r= 3.55.
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Wc x ∗ ; y ∗ð Þ ¼ gw11 − k1 gw12 − k2gw21 gw22

 !
; ð34Þ

where the values of w̃ij ; i:j¼ 1; 2 from (7) are determined at
ðx ∗ ; y ∗ Þ. The defining equation of (34) is shown as follows:

λ2a −cpccλa þcqcc ¼ 0; ð35Þ

where cpcc ¼ðw̃11 þ w̃22Þ− k1 and cqcc ¼ðw̃11 − k1Þw̃22 −

ðw̃12 − k2Þw̃21 . Let λa1 and λa2 represent the answers to (35).
Then,

λa1 þ λa2 ¼cpcc ; ð36Þ

and

λa1λa2 ¼ cqcc : ð37Þ

The marginal stability lines are obtained by solving the
equations λa1 ¼Æ1 and λa1λa2 ¼ 1. These facts support the
statement that jλa1λa2j<1. Using (37) and assuming that
λa1λa2 ¼ 1, we get as follows:

L1 :gw22k1 −gw21k2 ¼gw11gw22 −gw12gw21 − 1: ð38Þ

Considering that λa1 ¼ 1, we obtain from (36) and (37) as
follows:

L2 : 1 −gw22ð Þk1 þgw21k2 ¼gw11 þgw22 −gw11gw22

−1þgw12gw21 :

ð39Þ

Afterward, for λa1 ¼ − 1, Equations (36) and (37) pro-
duce:
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L3 : 1þgw22ð Þk1 −gw21k2 ¼gw11 þgw22 þgw11gw22

þ1 −gw12gw21 :

ð40Þ

As a result, the ðk1; k2Þ plane’s triangular region bounded
by lines L1; L2; and L3 (see Figure 9(a)) retains eigenvalues
that fulfill jλa1λa2j<1.

Let ðx0; y0Þ be ð0:407407; 0:512169Þ and set other param-
eters as αa ¼ 3:5; βa ¼ 4:5; δa ¼ 0:25; r¼ 3:85. From the sta-
ble region (triangular area) in ðk1; k2Þ plane, as shown in
Figure 9(a), we select the feedback gains as k1 ¼ 1:0 and
k2 ¼ − 0:05. It is then statistically shown that the chaotic
trajectory is stabilized at the fixed point ð0:407407;
0:512169Þ, as shown in Figure 9(b).

6. Conclusions

We examine the dynamics of a discrete predator–prey sys-
tem utilizing a Holling type I functional response and a prey
refuge. We determine the existence conditions and directions
of the PD and N–S bifurcations near the interior fixed point
of system (6) using the center manifold theory when the
bifurcation parameter rises over a predetermined threshold.
Notably, our results show that the model exhibits chaotic
behavior and that the system becomes unstable when the
parameter βa increases, leading to a transition from a stable
state to chaotic behavior. Also, the system becomes unstable
when the parameter ma increases. These demonstrate that
the predator either falls extinct or reaches a stable fixed point
when the dynamics of the prey are chaotic. Numerical esti-
mates of the maximal Lyapunov exponents and the FD pro-
vide more evidence for the system’s instability. Additionally,
by varying the two control parameters, the system (6)

displays extremely complex nonlinear dynamical behaviors
and the chaotic phenomenon may be directly observed in the
two-dimensional parameter spaces. Finally, the chaotic tra-
jectory of the system has been controlled using the feedback
control strategy. Despite this, resolving the system’s numer-
ous parameter, bifurcations remain a challenging task. More
research on this topic should lead to more analytical conclu-
sions, as we forecast.
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