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In this manuscript, the primary motivation is the implementation of the advanced exp( — ¢(£))-expansion method to construct the
soliton solution, which contains some controlling parameters of two distinct equations via the Biswas—Arshed model and the
(3 + 1)-dimensional Kadomtsev—Petviashvili equation. Here, the solutions’ behaviors are presented graphically under some con-
ditions on those parameters. The height of the wave, wave direction, and angle of the obtained wave is formed by substituting
the particular values of the considerations over showing figures with the control plot. With the collaboration of the advanced
exp( — ¢(£))-expansion method, we construct entirely the solitary wave results as well as rogue type soliton, combined singular
soliton, kink, singular kink, bright and dark soliton, periodic shape, double periodic shape soliton, etc. Therefore, it is remarkable to
perceive that the advanced exp( — ¢(&))-expansion technique is a simple, viable, and numerical solid apparatus for clarifying

careful outcomes to the other nonstraight equivalences.

1. Introduction

Nonlinear partial differential conditions (NLPDEs) are a critical
subject and have spread broadly all over the planet in a wide
range of dynamic designs. Numerous mathematicians and phy-
sicists are dissecting dynamic designs. Electrical conduction,
plasma physics, mathematical natural sciences, fluid mechanics,
optical fiber, solid-state physics, shallow water wave propagation,
mathematical dynamics, and many other fields use dynamic
structures as significant components of nonlinear physical
simulations [1-10]. Recently, many experts looked into the
optical soliton solutions of the NLPDEs. These solutions are
essential for seeing how integrated physical phenomena work
inside. For obtaining optical solutions for NLPDEs, numerous
significant strategies have been proposed, including the mod-
ified polynomial expansion technique [11], the enhanced

(G'/G)-expansion approach [12], the exp( — ¢(&))-expansion
technique [13], the generalized Kudryashov approach [14],
the new auxiliary equation technique [15], the lie symmetry
approach [16], the extended Fan subequation technique [17],
the complex technique [18], the improved Bernoulli subequa-
tion approach [19], and so on.

Moreover, strength and bifurcation examination plays
a significant role in figuring out how a nonlinear robust
framework behaves. These days, numerous researchers have
concentrated on the bifurcation examination of nonlinear
differential conditions [20-29] to acquire significant knowl-
edge of how nonlinear models behave and steadiness.

We have considered the two NLPDEs via the Biswas and
Arshed (BA) and (3 + 1)-dimensional Kadomtsev—Petviashvili
(KP) model in this manuscript. Many scholars have studied
the BA and the (3 + 1)-dimensional KP models in the last few
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decades and found many optical solutions. In its continuity,
using two distinct schemes in [30, 31], they found the exact
soliton solutions and the singular and dark solitons of the BA
model with Kerr and power law in nonlinearity. The newly @°-
model expansion technique was applied to the BA model and
attained the optical soliton solutions, representing the dark,
bright, singular, rational, and periodic wave profile in [32]. In
addition, it has been observed that some scholars have found
the optical solution of the BA model using the trial solution
technique [33], the modified simple equation approach [34],
the mapping technique [35], and the extended trial function
approach [36], which are dark, bright, singular, and periodic
type wave profiles.

On the other hand, the (3 + 1)-dimensional KP model
was first introduced in 1970 by Soviet physicists Kadomtsev
and Petviashvili [37] which narrates the evolution of semi-
one-dimensional shallow water waves while the effect of
surface tension and viscosity is negligible. After that, many
authors have studied the different forms of the KP model
[38, 39]. Recently, one soliton and one resonant soliton solu-
tion have been found from the (3 + 1)-dimensional KP model
using consistent tanh expansion [40]. Using the Bilinear method
n [41], the KP model has explored the multiple lump solu-
tions via 1-lump wave, 3-lump wave, 6-lump wave, and 8-
lump waves. In addition, the simplified homogeneous balance
method has been applied to the KP model and found the one
single soliton and one double soliton solution in [42]. The
Hirota bilinear transformation has been applied to the KP
equation and obtained the one and two rough wave solutions
in [43].

The purpose of the manuscript is to apply the advanced
exp( — ¢(&))-expansion approach [44, 45] to the BA model
and the (3 + 1)-dimensional KP model, and to find some
optical soliton solutions, namely w-shape, kink shape, peri-
odic soliton solution shape, double periodic shape, dark
soliton shape, combined singular soliton, and rogue wave
profiles. Based on the above discussion in the previous lit-
erature, we can say that some wave profiles of the BA and
(3 + 1)-dimensional KP models are new. Finally, it can per-
fect water rollers of extended wavelength with softly non-
linear repairing forces and regularity distribution. It can
also be used to model waves in ferromagnetic media, non-
linear optics, optical fiber, and plasma physics.

The novelty of this paper is that, interestingly, the
advanced exp( — ¢(£))-extension approach is utilized for our
concerned models concerning my insight. The impact of
various norms of wave number on the got arrangements is
likewise made sense of graphically. The acquired outcomes
are helpful for the ultrashort light heartbeats in optical fila-
ments. Our review model has much significance in quantum
optics and liquid mechanics for making sense of the optical
qualities of the femtosecond lasers and femtochemistry
objects. Optical soliton annoyance is the foundation of the
broadcast communications industry. This industry stays in
business due to the wonder of soliton transmission innovation.

We have divided this article into follows: the literature
review, objectives, and background are discussed in Section 1.
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We talked about the description of the tactic in Section 2. The
governing equation is represented in Section 3. Section 4
applied the proposed method to the (3 + 1)-dimensional KP
and BA model. Graphical and physical explanations have
been discussed in Section 5. Finally, the conclusion is given
in Section 6.

2. The Advanced exp( — ¢ ())-
Expansion Method

Section 2 consists of the summary of the advance exp( — ¢(£))-
expansion method [44, 45]. We consider the NLPDEs, which is
of the form

R(U,U,, U, U;, Uy, U

Xy Uxt’ U

J’)”U

s Upts oveen ) (1)

where U= U(x, y, t) is the wave function to be determined,
R is a polynomial of U(x, y,t), and its partial derivatives.

Step-1. First, we take a conversion variable to change all
independent variables into a single variable, such as

U(x,t)=u(n), n=kx+1ly+ Vt. (2)

The wave variable mentioned in Equation (2) turn the
NLPDE Equation (1) into an ODE as follows:

p(% TR TR TN ) =0. (3)

Step-2. According to the advanced exp( — ¢(¢)-expans-
sion method, the exact solution of Equation (3) is assumed
to be

:z exp(-h(&))', (4)

where a; a,,a;...... , s d 70, are constants to be deter-
minted. The derivative of ¢(£) satisfies the ODE in the suc-
ceeding system

$'(S) + Aexp(=h($)) + Bexp(¢(£)) = 0. (5)

Then, the obtained results of ODE Equation (5) are of the
hyperbolic, trigonometric, and the following forms:

Case I hyperbolic function solution (when AB<0):
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$(&) =1In <\/_EBtan h(v-AB(¢ + C))> , (6)
and

A
¢(&) :ln<1 /_—Bcoth(\/—AB(df—F C))) (7)
Case II: trigonometric function solution (when AB>0):

P& = 1n<\/%tan(m(g + C))>, (8)
and

$(&) =In <—\/%60t(\/fﬁ(-f + C))) : )
Case III: when B>0 and A=0

00 =1( o) (10)

Case IV: when B=0and A€ R

$(§) =In(A(§+C)), (11)

where C is assimilating constants and AB<0 or AB>0 depends
on sign of B.

Step-3. It is concerning the transformation of Equation (4)
into Equation (3) and by combining all of the similar
orders of exp(¢p(£)) with the Equation (5). We obtain a
polynomial form of exp(¢(£)). A collection of algebraic
systems can be obtained by equating every coefficient of
this polynomial to zero.

Step-4. Take up the approximation of the constants can
be changed by measuring the mathematical terms come
to be in Step 4. Replacing the approximations of the

constants organized with the preparations of Equation (5),
we will get new and extensive exact voyaging wave courses
of action of the nonlinear advancement of Equation (1).

3. Governing Model

3.1. The BA Model. Recently, Biswas and Arshed [46] pro-
posed a model with Kerr law nonlinearity, namely BA model
is given as follows:

i% + a1qxx + A xt + i(bl%cxx =+ bquxt) = 1[/)(|q|2q)x
+T(191%).q + 0lq/*q.]-
(12)

In Equation (12), the dependent variable g(x, t) signifies
the wave velocity that depends upon spatial (x) and temporal
() variables. The first term portrays temporal evolution. a;
and a, stand for the coefficient of GVD and spatiotemporal
dispersion (STD); b, and b, represent third-order STD and
third-order dispersion; A is the effect of self-steepening, B
and 9 are the effect of dispersions.

To start integration process, let

q(x,t) = U(€)e"=t) & = x — vt, n(x,t) = —kx + ot + N,
(13)

where v, 7, k, w, and N are denoted by the amplitude portion
of the wave, soliton speed, phase component, frequency,
wave number, and phase constant, respectively. Next, put
Equation (13) into Equation (12), the real part of Equation (12)
has the following form:

(ay — ayv + 3b1k — 2b,vk — wb,)U”
—(@0 + a,k* + b,k — a,wk — bywk?)U = (p + 0)kU?,
(14)

and the imaginary part becomes

(bzvkz + 2b2(l)k - 3b1k2 -V - 2a1k + 2a2Vk + aza)) U/
+(by = byv)U" = (3p + 2T + ) U*U'.
(15)

3.2. The (3 + 1)-Dimensional KP Equation. Let us take into
account the (3 + 1)-dimensional KP equation is in the fol-
lowing form:

(Ut+6UUx+ Uxxx)x+3Uxx+3Uzz:0 (16)

The dependent variable U(x,y,t) represents the wave
velocity.

Using traveling wave variable £ = (ax + fy +yz — ot) to
reduce the Equation (16) becomes



a(-oU' + 6aUU" + U") +3(a* +y*)U" =0.
(17)

Equation (17) is an assimilated equation. Then assimilate
two times with the help of £ and we pursue the assimilating
constant to zero. Then, we obtain

a*U" + 322U + (3a? + 3y* — aw)U =0, (18)
where U’ =42, U”:%zj-
4. Applications

4.1. For BA Model. In this segment, we applied the advanced
exp( — ¢(&))-expansion method for Equations (14) and (15).
Balancing the nonlinear terms and highest order derivative

1k°b; = Kwb, — 6kABb, + 2ABwb, + K’ a, — kwa, — 2ABa; + @

Mathematical Problems in Engineering

terms, we obtain the balance number m = 2 for Equations (14)
and (15). So, the solution of the Equations (14) and (15) takes
the following form:

U(&) = Ag + Arexp(=¢(Z)) + Arexp(=¢(£))’. (19)

Differentiating the Equation (19) with respect to ¢ and
putting the values of U, U’, U'andU" in Equations (14) and
(15), and equating the coefficient of ) (i=0, +£1,42.....
+m) equal to zero.

Solving those systems of equivalences, we obtain the
results for real part that is Equation (14) are as follows:

Set-1:

2 AB(2kb, + a,) ’

V=
AO = 07 Al
—k3Ab1 + sza)bz - szal + kACl)az - A(U
= :I: - s A2 =0.
kpB + kB6

Case-I: we get the following hyperbolic solutions for
AB<O0, vyields

Family-1:

_ -k Ab, +k*Awb, k> Aa, +kAwa, —Aw
kpB-+kBO

\/~ 4 tanh(V=AB(¢ + C))

xe,

qia(x, t) ==+

(22)

_ —IPAb + K2 Awb,—k* Aay +kAwa —Aw
+ kpB-+kBO

\/—7% coth(V-AB(¢ + C))

G3a4(x, t) = e,

(23)

where é=x—vt, v= —-18b, - K*wb, — 6kABb, + 2ABwb, +
k?a, — kwa, — 2ABa, + w/AB(2kb, + a,), and n(x,t)=
—kx+ wt + N.

(20)

\
Case-1I: we get the following trigonometric solutions for
AB>0, yields

Family-2:

kpB-+kBO

\/41an(VAB(¢ + ©))

\/_ —k3Ab, +k*Awb, —k* Aa, +kAwa, —Aw
+

el

Gs6(x, 1) =

(24)

_ —IPAb + K2 Awb,—k*Aa, +kAwa, —Aw
kpB-+kBO

\/% cot(v/AB(¢ + C))

Qrs(x, t)=7F el

(25)

where é=x —vt, v= —3k°b, - k*wb, — 6kABb; + 2ABwb, +
k?a, — kwa, — 2ABa, + w/AB(2kb, + a;), and n(x,t)=
—kx+ wt + N.

Case-III and Case IV: the values of A, and A, are not
specified when A =0. As a result, the outcome cannot be
determined. This case is, therefore, dismissed. Essen-
tially, when B=0, the executing worth of A, A;, and
A, are undefined. So, they cannot be determined. So, this
case was also discarded.

Again, we obtain the solutions for imaginary part that is
Equation (15) we get following set
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Set-2:

3k2b1 - szUbZ - ZABbl + 2ka1 —@a,
iZb, — 2ABb, + 2ka, — 1

At 12k*b, b, — 12kwb,? + 12ka, b, — 12ka, b, — 6wa,b, + 6b;
! 2Tk*b,

V=

7A():07

A, A, =0.
— 4TABb, + 3k*pb, + k*0b, — 6ABpb, — 2ABOb, + 4Tka, + 6kpa, + 2kfa, — 2T —3p -0 °
(26)
\
Q ,
quaa(x, t) ==+ e, (28)
Case-I: we get the following hyperbolic solutions when \/— 4 coth(v-AB(£ + C))
AB<O,
where
Family-3:
Q .
Qo 10(x, 1) =% N xe'l, (27)
-2 tanh(v-AB(¢ + C))
|
Q - _ 12k2b bz - 12ka)b2 + 12ka1b2 - 12ka2b1 - 60)612192 + 6b1 (29)
o 2TK2b2 - 4TABb2 + 3k2pb2 + kngz 6Apr2 - 2AB(9b2 + 4Tka2 —+ 6kpa2 + 2k9a2 - 2T 3p 0
\
E=x-vt,v= 3k2b‘;22 g:ibjgéajﬁg;ﬁ“l‘ ~2% - and n(x,t) = Q ,
—kx+wt+N. Qis16(x, t) =F *e, (31)
/Aot (VAB( + ©))
Case-1I: we get following trigonometric solution when
AB>0,
where
Family-4:
Gi314(x, 1) < el
13,14 , 30
\/7tan B(£+C)) (30)
|
B 12k*b, by — 12kwb,? + 12ka, b, — 12ka,b, — 6wa,b, + 6b, 4 (32)
o 2Tk2b2 - 4TABb2 —+ 3k2pb2 + k29b2 - 6ABﬂb2 - ZABebz + 4Tk[12 —+ 6kpﬂ2 —+ 2k6a2 - ZT - 3p - 9 ’

\

Case-III: when A=0 the calculated value of A,

E=x—vt,v=23k?b; — 2kwb, — 2ABb, + 2ka, — wa,/k*b, — A, and A, are undefined. So, the result cannot be deter-
2ABb, +2ka, — 1, and 5(x,t) = —kx+ wt + N. mined. For this reason, this case is discarded.
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Qi7as(x,t) =+ E+0) xel, (33)
Family-5: where
|
_ \/_ 12k2b,b, — 12kaob,? + 12karb, — 12kasb, — 6warb + 6b, P
2Tk*b, — ATABb, + 3k*pb, + k*pb, — 6ABpb, — 2ABOb, + 4Tka, + 6kpa, + 2kfa, — 2T —3p — 0
=x- =3k*b, — 2kwb, — 2ABb, + 2ka, — k*b, — | 2 20*AB
Bty 4 Shos 1, wmd o b Unlx: ) = =3Bt vease o) Y

4.2. For (3 + 1)-Dimensional KP Equation. In this segment,
we apply the advance exp( — ¢(£))-expansion approach for
Equation (18) and since here the nonlinear term is U? and
the highest order derivative is U”. So, the balance number is
m = 2. So, the solution of the Equation (18) takes Equation (19)
and differentiates Equation (19) w. r. t. £ and putting the values
of U } and U" in Equation (18) and equating the coefficient of
e?€) (i=0,=+1,42....., +m) equal to zero. Solving those sys-
tems of equations, we obtain the solutions for Equation (18),
which are

Set-1:
—40*AB - 30 — 3y? 2

a 3
Al - 0, A2 = —ZO!ZAZ.

a=a, = —

Set-2:
40*AB - 32® — 3y
a=a, w=— 2 T T Ay =-20%AB, A, =0,
(04
A2 = —2a2A2.

(36)

Case-I: we get following hyperbolic solutions when AB<0

Family-6:

20*AB
tanh(v/-AB(¢ + C))*’

2
Ug(x, 1) = —gaZAB + (37)

_ —4a* Apu—3a>=3y*
e —

where = (ax+ fy+yz - wt) and v =

Family-7:

20*AB

tanh(v/-AB(£ + C))*’

UZl(x7 t) = —20{2AB +

20°AB
coth(v/=AB(¢ + C))*’

U22 (.x, t) = —Z(ZZAB +

_ 4a*Ap-30*-3y%
—

where £ = (ax+ fy+yz - wt) and w =

Case-1I: we get following trigonometric solutions when
AB>0,

Family-8:

Uss(x. 1) = — 2 a?AB 20°AB (41)
2 3 tan(VAB(¢ + C))*’
2, 20°AB
U24(x, t) =——a°AB - (42)

3 cot(vAB(é+ C))*

_ —4a*Ap-3a*-3y*
—

where ¢ = (ax+ fy +yz - wt) and w =

Family-9:

20*AB

tan(VAB(£ + C))*

U25 (x, t) = —2a2AB -

(43)
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abs (uo(x, 1))
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FiGURE 1: 3D (a—c) and 2D (d) plot of absolute part of the solution U;g when A= —2,B=3,a=0.11, C=+/-3, z= 0 within the displace-
ment —10<x,t<10. (a) :0.1, (b) :0.5, and (c) w:0.9. abs, absolute.

202AB

cot(vAB(é + C))*

U26 (.x, t) - —2a2AB - (44)

_ 4a*Au-30*-3y%
—

where £ = (ax+ fy+yz - wt) and v =

Case-IIT and Case IV: the values of Ajand A, are not
specified when A =0. As a result, the outcome cannot
be determined. This case is therefore dismissed. Essen-
tially, when B=0 the executing worth of Ajand A, are
undefined. So, the result cannot be determined. For this
reason, this case is discarded.

5. Physical and Graphical Explanations

This section will discuss the physical interpretation and
graphical presentation of the (3 +1)-dimensional KP and
BA models that obtained exact and single-wave results. The
precise traveling wave solutions for the (3 + 1)-dimensional
KP equation and BA models can be obtained by utilizing the
advanced exp( — ¢(&))-expansion method. The arrangements

41+ 92+ 93+ 94> 99 910> 911> 912+ Ures Ung, Uay, and Uy, are  all
hyperbolic function arrangements. The arrangements gs, g,
7. 98+ 913+ G1a> Q15> 16> Uz, Ups, and Uy are all trigonomet-
ric function results, and the rational function arrangements
being g7, 95

According to the condition AB<0, the soliton solution
U, represents the w-shape wave profile for selecting the free
parameters A= —2,B=3,a=0.11,C= V/=3,z=0 within
the displacement — 10 <x, t <10. The 3D plot with density
plot wave features of the solution U, depicted in Figure 1(a)—
1(c) for the value of @ =0.1,0.5,0.9, respectively. It can be
seen that the wave propagates along the x- and f-axes.
Figure 1(d) represents the 2D line plot of the Uy within
displacement — 10 <t <10. We need to observe the concave
up and concave down of our desired sketch for the inflection
point. By the observation, we find that (—3,0.09) at that
point, the sketch shows the concave up to the concave down
by the definition of inflection point we define that point.

According to the condition AB<0, imaginary form the of
solution U,, which represents kink-shape with A = -2, B=
3,a=.2,C=+/=2,z=0 within the displacements — 10 <x,
t <10. Figure 2(a)-2(c) represents a 3D plot with density
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Im (uyg(x, 1))

0.1

~ 0.05 -
3
=)
Il
s 0
5
S
g -0.05 A
-0.1 A
-5
x
— w:0.1 w: 0.9
— w:0.5

(d)

FIGURE 2: 3D (a—c) and 2D (d) plot of the complex part of solution U,y when A = —2,B=3,a=.2, C = /-2, z =0 within the displacements

-10<x,t<10. (a) w:0.1, (b) @:0.5, and (c) w:0.9.

plot for the value of @ = 0.1, 0.5, 0.9, respectively. Figure 2(d)
indicates the 2D line plot of the U,, within displacement
-5<Zt<5.

In the same way the solution U,; is a normal form and
the sketch indicates in normal system, which represents in
Figure 3. It indications the periodic soliton solution-shape
type exact traveling wave solution A=3,B=2,a=10,C=
2,z =0 within the displacements —10<x<10 and —10<
t <10. Figure 3(a)-3(c) represents 3D plot with density plot
for the value of w=0.1,0.5,0.9, respectively. Figure 3(d)
shows the 2D line plot of the U,; within displacement —
5<t<5.

The solution gy is a complex form and the figure repre-
sents an imaginary form which represents in Figure 4. It
spectacles the singular kink-shape type exact traveling wave

solution with A= -2,B=3,b,=1,b,=1,a,=2,a,=1,
k=0.005,N=1,C=1,0=11,p=+/-2.2 within the dis-
placements — 10 <x, t <10. Figure 4(a)—4(c) represents 3D
plot with density plot for the value of @ = 0.1, 0.5, 0.9, respec-
tively. Figure 4(d) shows the 2D line plot of the go within
displacement —5<t<5.

And the solution ¢y, is a complex form and the figure
indicates in absolute system which represents in Figure 5. It
shows the dark soliton-shape kind exact traveling wave solu-
tion with A= -2, B=3,by=1,b,=1,a,=2,a,=1,k=1,
N=1,C=1,0=1 within the displacements —20<x,t<
20. Figure 5(a)-5(c) represents 3D plot with density plot for
the value of ®=0.1,0.5,0.9, respectively. Figure 5(d) indi-
cates the 2D line plot of the g;, within displacement —20 <
t <20.
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FiGure 3: 3D (a—c) and 2D (d) plot of the solution of U,; when A =3, B=2,a =10, C =2, z =0 within the displacements — 10 <x <10 and
-10<t<10. (a) w:0.1, (b) @:0.5, and (c) w:0.9.
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FiGure 4: Continued.
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FIGURE 4: 3D (a—c) and 2D (d) plot of the complex part of solution go whenA= —-2,B=3,b; =1,b,=1,a;,=2,a,=1,k=.005,N=1,C=
1,0 =11, p=+/-2.2 within the displacements —10<x,¢<10. (a) ®:0.1, (b) ®:0.5, and (c) w:0.9.
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FIGURE 5: 3D (a—c) and 2D (d) plot of the absolute part of solution q;; whenA= -2,B=3,b;=1,b,=1,a,=2,a,=1,k=1,N=1,C=1,
6 =1 within the displacements —20 <x, t <20. (a) w:0.1, (b) @:0.5, and (c) w:0.9. abs, absolute.



Mathematical Problems in Engineering

Im (q,3(x, 1))
Im (q;5(x, 1))

20

600 :
. 400 A
3
=2 &S 2004
5 [
E 3
~— ] 5
£ s
g
-200
-400 T
-20 0 20
t
(c) (d)

FiGure 6: 3D (a—c) and 2D (d) plot of the complex part of solution g3 when =3,B=2,b; =1,b,=1,a,=2,a,=1,k=1,N=1,C=1,0=
1, T=1,p=1 within the displacements and —20<x,t<20. (a) ®:0.1, (b) @:0.5, and (c) @:0.9.
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FiGure 7: 3D (a—c)and 2D (d) plot of the absolute part of the solution q,; when A= —2,B=0, (#=0.1,0.5,0.9),b, =1,b,=1,a, =2,a, =
1,k=1,N=1,C=1,0=1/20, T =1, p=2within the displacements —20 <x,t<20. (a) w:0.1, (b) ®:0.5, and (c) w:0.9. abs, absolute.
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FiGure 8: 3D (a—c) and 2D (d) plot of the complex part of the solution g;; when A= —2,B=0, (®w=0.1,0.5,0.9),b; =1,b,=1,a;, =2,
a,=1,k=1,N=1,C=1,0=1/20, T =1, p=2 within the displacements —20<x,¢<20. (a) :0.1, (b) @:0.5, and (c) ®:0.9.
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Again the solution ¢ is a complex form and the figure in
imaginary form which represents in Figure 6. Its expressions
the double periodic-shape kind exact traveling wave solution
with A=3,B=2,b,=1,b,=1,a,=2,a,=1,k=1,N=1,
C=1,0=1,T=1,p=1within the displacements and
—20<x,t<20. Figure 6(a)-6(c) represents 3D plot with
density plot for the value of @=0.1,0.5,0.9 respectively.
Figure 6(d) indicates the 2D line plot of the g,; within dis-
placement —20 <t <20.

Also the solution g;; is a complex form and sketch of
absolute form and complex form represented in Figures 7
and 8. Figure 7 represents the combined singular soliton—
shape. Figure 8 represents rouge kind shape with A= -2,
B=0,(0=0.1,05,0.9).b;=1,b,=1,a,=2,a,=1,k=
I,N=1,C=1,0=1/20,T=1,p=2 within the displace-
ments —20<x,t<20 and also represents 2D line plot
within displacement —20 <t <20.

6. Conclusion

This work explores the advanced exp(— ¢(&))-expansion
method successfully, and the significant shape solution is con-
structed with the controlling parameters. These solutions are
elaborated systematically and graphically with 3D and 2D
plots. Finally, it is found that the advanced exp( —¢(£))-
expansion method to BA model and KP equation and such
typical solutions might be beneficial to analyze and character-
ize many nonlinear phenomena in nonlinear optic, quantum
field theory, solid state physics, and order to explain some
intricate nonlinear physical phenomena, this method provides
solutions with free parameters. This paper’s solutions demon-
strate that the approach is highly effective and adaptable.
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