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Te problem of infnite horizon H∞ control for general delayed nonlinear stochastic Markov jump systems with the infnite
jumping parameters is considered in this paper, in which the noise is dependent on the state, control, and external disturbance.
Te coupled Hamilton–Jacobi inequalities (HJIs)-based sufcient condition is given to ensure the existence of the H∞ controller.
As a corollary, infnite horizonH∞ controllers are designed for nonlinear stochastic time-delay systems without jumps by solving
a series of coupled HJIs. Besides, the efectiveness of the proposed method is verifed by a numerical example.

1. Introduction

As we all know,Markov jump systems have been used widely
both in theory and in engineering over the past decades [1].
In the practical life, the occurrence of parts failures and the
change of the relationship between subsystems, as well as the
sudden environmental disturbances, will cause the jump of
systems structure or parameters. Te Markov jump system
may be a prefect model in describing these phenomena. As
perturbations are unavoidable in practical systems [2], in
recent years, many researchers have paid attention to the
problem of stability and control for It o-type Markov jumps
stochastic systems; see [3–6] and the references therein.

It is noteworthy that most of the existing works on jump
systems have been carried out in the fnite state Markov
process, that is, its state space is a fnite set. In fact, some
physical variables may be described more appropriately with
infnite jump states. For instance, in the solar heat receiver
model proposed in [7], the atmospheric parameters take the
values in a Borel measurable infnite set. It is needed to
emphasize that there are essential diferences in performance
between fnite and infnite Markov jump systems (IMJSs),
and the causal and anticausal Lyapunov operators of infnite
Markov jump systems being no more adjoint is the reason.

Te authors [8] have pointed out that exponential stability
and stochastic stability for IMJSs are no longer equivalent. In
addition, IMJSs have attracted an increasing interest; see
[9–16].

On the other hand, time delay and nonlinearity, which
often occur in engineering, biological, and economic sys-
tems, are the important reasons for systems to be instable or
performance being destroyed [17]. Notice that the robust
stability and H∞ control have been investigated a little for
nonlinear stochastic systems with jumps and delay. Te
authors in [18] solved the infnite horizon H∞ control for
nonlinear IMJSs with disturbance-, control-, and state-
dependent noise, but the efects of time delay is neglec-
ted. For the nonlinear delayed system with fnite Markov
jump, the authors in [19] designed its H∞ controller. In
conclusion, the research on stability and control of nonlinear
stochastic systems with infnite Markov jumps and time
delay has important theoretical meaning. However, as far as
we know, these issues have not been fully investigated so far,
which greatly inspires our research interest.

Te problem of H∞ control is mainly solved in this
paper for general nonlinear delay stochastic systems with
infnite Markov jumps and (x, u, v)-dependent noise. Te
main contributions are concluded as follows: First, we
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develop an infnite horizon asymptotically mean square
stable H∞ controller design method based on the complete
square technique and Ito’s formula. A numerical example
shows the efectiveness of the proposed method. Second,
a nonlinear stochastic bounded real lemma is derived as
a byproduct. Compared with the previous work, our results
have a wider range of applications. Te work reported in
[19], for example, is a special case of this paper.

Te following notations are used in this study: Rn: the
n-dimensional Euclidean space; ‖x‖: the Euclidean norm of
n-dimensional real vector x; L2

F(R+; Rl): the space of all
nonanticipative stochastic processes y(t) ∈ Rl with respect
to an increasing σ-algebra Ft satisfying ‖y(t)‖L2

F
(R+;Rl) �

E(
∞
0 ‖y(t)‖2dt)1/2 <∞; I: the identity matrix; A′: the

transpose of matrix A; A≥ 0(A> 0): A is positive semi-
defnite (positive defnite); C2,1(U; T): the class of functions
V(x, t) which are twice continuously diferentiable with
respect to x ∈ U and once continuously diferentiable with
respect to t ∈ T except possibly at the point x � 0;
C([− δ, 0]; Rn): the vector space of all continuous Rn-valued
functions defned on [− δ, 0]; col(x1, x2, . . . , xn) ≔
[x1, x2, . . . , xn]′; and Sn: the set of symmetric matrices.

2. Preliminaries

Consider the following nonlinear delay system with infnite
jumps:

dx(t) � f x, xδ, t, θt(  + k x, xδ, t, θt( u + s x, xδ, t, θt( v dt,

+ g x, xδ, t, θt(  + h x, xδ, t, θt( u + q x, xδ, t, θt( v dω(t),

z(t) � col m x, xδ, t, θt( , u(  ≔
m x, xδ, t, θt( 

u
 ,

x(t) � Φ(t) ∈ Cb
F0

[− δ, 0]; R
n

( ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where xδ � x(t − δ) is the time delay state, x(t) ∈ Rn is the
system state, u(t) ∈ Rnu is the control input, v(t) ∈ Rnv rep-
resents themultiplicative noise, and z(t) ∈ Rnz is themeasured
output. ω(t) is the standard one-dimensional Wiener process
on a complete fltered space (Ω,F, Ft t∈R+, P), and the
fltration Ft t∈R+ satisfes usual conditions. Cb

F0
([− δ, 0]; R+)

defnes all F-measurable bounded C([− δ, 0]; R+)-valued
random variable φ � φ(ξ): − δ ≤ ξ ≤ 0} with E‖φ‖2 <∞,
where ‖φ‖ � sup− δ≤ξ≤0‖φ(ξ)‖. Te jumping process θt is
a continuous-time discrete-state Markov process which takes
values in an infnite set D � 1, 2, · · ·{ } with the generator
Γ � (πrh)r,h∈D, that is,

P θt+k � h
 θt � r  �

πrhk + o(k), if r≠ h,

1 + πrrk + o(k), if r � h,
 (2)

where k> 0, limk⟶0(o(k)/k) � 0, πrh ≥ 0(r, h ∈ D, r≠ h) is
the switching rate from mode r at time t to mode h at time
t + k and πrh � − h∈D,r≠hπrh <∞ for all r ∈ D.Te processes
θt and ω(t) are supposed to be independent in this paper.
For every θt � r ∈ D, the local Lipschitz condition and the
linear growth condition are satisfed for f, k, s, g, h, q, and m,
which can ensure that system (1) has a unique strong
solution [6].

Let f(0, 0, t, r) ≡ 0, g(0, 0, t, r) ≡ 0, and ∀(t, r) ∈ R × D.
For V ∈ C2,1(Rn × R × D; R), the following infnitesimal
generator LV: Rn × Rn × R × D⟶R associated with (1) is
denoted [6]:

LV(x, y, t, r) �
zV(x, t, r)

zt
+

zV
′
(x, t, r)

zx
[f(x, y, t, r) + k(x, y, t, r)u + l(x, y, t, r)v]

+
1
2
[g(x, y, t, r) + h(x, y, t, r)u + q(x, y, t, r)v]

′zV
2
(x, t, r)

zx
2

×[g(x, y, t, r) + h(x, y, t, r)u + q(x, y, t, r)v] + 
∞

h�1
πrhV(x, t, r).

(3)

To design the infnite horizon H∞ controller for system
(1), the internal stability requirement is needed. Tus, the
defnition of stochastic stability is introduced as follows.

Defnition 1 (see [6]). Te nonlinear stochastic delayed
system given by

dx(t) � f x, xδ, t, θt( dt + g x, xδ, t, θt( dω,

x(t) � Φ(t) ∈ Cb
F0

[− δ, 0]; R
n

( ,

⎧⎨

⎩ (4)

is stable in probability (SIP) if

lim
x0⟶0

P sup
t≥0

‖x(t)‖ > ε  � 0, ∀ε> 0. (5)
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If system (4) is SIP and

P lim
t⟶∞

x(t) � 0  � 1, (6)

then it is called to be globally asymptotically stable in
probability (GASIP). System (4) is asymptotically stable in
mean square (ASMS) if

lim
t⟶∞

E‖x(t)‖
2

� 0. (7)

Defnition 2. For given c> 0, u(t) � u∗(t) ∈ L2
F(R+; Rnu ) is

called an infnite horizon H∞ controller for system (1), if the
following conditions are met:

(i) When v � 0, system (1) with u(t) � u∗(t) is in-
ternally stable, i.e., the system

dx(t) � f x, xδ, t, θt(  + h x, xδ, t, θt( u
∗
(t) dt

+ g x, xδ, t, θt(  + h x, xδ, t, θt( u
∗
(t) dω,

(8)

is ASMS.
(ii) For ∀v ∈ L2

F(R+; Rnv )≠ 0,

‖z‖L2
F

R+;Rnz( )≤ c‖v‖L2
F

R+;Rnv( ), x(0) � 0. (9)

Remark 3. Let the perturbation operator ‖Lu∗

∞‖ be denoted
by Lu∗

∞: L2
F(R+; Rnv )↦L2

F(R+; Rnz ) as

L
u∗

∞(v) � z x t, u
∗
, v, θt( ( , t≥ 0. (10)

Its norm is

L
u∗

∞

�����

����� � sup
v∈L2

F
R+;Rnz( )

v≠ 0,x0�0,θ0∈D

‖z‖L2
F

R+;Rnz( )

‖v‖L2
F

R+;Rnv( )

.
(11)

It is easy to verify that (9) is equivalent to ‖Lu∗

∞‖≤ c.

Lemma 4 (see [20]). If there exists a positive Lyapunov
function V(x, t, r) ∈ C2,1(Rn × R × D; R) satisfying
LV(x, t, r)< 0 for x≠ 0 and V(x, t, r) being radially un-
bounded, i.e.,

lim
‖x‖⟶∞

inf
t> 0

V(x, t, r) �∞, (12)

then the point x ≡ 0 of (8) is GASIP.

Lemma 5 (see [21]). For z, b ∈ Rn, B ∈ Sn, and B− 1 exists,
we have

z
′
Bz + b

′
z + z
′
b � z + B

− 1
b 
′
B z + B

− 1
b  − b

′
B

− 1
b.

(13)

3. Main Results

A sufcient condition is obtained for the infnite horizon
H∞ control of system (1) as follows.

Theorem 6. For a given disturbance attenuation level c> 0,
assume that there exist a set of positive functions
V(x, t, θt) ∈ C2,1(Rn × R × D; R) which have an infnitesimal
upper limit (i.e., lim‖x(t)‖⟶∞t>0inf V(x, t, θt) �∞), V

(0, 0, r) � 0, and z2V(x, t, θt)/zx2 ≥ 0 for all nonzero x ∈ Rn,
r ∈ D. Besides, one assumes that V(x, t, θt)> a‖x(t)‖2 for
some a> 0. If V(x, t, θt) solves the following HJIs:

Πr ≔
zVr

zt
+

zVr
′

zx
fr +

1
2
gr
′z

2
Vr

zx
2 gr + mr

′mr + 
∞

h�1
πrhVh

+
1
4

gr
′z

2
Vr

zx
2 qr +

zVr
′

zx
sr  c

2
I − qr
′z

2Vr

zx2 qr 

− 1

qr
′z

2
Vr

zx
2 gr + sr

′zVr

zx
 

−
1
4

gr
′z

2
Vr

zx
2 hr +

zVr
′

zx
kr  I + hr

′z
2Vr

zx2 hr 

− 1

hr
′z

2
Vr

zx
2 gr + kr

′zVr

zx
 < 0,

c
2
I − qr
′z

2
Vr

zx
2 qr > 0, r ∈ D,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(14)

where

Vr, fr, kr, sr, gr, hr, qr, mr  �

V x, t, θt( , f x, y, t, θt( , k x, y, t, θt( , s x, y, t, θt( , g x, y, t, θt( , h x, y, t, θt( , q x, y, t, θt( , m x, y, t, θt(  ,
(15)
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for all x, y ∈ Rn, t≥ 0, and r ∈ D, then

u
∗
r � −

1
2

I + hr
′z

2Vr

zx2 hr 

− 1

hr
′z

2
Vr

zx
2 gr + kr

′zVr

zx
 , (16)

is an asymptotically mean square H∞ control for system (1).

Proof. First, we prove that system (8) is ASMS. For r ∈ D, we
have the infnitesimal operator Lu∗ of system (8).

Lu∗V x, y, t, θt(  ∣ v�0

�
zVr

zt
+

zVr
′

zx
fr + kru

∗
r(  + 
∞

h�1
πrhVh +

1
2

gr + hru
∗
r( 
′z

2
Vr

zx
2 gr + hru

∗
r( 

�
zVr

zt
+

zVr
′

zx
fr +

zVr
′

zx
kru
∗
r + 
∞

h�1
πrhVh +

1
2
gr
′z

2
Vr

zx
2 gr

+
1
2
u
∗′
r hr
′z

2
Vr

zx
2 gr +

1
2
gr
′z

2
Vr

zx
2 hru
∗
r +

1
2
u
∗′
r hr
′z

2
Vr

zx
2 hru
∗
r

�
zVr

zt
+

zVr
′

zx
fr +

1
2
gr
′z

2
Vr

zx
2 gr + 

∞

h�1
πrhVh + Γ1r + Γ2r,

(17)

where

Γ1r �
zVr
′

zx
kru
∗
r +

1
2
u
∗
r hr
′z

2
Vr

zx
2 gr +

1
2
gr
′z

2
Vr

zx
2 hru
∗
r

� −
1
2

zVr
′

zx
kr I + hr

′z
2Vr

zx2 hr 

− 1

hr
′z

2
Vr

zx
2 gr + kr

′zVr

zx
 

−
1
4

gr
′z

2
Vr

zx
2 hr +

zVr
′

zx
kr  I + hr

′z
2Vr

zx2 hr 

− 1

hr
′z

2
Vr

zx
2 gr

−
1
4
gr
′z

2
Vr

zx
2 hr I + hr

′z
2Vr

zx2 hr 

− 1

hr
′z

2
Vr

zx
2 gr + kr

′zVr

zx
 

� −
1
2

zVr
′

zx
kr + gr
′z

2
Vr

zx
2 hr  I + hr

′z
2Vr

zx2 hr 

− 1

hr
′z

2
Vr

zx
2 gr + kr

′zVr

zx
 ,

(18)

and

Γ2r �
1
2
u
∗′
r hr
′z

2
Vr

zx
2 hru
∗
r

�
1
8

gr
′z

2
Vr

zx
2 hr +

zVr
′

zx
kr  I + hr

′z
2Vr

zx2 hr 

− 1

hr
′z

2
Vr

zx
2 hr

× I + hr
′z

2Vr

zx2 hr 

− 1

hr
′z

2
Vr

zx
2 gr + kr

′zVr

zx
 

≤
1
8

gr
′z

2
Vr

zx
2 hr +

zVr
′

zx
kr  I + hr

′z
2Vr

zx2 hr 

− 1

hr
′z

2
Vr

zx
2 gr + kr

′zVr

zx
 .

(19)
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Substituting (18) and (19) into (17), and considering (14),
one gets

Lu∗V x, y, t, θt( |v�0

�
zVr

zt
+

zVr
′

zx
fr +

1
2
gr
′z

2
Vr

zx
2 gr + 

∞

h�1
πrhVh

−
1
2

zVr
′

zx
kr + gr
′z

2
Vr

zx
2 hr  I + hr

′z
2Vr

zx2 hr 

− 1

hr
′z

2
Vr

zx
2 gr + kr

′zVr

zx
 

+
1
8

gr
′z

2
Vr

zx
2 hr +

zVr
′

zx
kr  I + hr

′z
2Vr

zx2 hr 

− 1

hr
′z

2
Vr

zx
2 gr + kr

′zVr

zx
 

≤
zVr

zt
+

zVr
′

zx
fr +

1
2
gr
′z

2
Vr

zx
2 gr + 

∞

h�1
πrhVh

−
1
4

gr
′z

2
Vr

zx
2 hr +

zVr
′

zx
kr  I + hr

′z
2Vr

zx2 hr 

− 1

hr
′z

2
Vr

zx
2 gr + kr

′zVr

zx
 

< − mr
′mr −

1
4

gr
′z

2
Vr

zx
2 gr +

zVr
′

zx
sr  c

2
I − qr
′z

2Vr

zx2 qr 

− 1

gr
′z

2
Vr

zx
2 qr +

zVr
′

zx
sr 

≤ 0.

(20)

Based on Lemma 4, (8) is GASIP. Besides, by using It o′s

formula, for t≥ s≥ 0, one obtains

EV x(t), t, θt(  � EV x(s), s, θs(  + E 
t

s
Lu∗V x(τ), τ, θτ( 

v�0
dτ

+ E 
t

s
g x(τ), τ, θτ(  + h x(τ), τ, θτ( u

∗
(τ) V x(τ), τ, θτ( dω(τ)

� EV x(s), s, θs(  + E 
t

s
Lu∗V x(τ), τ, θτ( 

v�0
dτ

≤EV x(s), s, θs( .

(21)

It is easy to fnd that E|V(x(t), t, θt)|<∞. Setting
Ft � Ft ∪ σ(y(s), 0≤ s≤ t), then (21) yields

E V x(t), t, θt( | Fs ≤E V x(s), s, θs( | Fs 

≤V x(s), s, θs(  a.s.
(22)

Accordingly, considering Ft 
t∈R+, V(x(s), s, θs),

Ft,

0≤ s≤ t} is a non-negative supermartingale. By Doob’s
convergence theorem [22], it deduces that V(x(∞), ∞,

θ∞) � limt⟶∞V(x(t), t, θt) � 0 a.s. Moreover, limt⟶∞
EV(x(t), t, θt) � EV(x(∞),∞, θ∞) � EV(0,∞, θ∞) � 0.
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Because of V(x(t), t, θt)≥ a‖x(t)‖2 for some a> 0, then
limt⟶∞E‖x(t)‖2 � 0.

Next, we will prove that (9) holds for system (1). For the
initial state x0 � 0, θ0 � r, and any T> 0, by using It o′s

formula, we have

E V xT, T, θT(  − V x(0), 0, θ0( |θ0 � r 

� E 
T

0
LV x, xδ, t.θt( dt|θ0 � r 

� E 
T

0

zVθt

zt
+

zVθt
′

zx
fθt

+ kθt
u + sθt

v  + 
∞

h�1
πrhVh

⎡⎣
⎧⎨

⎩

+
1
2

gθt
+ hθt

u + qθt
v 
′z

2
Vθt

zx
2 gθt

+ hθt
u + qθt

v ⎤⎦dt|θ0 � r
⎫⎬

⎭

� E 
T

0

zVθt

zt
+

zVθt
′

zx
fθt

+ kθt
u + sθt

v  + 
∞

h�1
πrhVh

⎡⎣ mθt

�����

�����
2

+‖u‖
2

− c
2
‖v‖

2⎧⎨

⎩

+
1
2

gθt
+ hθt

u + qθt
v 
′z

2
Vθt

zx
2 gθt

+ hθt
u + qθt

v  − z
2

+ c
2����
����v

2⎤⎦dt|θ0 � r
⎫⎬

⎭

� E 
T

0

zVθt

zt
+

zVθt
′

zx
fθt

+
1
2
gθt
′
z
2
Vθt

zx
2 gθt

+ mθt
′mθt

+ 
∞

h�1
πrhVh

⎡⎣
⎧⎨

⎩

+ v
′

− c
2
I +

1
2
qθt
′
z
2
Vθt

zx
2 qθt

⎛⎝ ⎞⎠v +
1
2

gθt
′
z
2
Vθt

zx
2 qθt

+
zVθt
′

zxsθt

⎛⎝ ⎞⎠v

+
1
2
v
′

sθt
′
zVθt

zx
+ qθt
′
z
2
Vθt

zx
2 gθt

⎛⎝ ⎞⎠ + u
′

I +
1
2
hθt
′
z
2
Vθt

zx
2 hθt

⎛⎝ ⎞⎠u

+
1
2
u
′

hθt
′
z
2
Vθt

zx
2 gθt

+ kθt
′
zVθt

zx
⎛⎝ ⎞⎠ +

1
2

zVθt
′

zx
kθt

+ gθt
′
z
2
Vθt

zx
2 hθt

⎛⎝ ⎞⎠u

+
1
2
v
′
qθt
′
z
2
Vθt

zx
2 hθt

u +
1
2
u
′
hθt
′
z
2
Vθt

zx
2 qθt

v − z
2

+ c
2����
����v

2⎤⎦dt|θ0 � r
⎫⎬

⎭

� E 
T

0
Π1 x, xδ, t, θt(  +Π2 v, x, xδ, t, θt(  + Π3 u, x, xδ, θt( 

+
1
2
v
′
qθt
′
z
2
Vθt

zx
2 hθt

u +
1
2
u
′
hθt
′
z
2
Vθt

zx
2 qθt

v − z
2

+ c
2����
����v

2⎤⎦dt|θ0 � r
⎫⎬

⎭,

(23)

where
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Π1 x, xδ, t, θt(  �
zVθt

zt
+

zVθt
′

zx
fθt

+
1
2
gθt
′
z
2
Vθt

zx
2 gθt

+ mθt
′mθt

+ 
∞

h�1
πrhVh,Π2

v, x, xδ, t, θt(  � v
′

− c
2
I +

1
2
qθt
′
z
2
Vθt

zx
2 qθt

⎛⎝ ⎞⎠v +
1
2

gθt
′
z
2
Vθt

zx
2 qθt

+
zVθt
′

zxsθt

⎛⎝ ⎞⎠v

+
1
2
v
′

sθt
′
zVθt

zx
+ qθt
′
z
2
Vθt

zx
2 gθt

⎛⎝ ⎞⎠,

Π3 u, x, xδ, t, θt(  � u
′

I +
1
2
hθt
′
z
2
Vθt

zx
2 hθt

⎛⎝ ⎞⎠u +
1
2
u
′

hθt
′
z
2
Vθt

zx
2 gθt

+ kθt
′
zVθt

zx
⎛⎝ ⎞⎠

+
1
2

zVθt
′

zx
kθt

+ gθt
′
z
2
Vθt

zx
2 hθt

⎛⎝ ⎞⎠u.

(24)

Considering z2V(x, t, θt)/zx2 ≥ 0 and r ∈ D, we assert

1
2

hθt
u − qθt

v 
′z

2
Vθt

zx
2 hθt

u + qθt
v ≥ 0, (25)

which shows that

1
2
v
′
qθt
′
z
2
Vθt

zx
2 hθt

u +
1
2
u
′
hθt
′
z
2
Vθt

zx
2 qθt

v

≤
1
2
u
′
hθt
′
z
2
Vθt

zx
2 hθt

u +
1
2
v
′
qθt
′
z
2
Vθt

zx
2 qθt

v.

(26)

Terefore,

E V xT, T, θT(  − V x0, 0, θ0( |θ0 � r 

≤E 
T

0
Π1 x, xδ, t, θt(  + Π2 v, x, xδ, t, θt(  + Π3 u, x, xδ, t, θt( 

+
1
2
u
′
hθt
′
z
2
Vθt

zx
2 hθt

u +
1
2
v
′
qθt
′
z
2
Vθt

zx
2 qθt

v − z‖
2

+ c
2����
����v‖

2⎤⎦dt


θ0 � r

⎫⎬

⎭

� E 
T

0
Π1 x, xδ, t, θt(  + Π2 v, x, xδ, t, θt(  + Π3 u, x, xδ, t, θt( 

− z‖
2

+ c
2����
����v‖

2
dt

 θ0 � r,

(27)

where
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Π2 v, x, xδ, t, θt(  � v
′

− c
2
I + qθt
′
z
2
Vθt

zx
2 qθt

⎛⎝ ⎞⎠v +
1
2

gθt
′
z
2
Vθt

zx
2 qθt

+
zVθt
′

zx
sθt

⎛⎝ ⎞⎠v

+
1
2
v
′

sθt
′
zVθt

zx
+ qθt
′
z
2
Vθt

zx
2 gθt

⎛⎝ ⎞⎠,

Π3 u, x, xδ, t, θt(  � u
′

I + hθt
′
z
2
Vθt

zx
2 hθt

⎛⎝ ⎞⎠u +
1
2
u
′

hθt
′
z
2
Vθt

zx
2 gθt

+ kθt
′
zVθt

zx
⎛⎝ ⎞⎠

+
1
2

zVθt
′

zx
kθt

+ gθt
′
z
2
Vθt

zx
2 hθt

⎛⎝ ⎞⎠u.

(28)

Applying Lemma 5 to Π2(v, x, xδ, t, θt) and
Π3(u, x, xδ, t, θt), we arrive at

Π2 v, x, xδ, t, θt( 

� v + Λ1( 
′

− c
2
I + qθt
′
z
2
Vθt

zx
2 qθt

⎛⎝ ⎞⎠ v + Λ1( 

−
1
4

zVθt
′

zx
sθt

+ gθt
′
z
2
Vθt

zx
2 qθt

⎛⎝ ⎞⎠ − c
2
I + qθt
′
z2Vθt

zx2 qθt

⎛⎝ ⎞⎠

− 1

sθt
′
zVθt

zx
+ qθt
′
z
2
Vθt

zx
2 gθt

⎛⎝ ⎞⎠,

(29)

and

Π3 u, x, xδ, t, θt(  � u + Λ2( 
′

I + hθt
′
z
2
Vθt

zx
2 hθt

⎛⎝ ⎞⎠ u + Λ2( 

−
1
4

gθt
′
z
2
Vθt

zx
2 hθt

+
zVθt
′

zx
kθt

⎛⎝ ⎞⎠ I + hθt
′
z2Vθt

zx2 hθt

⎛⎝ ⎞⎠

− 1

kθt
′
zVθt

zx
+ hθt
′
z
2
Vθt

zx
2 gθt

⎛⎝ ⎞⎠,

(30)

where
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Λ1 �
1
2

c
2
I + qθt
′
z2Vθt

zx2 qθt

⎛⎝ ⎞⎠

− 1

qθt
′
z
2
Vθt

zx
2 gθt

+ sθt
′
zVθt

zx
⎛⎝ ⎞⎠,

Λ2 �
1
2

I + hθt
′
z2Vθt

zx2 hθt

⎛⎝ ⎞⎠

− 1

hθt
′
z
2
Vθt

zx
2 gθt

+ kθt
′
zVθt

zx
⎛⎝ ⎞⎠.

(31)

Substituting (29) and (30) into (27), and considering
(14), one infers that

E V xT, T, θT(  − V x0, 0, θ0( |θ0 � r 

≤E 
T

0
v + Λ1( 

′
− c

2
I + qθt
′
z
2
Vθt

zx
2 qθt

⎛⎝ ⎞⎠ v + Λ1( ⎡⎢⎢⎣
⎧⎨

⎩

+ u + Λ2( 
′

I + hθt
′
z
2
Vθt

zx
2 hθt

hθt

⎛⎝ ⎞⎠ u + Λ2(  − z‖
2

+ c
2����
����v‖

2⎤⎥⎥⎦dt


θ0 � r

⎫⎬

⎭.

(32)

In view of (14), if one takes u � u∗ � − Λ2, then (32)
becomes

E 
T

0
‖z‖

2dt


θ0 � r 

≤ − E V xT, T, θT( |θ0 � r  + c
2
E 

T

0
‖v‖

2dt


θ0 � r 

− E 
T

0
v + Λ1( 

′
c
2
I + qθt
′
z
2
Vθt

zx
2 qθt

⎛⎝ ⎞⎠ v + Λ1( dt


θ0 � r⎡⎢⎢⎣ ⎤⎥⎥⎦

< c
2
E 

T

0
‖v‖

2dt


θ0 � r .

(33)

Letting T⟶∞, it can be seen that (9) is established,
which achieves the desired result. □

Setting u(t) ≡ 0, then (1) becomes the following un-
forced nonlinear system:

dx(t) � f x, xδ, t, θt(  + s x, xδ, t, θt( v dt + g x, xδ, t, θt(  + q x, xδ, t, θt( v dω(t),

z(t) � m x, xδ, t, θt( ,

x(t) � Φ(t) ∈ Cb
F0

[− δ, 0]; R
n

( .

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(34)

Remark 7. It is generally HJIs (14) that are not easy to be
solved. Maybe we can try getting the approximate solution
by a fuzzy method.

Te nonlinear stochastic bounded real lemma for system
(34) will be obtained by Teorem 6.

Corollary  . For c> 0, assume that there exist a set of
positive functions V(x, t, θt) ∈ C2,1(Rn × R × D; R) which
satisfy lim‖x(t)‖⟶∞inf t> 0V(x, t, θt) �∞, V(0, 0, r) � 0,
and z2V(x, t, θt)/zx2 ≥ 0 for all nonzero x ∈ Rn, r ∈ D, as
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well as V(x, t, θt)> a‖x(t)‖2 for some a> 0. If V(x, t, θt)

satisfes the following HJIs:

zVr

zt
+

zVr
′

zx
fr +

1
2
gr
′z

2
Vr

zx
2 gr + mr

′mr + 
∞

h�1
πrhVh

+
1
4

gr
′z

2
Vr

zx
2 qr +

zVr
′

zx
sr  c

2
I − qr
′z

2Vr

zx2 qr 

− 1

qr
′z

2
Vr

zx
2 gr + sr

′zVr

zx
 < 0,

c
2
I − qr
′z

2
Vr

zx
2 qr > 0, r ∈ D, t≥ 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(35)

then system (34) is internally stable and ‖Lu∗

∞‖≤ c.

More particularly, consider the following nonlinear
time-delay system with (x, u, v)-dependent noise but
without Markov jumps:

dx(t) � f1 x, xδ, t(  + k1 x, xδ, t( u + s1 x, xδ, t( v dt

+ g1 x, xδ, t(  + h1 x, xδ, t( u + q1 x, xδ, t( v dω(t),

z(t) � col m1 x, xδ, t( , u(  ≔
m1 x, xδ, t( ,

u
 ,

x(t) � Φ(t) ∈ Cb
F0

[− δ, 0]; R
n

( .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(36)

For V∈ C2,1(Rn × R; R), an infnitesimal generator
LV: Rn × Rn × R⟶R associated with (36) is defned as
follows [23]:

LV(x, y, t) �
z V(x, t)

zt
+

zV
′
(x, t)

zx
f1(x, y, t) + k1(x, y, t)u + l1(x, y, t)v 

+
1
2

g1(x, y, t) + h1(x, y, t)u + q1(x, y, t)v 
′zV

2
(x, t)

zx
2

× g1(x, y, t) + h1(x, y, t)u + q1(x, y, t)v .

(37)

For system (36), according toTeorem 6, we can directly
obtain the following corollary.

Corollary 9. For a given c> 0, assume that there exist a set of
positive functions V(x, t) ∈ C2,1(Rn × R; R) which satisfy

lim‖x(t)‖⟶∞inf t> 0 V(x, t) �∞, V(0, 0) � 0, and
z2 V(x, t)/zx2 ≥ 0 for all nonzero x ∈ Rn, as well as
V(x, t)> a‖x(t)‖2 for some a> 0. If V(x, t) solves the fol-
lowing HJIs:
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Πr ≔
zV

zt
+

zV
′

zx
f1 +

1
2
g1′

z
2 V

zx
2g1 + m1′m1

+
1
4

g1′
z
2 V

zx
2q1 +

zV
′

zx
s1

⎛⎝ ⎞⎠ c
2
I − q1′

z2 V

zx2q1 

− 1

g1′
z
2 V

zx
2q1 +

zV
′

zx
s1

⎛⎝ ⎞⎠

−
1
4

g1′
z
2 V

zx
2h1 +

z V
′

zx
k1

⎛⎝ ⎞⎠ I + h1′
z2 V

zx2h1 

− 1

h1′
z
2 V

zx
2g1 + k1′

zV

zx
 < 0,

c
2
I − q1′

z
2 V

zx
2q1 > 0, t≥ 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(38)

then

u
∗

� −
1
2

I + h1′
z2 V

zx2h1 

− 1

h1′
z
2 V

zx
2g1 + k1′

zV

zx
 , (39)

is an asymptotically mean square H∞ control for system (36).

4. A Simulation Example

A simulation example is presented to indicate the correct-
ness of the results obtained in this paper.

Example 10. Consider a one-dimensional nonlinear sto-
chastic delayed system with infnite Markov jumps, and the
following parameters are listed:

fρ � −
ρxxδ

ξ
−

x

2(ξ)
, kρ �

7
ξ
, sρ �

1
ξ

,

gρ �
x

ξ
, hρ � 1, qρ � 1, mρ �

ρxxδ

ξ
,

(40)

where ξ � ρ + 1. Let c �
�
2

√
. Te transition rate of θt t≥ 0 is

given by − πρρ � πρ,ξ � 1 and πρh � 0, ρ ∈ D, h ∈ D/ ρ, ξ .
Setting V(x, t, ρ) � ρx2/2ξ, the coupled HJIs (14) become

Π �
ρx

ξ
· −

ρxxδ

ξ
−

x

2ξ
  +

1
2

x

ξ
·
ρ
ξ

·
x

ξ
+
ρxxδ

ξ
·
ρxxδ

ξ
−
ρx

2

2ξ
·
ξx

2

2ξ

+
1
4

x

ξ
·
ρ
ξ

+
ρx

ξ
·
1
ξ

  2 −
ρ
ξ

 

− 1 ρ
ξ

·
x

ξ
+
1
ξ

·
ρx

ξ
 

x

1 2 3 4 5 6 7 8 9 100
time (s)
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Figure 1: State trajectories of the unforced system.
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−
1
4

x

ξ
·
ρ
ξ

+
ρx

ξ
·
7
ξ

  1 +
ρ
ξ

 

− 1 ρ
ξ

·
x

ξ
+
7
ξ

·
ρx

ξ
 

�
− 24ρ3 − 50ρ2 + 9ρ + 2 x

2

2(ξ)
3
(ρ + 2)(2ξ − 1)

< 0,

c
2
I − qρ′

z
′
Vρ

zx
2 qρ � 2I −

ρ
ξ

�
2 + ρ
ξ
> 0.

(41)

According toTeorem 6, the H∞ controller of system (1)
is

u
∗
ρ � −

4ρ
ξ(2ξ − 1)

x. (42)

Select the initial condition Φ(t) � 0.15 for any
t ∈ [− δ, 0] with δ � 0.15 and v(t) � e− (ρ− 1) sin(0.1ρπ).
Figures 1–3 show the trajectories of the states of the unforced
system (u(t) � 0), the states of the controlled system
(u(t) � u∗ρ ), and the control input u(t), respectively. It can

be seen from the simulation results that the controlled
system can not only achieve stability but also satisfy the
attenuation performance by using the H∞ controller.

5. Conclusion

Tis paper has solved the problem of infnite horizon H∞
control for general nonlinear stochastic jump systems with
(x, u, v)-dependent noise and delay. And the asymptotic
mean square H∞ controller has been designed by solving

u

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

co
nt

ro
lle

r u

1 2 3 4 5 6 7 8 9 100
time (s)

Figure 3: State trajectories of the controller.
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lo

op
 st

at
e x

1 2 3 4 5 6 7 8 9 100
time (s)

Figure 2: State trajectories of the controlled system.
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a series of coupled HJIs. Finally, the validity of the obtained
results has been demonstrated by a numerical example.
Some more difcult and meaningful topics need to be
studied in the future, including infnite horizon H2/H∞
control and flter problems for nonlinear stochastic systems
with infnite Markov jumps and time-varying delays.
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