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TeH∞ control issue for nonlinear Markov networked control systems in the presence of data packet loss and periodic denial-of-
service (DoS) attacks is researched in this paper. First, two Bernoulli random variables are used to describe the packet loss between
sensor to controller and controller to actuator. Considering the impact of DoS attacks, the probability of packet loss is set to be
diferent during the attack sleeping interval and the attack active interval. Secondly, an observer is constructed on the controller
side, and a comprehensive mathematical model including packet loss and DoS attacks is established. Te sufcient conditions for
the stochastic stability of the system are derived by the Lyapunov theory, and the design method of the controller and the
minimum disturbance suppression performance index are also provided. Finally, a numerical example is utilized to reveal the
applicability of the approach.

1. Introduction

Over the years, owing to the continuous development of
network technology and the widespread application of
computer networks, the structure of the control system is
undergoing changes. Te traditional point-to-point control
method gradually loses its dominant position as the system
becomes more complex and geographically dispersed. Te
network control system (NCS) formed by introducing
a network into a control system and connecting sensors,
controllers, and actuators has appeared [1–5]. NCS has far-
going application backgrounds in diferent felds such as
aerospace, national defense, transportation, wireless com-
munications, and industrial automation, which makes
networked control one of the research hot spots in academia
[6–10].

NCS integrates various infrastructures through the
network, thereby making human-computer interaction and

physical processes more convenient. However, the in-
troduction of communication networks impacts the stability
of the system and also makes the system face the threat of
network attacks. Generally speaking, typical network attacks
are mainly divided into two types. Te frst type is the
deception attack, which destroys the system by inserting
incorrect data or processing raw data. Te second type is the
denial of service (DoS) attack, whose intent is to prevent
intercourse between diferent system components, thereby
degrading system functionality or destroying system stability
[11–13]. DoS attacks are easy to implement. For this reason,
they have been extensively researched [14–17]. For example,
for a NCS under stochastic disturbances and DoS attacks,
a distributed predictive controller was designed [18]. By
using random perturbation information and explicitly
considering packet loss due to DoS attacks, an observer was
designed to reconstruct the state. For a class of NCS with
DoS attacks, a resilient state feedback controller was
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designed [19]. Te closed-loop system was modeled as an
aperiodic sample data system that was related to the bound
of the DoS attack duration. A state-error-dependent
switched system model for NCS under resilient event-
triggered communication schemes and periodic DoS at-
tacks was proposed [20].

Data packet loss afects system performance as well as
destabilizes the system, which has attracted a lot of attention
and many research results have appeared. For instance, for
the discrete NCSs subject to data packet loss in sensor-to-
controller (S-C) and controller-to-actuator (C-A) channels,
the range of successful packet transmission rates that made
closed-loop NCSs stable was obtained with the asynchro-
nous dynamical system theory [21]. For NCS sufering from
S-C and C-A packet loss, an observer-based feedback control
method was proposed. Considering the unmeasurable state
of the controlled object, an observer was constructed to
realize feedback control by describing the packet missing in
S-C and C-A channels as stochastic Bernoulli variables [22].
Te issue of predictive tracking control of NCSs subject to S-
C data packet loss was investigated. Te analysis of the
packet miss impact on the performance of NCSs was carried
out by taking input and output constraints into account [23].
Modeling the packet loss in the two channels as two in-
dependent Markov chains, the quantifed dynamic output
feedback control considering packet loss in the S-C and C-A
channels was considered [24]. Te above-mentioned results
considered the problem of data packet loss without taking
DoS attacks into account.

Currently, there are few results on the control problem
for NCS in the presence of data packet loss and DoS attacks.
Te control issue for NCS with data packet dropout and DoS
attacks was investigated [25]. However, the controlled plant
in [25] was linear invariant system, and only the data packet
loss in the S-C channel was considered. Moreover, resulted
from the impacts such as component failures and envi-
ronment changes, some control systems cannot be described
by a defnite model. Te Markov jump system can be
exploited to express the changes in the system parameters
[26–29]. Terefore, the research for a networked Markov
jump system subject to DoS attacks and data packet dropout
has important theoretical and practical signifcance. Te
control problem of nonlinear Markov jump system subject
to DoS attacks and data packet in both the S-C channel and
C-A channel has not been researched, which motivates the
current research. Te contributions of this paper can be
mainly exhibited as follows:

(1) Two independent Bernoulli variables are used to
represent data packet loss in the S-C channel and C-
A channel, respectively. Considering the fact that
there is data packet transmission during the attack
active interval, the probability of successful data
packet transmission is set to be nonzero, which is
much smaller than that during the attack sleeping
interval.

(2) Te closed-loop system is modeled as a class of
control system with two variables. Under the
designed controller, the closed-loop system is still

stochastically stable and attains the H∞ perfor-
mance. And the connection between the disturbance
suppression capability and DoS attacks is revealed.

Te following content is divided into four sections.
Section 2 establishes the mathematical model for nonlinear
Markov NCS. Section 3 provides sufcient conditions on
stochastic stability and the design method of the controller.
In Section 4, numerical simulation example shows the ef-
fectiveness of the designed controller. Section 5 gives con-
clusions of this paper.

Notations: Rn represents the-dimensional Euclidean
space.∗ represents the transpose of the corresponding
matrix block. AT represents the transpose of the matrix A. If
the matrix A is invertible, A− 1 represents the inverse of A.
Te real positive defnite matrix X is represented as X> 0. I

represents the unit matrix of appropriate dimensions, and
diag a, b . . .{ } represents the diagonal matrix with a, b as the
main diagonal. Pr ·{ } means mathematical probability. E ·{ }

stands for mathematical expectation and Var ·{ } denotes
variance.

2. Problem Formulation

Te structure of nonlinear NCS subject to data packet loss
and DoS attacks is exhibited in Figure 1, and the state
equation of the plant is as follows:

x(l + 1) � Aδ(l)x(l) + Bδ(l)u(l) + Dδ(l)ω(l)

+fδ(l)(l, x(l)),

y(l) � Cδ(l)x(l),

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(1)

where x(l) ∈ Rn represents the state, u(l) ∈ Rm denotes the
control input,ω(l) ∈ Rs stands for the disturbance, y(l) ∈ Rr

is the output, and Aδ(l), Bδ(l), Cδ(l), and Dδ(l) are known
matrices with suitable dimensions. δ(l) takes value from
l � 1, 2, . . . , g , and the transition possibility matrix of l is
Π � [πij], πij � Pr δ(l + 1) � j | δ(l) � i , 

g
j�1 πij � 1, and

πij ≥ 0, i, j ∈ l. fδ(l)(l, x(l)) is a nonlinear vector function
and satisfes the following global Lipschitz condition [22]:

fδ(l)(l, x(l))
����

����≤ Gδ(l)x(l)
����

����, (2)

fδ(l)(l, x(l)) − fδ(l)(l, y(l))
����

����≤ Gδ(l)(x(l) − y(l))
����

����, (3)

where Gδ(l) is a known real constant matrix.
Communication between NCS components usually

sufers damage from malicious attackers. We suppose that
the DoS attacks occur in the S-C channel. For the intent to
describe the DoS attacks more conveniently, a power-
constrained periodic jamming signal is illustrated as follows:

λ �
1, l ∈ (d − 1)T, (d − 1)T + Toff ,

2, l ∈ (d − 1)T + Toff , dT ,
 (4)

where d indicates the period number, T indicates the attack
period, Toff indicates attack sleeping interval, λ � 1 indicates
it is in the sleeping interval of attack in the dth attack cycle,
and λ � 2 indicates it is in the active interval of attack in the
dth attack cycle.
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Owing to the nature of the network, such as bandwidth
limitations and network overcrowding, packets are un-
avoidably lost during transference. We suppose that the
packet loss scenarios also exist during the sleeping interval.
A random variable α(l) ∈ 0, 1{ } is defned to describe the
data packet transmission in the S-C channel. If α(l) � 0, the
data packet in the S-C channel is lost; if α(l) � 1, the packet
is successfully transmitted.

Te random variable α(l) follows a Bernoulli distribu-
tion. For the sleeping interval, we suppose that the proba-
bility of successful data packet transference is Pr α(l) �{

1} � α1, and the probability of data packet transference
failure is Pr α(l) � 0{ } � 1 − α1. For the active period, the
probability of successful data packet transmission is
Pr α(l) � 1{ } � α2, and the probability of data packet
transference failure is Pr α(l) � 0{ } � 1 − α2.

Terefore, the following equation can be obtained:

Pr α(l) � 1{ } � αλ,

Pr α(l) � 0{ } � 1 − αλ,
 (5)

where λ �
1, l ∈ [(d − 1)T, (d − 1)T + Toff )

2, l ∈ [(d − 1)T + Toff , dT)
 and Var α(l){ }

� E (αλ(l) − αλ)
2

  � (1 − αλ)αλ � α2λ.

Remark 1. In the attack active interval, the data packet loss
phenomenon is more severe than that in the sleeping period,
therefore, α2 < α1.

Similarly, we defne a random variable β(l) ∈ 0, 1{ } to
describe the data packet transmission in the C-A channel.
When β(l) � 0, the data packets transmitted in the C-A
channel are lost; when β(l) � 1, the data packets are suc-
cessfully transmitted, and the Bernoulli distribution white
sequence of random variable β(l) is as follows:

Pr β(l) � 1  � β,

Pr β(l) � 0  � 1 − β,

Var β(l)  � E (β(l) − β)
2

  � (1 − β)β � β
2
.

(6)

Te state equation of the observer is as follows:

x(l + 1) � Aδ(l)x(l) + Bδ(l)u(l) + fδ(l)(l, x(l))

+ L y(l) − αλCδ(l)x(l) ,

u(l) � β(l)u(l),

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(7)

where y(l) � αλ(l)y(l), x(l) ∈ Rn means the state of the
observer, and u(l) ∈ Rm means the control input of the
observer.

Due to the possible data packet loss in C-A channel, the
control input of the controlled plant is as follows:

u(l) � Kx(l). (8)

Defne the state estimation error e(l) � x(l) − x(l).
Substituting (7) into (1) and (8), the closed-loop system
model can be written as follows:

x(l + 1) � Aδ(l) + βBδ(l)K x(l) − βBδ(l)Ke(l)

+(β(l) − β)Bδ(l)Kx(l) + Dδ(l)ω(l)

− (β(l) − β)Bδ(l)Ke(l) + fδ(l)(l, x(l)),

e(l + 1) � (β − 1)Bδ(l)Kx(l) − (β(l) − β)Bδ(l)Ke(l)

+ Aδ(l) − (β − 1)Bδ(l)K − αλLCδ(l) e(l)

+(β(l) − β)Bδ(l)Kx(l) + Dδ(l)ω(l)

− αλ(l) − αλ( LCδ(l)e(l) + Fδ(l)(l),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

where Fδ(l)(l) � fδ(l)(l, x(l)) − fδ(l)(l, x(l)).
Defne η(l) � xT(l) eT(l) 

T; then the closed-loop
system (9) can be expressed as follows:

η(l + 1) � Aη(l) +(β(l) − β)Bη(l) + Dω(l)

+ αλ(l) − αλ( Cη(l) + F(l),
(10)

where

A �
Aδ(l) + βBδ(l)K − βBδ(l)K

(β − 1)Bδ(l)K Aδ(l) − (β − 1)Bδ(l)K − αλLCδ(l)

⎡⎣ ⎤⎦,

B �
Bδ(l)K − Bδ(l)K

Bδ(l)K − Bδ(l)K
⎡⎣ ⎤⎦, C �

0 0

0 − LCδ(l)

⎡⎣ ⎤⎦,

D �
Dδ(l)

Dδ(l)

⎡⎣ ⎤⎦, F(l) �
fδ(l)(l, x(l))

Fδ(l)(l)
⎡⎣ ⎤⎦.

(11)

Defnition 2. (see [30]) When ω(l) � 0, if for whichever
initial mode δ(0) and state η(0), such that

E 
∞

l�0
‖η(l)‖

2
| η(0), δ(0)

⎧⎨

⎩

⎫⎬

⎭ <∞, (12)

then system (10) is stochastically stable.
System (10) under random data packet loss and DoS

attacks is stochastically stable and attains the H∞ perfor-
mance requirement, if the following two requirements are
satisfed:

Actuator SensorPlant

Network NetworkDoS

Controller

y (l)u (l)

u (l)– y (l)–

Figure 1: Nonlinear networked control system with data packet
loss and DoS attacks.
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(1) System (10) under consideration is stochastically
stable

(2) Under the zero initial condition, for all ω(l)≠ 0, the
controlled output y(l) satisfes

E 
∞

l�0
y
T
(l)y(l)

⎧⎨

⎩

⎫⎬

⎭ < c
2
E 
∞

l�0
ωT

(l)ω(l)
⎧⎨

⎩

⎫⎬

⎭, (13)

where c> 0 is a prescribed scalar.

Remark 3. Only the DoS attacks in the S-C channel is
considered in this paper. Te obtained results can be ex-
tended to the case where the DoS attacks exist in both the S-
C and C-A channel, and the probability of packet loss in the
C-A channel can be considered for both attack active interval
and attack sleeping interval.

Lemma 4. (see [31]) (S-procedure) Letting Ti ∈ Rn×n(i �

0, 1, . . . , p) be symmetric matrices, Ti(i � 0, 1, . . . , p),
ςTT0ς> 0, ∀ς≠ 0, s.t. ςTTiς≥ 0(i � 0, 1, . . . , p) holds if there
exist τi ≥ 0(i � 1, 2, . . . , p) such that T0 − 

p
i�1τiTi > 0.

3. Main Results

Te following theorem presents a sufcient condition on the
stochastic stability of system (10).

Theorem 5. For the communication channel parameters
0≤ αλ ≤ 1 and 0≤ β≤ 1, if there exist positive defnite matrices
Pi > 0, Yi > 0, controller gain matrix K, observer gain matrix
L, and nonnegative scalars τ1 ≥ 0, τ2 ≥ 0, such that

Γ11 ∗

Γ21 Γ22
 < 0,

PiYi � I,

(14)

where

Γ11 �

− Pi + τ1G
T
i Gi ∗ ∗ ∗

0 − Pi + τ2G
T
i Gi ∗ ∗

0 0 − τ1I ∗

0 0 0 − τ2I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Γ21 �

Ξ11 Ξ12 Ξ13 0

Ξ21 Ξ22 0 Ξ24

Ξ31 Ξ32 0 0

Ξ31 Ξ32 0 0

Ξ41 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Γ22 �

Ξ ∗ ∗ ∗ ∗

0 Ξ ∗ ∗ ∗

0 0 Ξ ∗ ∗

0 0 0 Ξ ∗

0 0 0 0 Ξ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Ξ11 �
���
πi1

√
Ai + βBiK( 

T
, . . . ,

���
πig


Ai + βBiK( 

T
 

T
,

Ξ12 �
���
πi1

√
− βBiK( 

T
, . . . ,

���
πig


− βBiK( 

T
 

T
,

Ξ13 �
���
πi1

√
I, . . . ,

���
πig


I 

T
,

Ξ21 �
���
πi1

√
(β − 1)BiK( 

T
, . . . ,

���
πig


(β − 1)BiK( 

T
 

T
,

Ξ22 �
���
πi1

√
Ai − (β − 1)BiK − αλLCi( ( 

T
, . . . ,

���
πig


Ai − (β − 1)BiK − αλLCi( ( 

T

T
,

Ξ24 �
���
πi1

√
I, . . . ,

���
πig


I 

T
,

Ξ31 �
���
πi1

√
βBiK 

T
, . . . ,

���
πig


βBiK 

T
 

T
,

Ξ32 �
���
πi1

√
− βBiK 

T
, . . . ,

���
πig


− βBiK 

T
 

T
,

Ξ41 �
���
πi1

√
αλLCi( 

T
, . . . ,

���
πig


αλLCi( 

T
 

T
,

Ξ � Diag − Y1, . . . , − Yg ,

α � 1 − αλ( αλ 

1
2, β � [(1 − β)β]

1
2.

(15)

then system (10) is stochastically stable.

Proof. Defne Lyapunov function for system (12) as follows:

V(l) � x
T
(l)Pδ(l)x(l) + e

T
(l)Pδ(l)e(l), (16)

where Pδ(l) > 0. From (9) with ω(l) � 0, we can get

∆V(l)

� E V(l + 1) | x(l), . . . , x(0), e(l), . . . , e(0), δ(l) � i{ }

− V(l),

� E x
T
(l + 1) 

j∈l
πijPjx(l + 1) − x

T
(l)Pix(l)

⎧⎪⎨

⎪⎩

+ e
T
(l + 1) 

j∈l
πijPje(l + 1)

⎫⎪⎬

⎪⎭
− e

T
(l)Pie(l),

� E Ai + βBiK(  x(l) − βBiKe(l) + fi(l, x(l))

+(β(l) − β)BiKx(l) − (β(l) − β)BiKe(l)
T
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j∈l

πijPj Ai + βBiK( x(l) − βBiKe(l) + fi(l, x(l))

+(β(l) − β)BiKx(l) − (β(l) − β)BiKe(l)

+ (β − 1)BiKx(l) + Fi(l) +(β(l) − β)BiKx(l)

+ Ai − (β − 1)BiK − αλLC( e(l) − (β(l) − β)BiKe(l)

− αλ(l) − αλ( LCix(l)
T


j∈l

πijPj (β − 1)BiKx(l)

+ Fi(l) + Ai − (β − 1)BiK − αλLC( e(l)

+(β(l) − β)BiKx(l) − (β(l) − β)BiKe(l)

− αλ(l) − αλ( LCix(l) − x
T
(l)Pix(l) − e

T
(l)Pie(l).

(17)

Owing to E (β(l) − β)2  � β
2
, E (αλ(l) − αλ)

2
  � α2λ,

thus we can get

ΔV(l)

� Ai + βBiK( x(l) − βBiKe(l) + fi(l, x(l)) 
T


j∈l

πijPj Ai + βBiK( x(l) − βBiKe(l) + fi(l, x(l)) 

+ Ai − (β − 1)BiK − αλLC( e(l)

+(β − 1)BiKx(l) + Fi(l)
T


j∈l

πijPj Ai − (β − 1)BiK − αλLC( e(l)

+(β − 1)BiKx(l) + Fi(l)

+ β
2

BiKx(l) − BiKe(l) 
T


j∈l

πijPj

BiKx(l) − BiKe(l) 

+ β
2

BiKx(l) − BiKe(l) 
T


j∈l

πijPj

BiKx(l) − BiKe(l) 

+ α2λx
T
(l)C

T
i L

T

j∈l

πijPjLCix(l)

− x
T
(l)Pix(l) − e

T
(l)Pie(l)

�

x(l)

e(l)

fi(l, x(l))

Fi(l)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

Λ

x(l)

e(l)

fi(l, x(l))

Fi(l)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≜ � ξT(l)Λξ(l),

(18)

where

Λ �

Λ11 ∗ ∗ ∗

Λ21 Λ22 ∗ ∗

Λ31 Λ32 
j∈l

πijPj ∗

Λ41 Λ42 0 
j∈l

πijPj

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Λ11 � Ai + βBiK( 
T


j∈l

πijPj Ai + βBiK( 

+ β
2
K

T
B
T
i 

j∈l
πijPjBiK

+ β2KT
B
T
i 

j∈l
πijPjBiK

+ α2λC
T
i L

T

j∈l

πijPjLCi − Pi

+ (β − 1)BiK( 
T


j∈l

πijPj (β − 1)BiK( ,

Λ21 � − βK
T
B
T
i 

j∈l
πijPj Ai + βBiK( 

− β2KT
B
T
i 

j∈l
πijPjBiK

− β2KT
B
T
i 

j∈l
πijPjBiK

+ Ai − (β − 1)BiK − αλLCi( 
T


j∈l

πijPj(β − 1)BiK,

Λ22 � β2KT
B
T
i 

j∈l
πijPjBiK − Pi

+ β
2
K

T
B
T
i 

j∈l
πijPjBiK

+ β
2
K

T
B
T
i 

j∈l
πijPjBiK

+ Ai − (β − 1)BiK − αλLCi( 
T


j∈l

πijPj Ai − (β − 1)BiK − αλLCi( ,

Λ31 � 
j∈l

πijPj Ai + βBiK( ,

Λ32 � 
j∈l

πijPj − βBiK( ,

Λ41 � (β − 1) 
j∈l

πijPjBiK,

Λ42 � 
j∈l

πijPj Ai − (β − 1)BiK − αλLCi( .

(19)

It follows from (2)-(3) that
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f
T
i (l, x(l))fi(l, x(l))

� fi(l, x(l))
����

����
2

≤ Gix(l)
����

����
2

� x
T
(l)G

T
i Gix(l),

(20)

F
T
i (l)Fi(l)

� Fi(l)
����

����
2

≤ Gie(l)
����

����
2

� e
T
(l)G

T
i Gie(l),

(21)

which indicates that

f
T
i (l, x(l))fi(l, x(l)) − x

T
(l)G

T
i Gix(l)

� ξT(l)

− G
T
i Gi 0 0 0

0 0 0 0

0 0 I 0

0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ξ(l)

≜ � ξT(l)Λ1ξ(l)

≤ 0,

(22)

F
T
i (l)Fi(l) − e

T
(l)G

T
i Gie(l)

� ξT(l)

0 0 0 0
0 − G

T
i Gi 0 0

0 0 0 0
0 0 0 I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
ξ(l)

≜ � ξT(l)Λ2ξ(l)

≤ 0.

(23)

By the well-known S-procedure, that is, Lemma 4, we can
get ∆V(l) � ξT(l)Λξ(l)< 0 with constrains (22) and (23)
holding, if there exist non-negative real scalars τ1 ≥ 0, τ2 ≥ 0
such that

Λ − τ1Λ1 − τ2Λ2 < 0. (24)

From (24), we have

ΔV(l)

� ξT(l)Λξ(l)

≤ − λmin(− Λ)ξT(l)ξ(l)

� − λmin(− Λ) ηT(l)η(l) + F
T
i (l)Fi(l)

+f
T
i (l, x(l))fi(l, x(l))

� − λmin(− Λ) ‖η(l)‖
2

+ Fi(l)
����

����
2

 + fi(l, x(l))
����

����
2


≤ − λmin(− Λ)‖η(l)‖
2
.

(25)

From (25), for any N≥ 0, we have

E 
N

l�0
‖η(l)‖

2⎧⎨

⎩

⎫⎬

⎭

≤
E V(0){ } − E V(N + 1){ }

λmin(− Λ)

≤
E V(0){ }

λmin(− Λ)

≤∞.

(26)

Terefore, in accordance with Defnition 2, that system
(10) under consideration is stochastically stable. □

Remark 7. Teorem 5 provides sufcient conditions, which
makes sure system (12) is stochastically stable. Te following
Teorem 8 will provide the proof that system (12) under
consideration is stochastically stable and attain the H∞
performance requirement (13).

Theorem 8. When ω(l)≠ 0, take as given the communica-
tion channel parameters 0≤ αλ ≤ 1, 0≤ β≤ 1 and a scalar
c> 0, if there exist positive defnite matrices Pi > 0, Yi > 0,
matrices K, L, and scalars τ1 ≥ 0, τ2 ≥ 0, such that

Υ11 0

Υ21 Υ22
 < 0, (27)

PiYi � I, (28)

where

Υ11 �

χ11 ∗ ∗ ∗ ∗

0 χ22 ∗ ∗ ∗

0 0 − c
2
I ∗ ∗

0 0 0 − τ1I ∗

0 0 0 0 − τ2I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Υ21 �

Θ11 Θ12 Θ13 Θ14 0

Θ21 Θ22 Θ13 0 Θ14

Ci 0 0 0 0

Θ31 Θ32 0 0 0

Θ31 Θ32 0 0 0

Θ41 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Υ22 �

Θ ∗ ∗ ∗ ∗ ∗

0 Θ ∗ ∗ ∗ ∗

0 0 − I ∗ ∗ ∗

0 0 0 Θ ∗ ∗

0 0 0 0 Θ ∗

0 0 0 0 0 Θ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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χ11 � − Pi + τ1G
T
i Gi, χ22

Θ11 �
���
πi1

√
Ai + βBiK( 

T
, . . . ,

���
πig


Ai + βBiK( 

T
 

T
,

Θ12 �
���
πi1

√
− βBiK( 

T
, . . . ,

���
πig


− βBiK( 

T
 

T
,

Θ13 �
���
πi1

√
D

T
i , . . . ,

���
πig


D

T
i 

T
,

Θ14 �
���
πi1

√
I, . . . ,

���
πig


I 

T
,

Θ21 �
���
πi1

√
(β − 1)BiK( 

T
, . . . ,

���
πig


(β − 1)BiK( 

T
 

T
,

Θ31 �
���
πi1

√
βBiK 

T
, . . . ,

���
πig


βBiK 

T
 

T
,

Θ22 �
���
πi1

√
Ai − (β − 1)BiK − αλLCi( ( 

T
, . . . ,

���
πig


Ai − (β − 1)BiK − αλLCi( ( 

T

T
,

Θ32 �
���
πi1

√
− βBiK 

T
, . . . ,

���
πig


− βBiK 

T
 

T
,

Θ41 �
���
πi1

√
αλLCi( 

T
, . . . ,

���
πig


αλLCi( 

T
 

T
,

Θ � Diag − Y1, . . . , − Yg ,

α � 1 − αλ( αλ 

1
2, β

(29)

then system (10) attains the H∞ performance
requirement (13).

Proof. When ω(l)≠ 0, from (11) we can get

E ∆V(l) + y
T
(l)y(l) − c

2ωT
(l)ω(l) 

� E Ai + βBiK(  x(l) − βBiKe(l) + Diω(l)

+(β(l) − β)BiKx(l) − (β(l) − β)BiKe(l)

+ fi(l, x(l))
T


j∈l

πijPj Ai + βBiK( x(l)

− βBiKe(l) + Diω(l) + fi(l, x(l))

+(β(l) − β)BiKx(l) − (β(l) − β)BiKe(l)

+ (β − 1)BiKx(l) +(β(l) − β)BiKx(l) + Fi(l)

+ Diω(l) + Ai − (β − 1)BiK − αλLC( e(l)

− (β(l) − β)BiKe(l) − αλ(l) − αλ( LCix(l)
T


j∈l

πijPj (β − 1)BiKx(l) + Diω(l)

+ Fi(l) + Ai − (β − 1)BiK − αλLC( e(l)

+(β(l) − β)BiKx(l) − (β(l) − β)BiKe(l)

− αλ(l) − αλ( LCix(l) − x
T
(l)Pix(l)

− e
T
(l)Pie(l) + x

T
(l)C

T
i Cix(l) − c

2ωT
(l)ω(l)

� ζT(l)Ωζ(l),

(30)

where

ζT � x
T
(l) e

T
(l) ωT

(l) f
T
i (l, x(l)) F

T
i (l) ,

Ω �

φ11 ∗ ∗ ∗ ∗

φ21 φ22 ∗ ∗ ∗

φ31 φ32 φ33 ∗ ∗

φ41 − βPiBiK PDi Pi ∗

φ51 φ52 PDi 0 Pi

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

φ11 � Ai + βBiK( 
T


j∈l

πijPj Ai + βBiK( 

+ β
2
K

T
B
T
i 

j∈l
πijPjBiK + β

2
K

T
B
T
i 

j∈l
πijPjBiK

+ α2λC
T
i L

T

j∈l

πijPjLCi − Pi

+ (β − 1)BiK( 
T


j∈l

πijPj(β − 1)BiK + C
T
C,

φ21 � − βK
T
B
T
i 

j∈l
πijPj Ai + βBiK( 

− β
2
K

T
B
T
i 

j∈l
πijPjBiK − β

2
K

T
B
T
i 

j∈l
πijPjBiK

+ Ai − (β − 1)BiK − αλLCi( 
T


j∈l

πijPj(β − 1)BiK,

φ22 � β2KT
B
T
i 

j∈l
πijPjBiK + β

2
K

T
B
T
i 

j∈l
πijPjBiK

+ β
2
K

T
B
T
i 

j∈l
πijQjBiK − Pi

+ Ai − (β − 1)BiK − αλLCi( 
T


j∈l

πijPj

Ai − (β − 1)BiK − αλLCi( ,

φ31 � D
T
i 

j∈l
πijPj Ai + βBiK( 

+ D
T
i 

j∈l
πijPj(β − 1)BiK,

φ32 � − βD
T
i 

j∈l
πijPjBiK

+ D
T
i 

j∈l
πijPj Ai − (β − 1)BiK − αλLCi( ,

φ33 � D
T
i 

j∈l
πijPjDi + D

T
i 

j∈l
πijPjDi − c

2
I,

φ41 � PiAi + βPiBiK,

φ51 � (β − 1)PiBiK,

φ52 � Pi Ai − (β − 1)BiK − αλLCi( .

(31)

From (18)-(19), we can obtain
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f
T
i (l, x(l))fi(l, x(l)) − x

T
(l)G

T
i Gix(l)

� ζT(l)

− G
T
i Gi 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 I 0

0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ζ(l)

≜ � ζT(l)Ω1ζ(l)

≤ 0,

(32)

F
T
i (l)Fi(l) − e

T
(l)G

T
i Gie(l)

� ζT(l)

0 0 0 0 0
0 − G

T
i Gi 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ζ(l)

≜ � ζT(l)Ω2ζ(l)

≤ 0.

(33)

By the well-known S-procedure, that is, Lemma 4, we can
get

ζT(l)Ωζ(l)< 0, (34)

with constrains (32) and (33) holding. If there exist non-
negative real scalars τ1 ≥ 0, τ2 ≥ 0 such that

Ω − τ1Ω1 − τ2Ω2 < 0. (35)

From (26)–(30), we can conclude that

E ∆V(l) + y
T
(l)y(l) − c

2ωT
(l)ω(l) < 0. (36)

Adding up (39) from l � 0 to l �∞:



∞

l�0
E y

T
(l)y(l) 

< c
2



∞

l�0
E ωT

(l)ω(l)  + E V(0){ } − E V(∞){ }.

(37)

Duo to the condition that system (10) is stochastically
stable, we can get



∞

l�0
E y

T
(l)y(l) < c

2


∞

l�0
E ωT

(l)ω(l) . (38)

which implies the H∞ performance index (12) is achieved.
Tis ends the proof. □

Remark 10. Te prerequisites in Teorem 8 are a series of
matrix inequalities under matrix inverse constraints, which
can be settled by the cone complementary linearization
method as follows:

Mintr 

g

i�1
PiYi

⎛⎝ ⎞⎠, s.t.(24) and (32), (39)

Pi I

I Yi

 > 0, i ∈ l. (40)

Te computing steps are illustrated in Algorithm 1,
where μ is a suitable scalar.

4. Numerical Example

In this section, an example is presented to illustrate the
efectiveness of the obtained method.

Te parameter of the controlled plant is as follows:

x(l + 1) � Aδ(l)x(l) + Bδ(l)u(l) + Dδ(l)ω(l)

+fδ(l)(l, x(l)),

y(l) � Cδ(l)x(l),

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(41)

where

A1 �

0.8266 − 0.6330 0

0.5 0 0

0 1.0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, B1 �

1

0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, D1 �

0.5

0

0.2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

A2 �

0.9226 − 0.6330 0

1.0 0 0

0 1.0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, B2 �

0.5

0

0.2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, D2 �

1

0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

C1 � 0.1 0 0 , C2 � 0.1 0 0 , δ(l) ∈ 1, 2{ },

f1(l, x(l)) �

0.01 sinx1(l)

0.01 sinx2(l)

0.01 sinx3(l)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, x(l) �

x1(l)

x2(l)

x3(l)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

f2(l, x(l)) �

0.02 sinx1(l)

0.02 sinx2(l)

0.02 sinx3(l)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, τ1 � 0.5, τ2 � 0.3,

G1 �

0.01 0 0

0 0.01 0

0 0 0.01

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, G2 �

0.02 0 0

0 0.02 0

0 0 0.02

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(42)

Suppose the attack period is T � 10, the sleeping period
is set as Toff � 6, and the total operating time is l � 60, which
is d � 1, 2, . . . , 6{ }. Te transition possibility matrices of δ(l)

is Q �
0.8 0.2
0.3 0.7 . To analyze the impact caused by the DoS

attacks, the probabilities of success to transmission data
packet in the sleeping period are fxed, that is α1 � 0.9 and
β � 0.8. Table 1 lists the allowable minimum value of c. It is
clear that when α2 gets bigger, cmin gets smaller. Te impact
of DoS attacks is clear, demonstrating the importance of
investigating security issues.

According to Teorem 8, when α1 � 0.9, α2 � 0.3, and
β � 0.8, K, L, and cmin can be obtained as follows:
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K � − 0.1339 − 0.0274 − 0.0026 , L �

1.0868

0.1465

− 0.7119

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

cmin � 0.417.

(43)

Te initial conditions of the nonlinear NCS are supposed
as x0 � 0.2 0.3 0.1 

T, x0 � 0 0 0 
T, and the

disturbance input is assumed to be ω(l) � 1/l2. Te mode of
the system under consideration is shown in Figure 2.Te data
packet dropout in the S-C channel is shown in Figure 3, and
the data packet dropout in the C-A channel is exhibited in

(1) Set Rmax as the maximal iteration number, and let c � c0
(2) Obtain a feasible solution (P0

i , Y0
i , K0, L0) satisfying (23) and (31), and let l � 0

(3) Settle the optimization issue bellow: Min tr(
g
i�1 Pl

iYi + Yl
iPi) such that (27) and (40)

(4) Set Pl
i � Pi, Yl

i � Yi, Kl � K, Ll � L

(5) while iterations number <Rmax do
(6) if (27) and (28) hold, then
(7) c � c − μ, l � l + 1, go to step 3
(8) else
(9) l � l + 1, go to step 3
(10) end if
(11) end while
(12) if c< c0, then
(13) cmin � c + μ
(14) else
(15) No solution can be obtained within Rmax
(16) end if

ALGORITHM 1: Computing steps of (24) and (25).

Table 1: Te minimum value of c for diferent α2.

α2 cmin

0.3 0.4164
0.4 0.4157
0.5 0.4150
0.6 0.4141
0.7 0.4133
0.8 0.4124
0.9 0.4111

0

1

2

3

10 20 30 40 50 600
l

Figure 2: Te mode of the closed-loop system δ(l).
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1

2

10 20 30 40 50 600
l

Figure 3: Te data packet dropout in the S-C channel α(l).
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1

2

10 20 30 40 50 600
l

Figure 4: Te data packet dropout in the C-A channel β(l).
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Figure 4. As can be seen from Figure 3, the probability of data
packet loss during the active attack period is signifcantly
greater than that during the attack sleep period. In the total
running time, the number of successful packet transfers is 34.
Te number of packet transmission failures is 26, which is
much higher than the average packet transmission failure
probability of 0.1 when there is no network attack. In Figure 4,

the number of successful data packet transmission in the total
running time is 51. Te number of packet transmission
failures is 6, which is very close to the average data packet loss
failure probability of 0.2 when there is no network attack.

We give the response curve of the open-loop system, as
shown in Figure 5. Since both subsystems of the controlled
object are stable, the system state converges to zero in the

-0.5

0

0.5

1

1.5

10 20 30 40 50 600
l

x1
x2
x3

Figure 5: Te state responses of the open-loop system.
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10 20 30 40 50 600
l
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Figure 6: Te state responses of the closed-loop system.
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open-loop case. As can be seen from Figure 6, under the
action of the designed controller, the system performance
such as convergence time and overshoot is better than that of
the open-loop system.

If there is no packet loss in S-C and C-A channels, the
system state curve is shown in Figure 7. Compared with
Figure 6, the system performance is better than that in the
case of packet loss. Hence, data packet loss will reduce
system performance.

 . Conclusions

Tis paper researches theH∞ control problem for a nonlinear
Markov NCS with random data packet loss and periodic DoS
attacks via observer. Premeditating the data packet loss in the
S-C channel and C-A channel, sufcient conditions for the
stochastic stability of the system are derived, and the con-
troller design method is also proposed. Simulation results
demonstrate the efectiveness of the proposed method. Under
the event-triggered mechanism, the controller design for NCS
subject to data packet dropout and DoS attacks in both the S-
C channel and C-A channel will be researched in the future.
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