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DSS has lowmachinability characteristics due to its high strength, machining is complicated, and careful attention is required when
selecting machining parameters. The main criteria discussed in this paper concern the turning optimization parameters and
machining time reduction of DSS 2205 as the work material. The input parameters are cutting velocity, feeds, cutting depth,
and tooltip nose radius of the cutting tool. The design of experiments methodology is employed to design the experiments using
Design-Expert V12 software. The second-order mathematical model was developed, and analysis of variance was performed to
analyze the performance characteristics to recognize the critical variables influencing the output parameter. An artificial neural
network (ANN) backpropagation algorithm using MATLAB software was used to develop the mathematical model and optimize
the output. The model was developed, and the results were optimized usingMATLAB software’s ANN back propagation method to
find the best possible solutions. The generated models were significant based on the analysis of variance and the R-squared value,
and these results indicate that the cutting velocity is the most critical factor. For a low machining time, the cutting velocity should
be between 100 and 140m/min, and the tooltip nose radius should be 2.8mm. The optimal parameter settings are validated by
performing a lower is better confirmation test using gray relational analysis (GRA). The GRA exposed the lower machining time at
a cutting velocity of 140m/min, rate of feed of 0.5mm/rev, cutting depth of 0.5mm, and tooltip nose radius of 2.4mm. The
predicted values were close to the experimental values, and the result indicates the optimal level of the highest GRA grade of the
machining variable.

1. Introduction

Germany and Sweden invented the 22% Cr composition of
duplex grade S32205 in the 1970s. It is essential to maintain
nitrogen concentration; the heavily alloyed duplex grade was
designed in the 1980s as the so-called super duplex grade.
After the advancement, the scientists developed a lean alloy
grade, DSS 832304. Alloying with nitrogen inspired the scien-
tists to introduce many DSS grades. Despite its high yield
strengths and high ductility properties, the producers and
end-users have more significant restrictions during machin-
ing and welding [1]. DSS has the best mechanical properties
and the highest resistance to chloride corrosion due to its
progressive ductile–brittle transition and combined austenite
and ferrite microstructure [2].

Palanisamy and Selvaraj [3] used cast DSS to assess the
roughness of the workpiece and suggested that changing the
grain orientation of the working materials had the most signif-
icant effect on the surface. Krolczyk et al. [4] examined the
cutting performance of cutting tools MM 2025 and CTC
1135 during the machining of DSS 1.4462 material under dry
and wet circumstances. The result revealed a minor difference
in the effect of cooling on the material surface of the tools. The
focus of the research is to forecast the roughness of the DSS
material during the turning operation. The author derived the
equations, and the results emphasize that the feed rate was the
most critical factor affecting roughness [5]. Krolczyk et al. [6]
derived a technique to estimate the life of the cutting tool
during the turning of DSSmaterial. The response surfacemeth-
odology (RSM) technique creates a second-order model to
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predict equations for tool life and the results; cutting velocity
was the crucial factor affecting the tool’s life. The facing opera-
tion is performed under a constant cutting speed using austen-
itic, standard DSS, and super DSS material. Optimization was
carried out using the Taguchi L16 orthogonal array technique.
Koyee et al. [7] explained that the snarl and ribbon chips were
created at lower feeds and higher cutting depths while milling
super DSS and standard DSS forms. Fragments produced by
milling austenitic stainless steel are machine-friendly, reduc-
ing ribbon, knotted, and flat helical chips.

Using the infinite focus measurement machine, Krolczyk
and Legutko [8] investigated the surface texture and tool wear
onDSSmaterial. The author explained that when the feed rate
increases, surface roughness also increases, and dry cutting
enhances roughness and material ratio characteristics. The
STD DSS, SDSS material, and carbide inserts coated with
CNMG120408-QM 2025 were used as the cutting tool for
experimentation. The author used a multiobjective bat algo-
rithm (MOBA) to optimize the turning topographies. The
MOBA regularly predicts a set of optimal solutions [9]. Anal-
ysis of variance (ANOVA) was used to investigate the perfor-
mance characteristics of three DSS materials utilizing the
mathematical model. Multiattribute decision-making has
been used, including graph theory and matrix approach and
analytical hierarchy process–technique for order preference
by similarity to ideal solution, for optimization purposes [10].
Koyee et al. [11] developed prediction model experiments in
dry and cooling lubricating conditions and compared them
with cutting fluids and dried-out turning to lengthen tool life.

To determine the most effective machining method and
cutting circumstances, Krolczyk et al. [12] employed DSS
1.4462 using the optimization techniques of ANOVA and
Taguchi’s orthogonal array L18. The influence of cutting
speed, feed rate, depth of cut, and tool nose radii are studied
using Taguchi’s approach and ANOVA method to minimize
surface waviness and material removal rate (MRR) [13]. The
effects of surface and tool wear during the turning of DSS
material in a traditional turning machine were investigated
by Liew et al. [14]. Surface roughness decreased due to chilled
air coolant instead of predictable coolant as the chilled air
coolant’s temperature fell, consequently affecting the surface
roughness. Nomani et al. [15] explored the machined surface
process and machinability of different components, specifi-
cally DSS alloys, SAF 2205 and SAF 2507, using scanning
electron microscopy and optical microscopic examination.
Pawan and Misra [16] considered DSS material for experi-
mentation to predict roughness. To assess the surface waviness
of the DSS material, Selvaraj [17] used the Taguchi approach.
This study focuses on the impact of physical vapor deposition
coatings on surface roughness and residual stresses at the
cutting temperature during the DSS 2205 turning. The study
investigated the residual stresses and surface unevenness
impacted by coated and uncoated carbide tools. Sonawane
and Sargade [18] suggested that the surface roughness of a
machined surface can be improved by increasing the cutting
speed. To measure surface roughness and machining time,
experiments are conducted on duplex 2205 using a CNC
lathe and carbide tip tool material under hard turning. A

second-order mathematical model was developed using
RSM, and performance characters were evaluated using
the ANOVA method. The MOGA method was employed
to achieve the most practical responses [19]. Kara et al. [20]
experimented with AISI D2 hard turning under a cryogenic
environment to assess the surface roughness and tool wear.

The reality of Duplex stainless steel is that it is resistant to
chloride stress corrosion cracking. DSS material is twice
more robust, low ductility than other austenitic grades.
Duplex stainless steels are primarily utilized in specialized
applications due to their limitations, which include poor
formability and machinability and a more sophisticated met-
allurgical manufacturing process than ferritic, austenitic, and
martensitic stainless steels. Therefore, careful consideration
should be taken during the machining process. The literature
indicates that the artificial neural network (ANN) heuristic
method is suitable for enhancing the response optimization
processes during the machining of Duplex grades. Even
though numerous studies have been conducted, several types
of research are available to predict surface roughness, tool
wear, cutting force, and machinability analysis by using vari-
ous optimization techniques during the turning of Duplex
material. However, there is limited research available to opti-
mize machining time using ANN on DSS material, and there
is a significant gap in acknowledging and predicting machin-
ing time during the turning of DSS. Experimentation was
conducted to overcome machining challenges and solve the
critical concerns of industry specialists. The experiment was
planned following the design of experiments (DoE) of central
composite rotatable design (CCD). RSM and ANOVA were
used to develop the mathematical models. The ANN, a heu-
ristic optimization technique, was used.

2. Experimentation Details

The objective of this studywas to determine the idealmachining
conditions by estimating the optimal machining time during
the turning of Duplex stainless steel (DSS-2205- ASTM A276)
and by evaluating the impact of the cutting parameters. The
cutting operation was carried out using a conventional Kirlos-
kar Lathe using a coated carbide insert tool (Tungaloy—SNMG
120 408 MT AH925). The Duplex-2205 round bar of length
60mm was used for experimentation. The parameter consid-
ered is cutting velocity (Vc), rate of feed (Fz), cutting Depth (Dc),
and tooltip nose radius (Rtip). The experiments are designed per
the central composite design, consisting of four-factor, five
levels of the experiment using Design Expert Version 12 (stat
case). The sample workpiece was machined to 20mm, and a
stopwatch was used to record the machining time. The Design
for experimentation is shown in Table 1. The experimental
results are tabulated in Table 2.

3. Identification of Design Matrix

The central composite experiment, i.e., CCD of RSM, is
designed per the guidance given by Okouzi et al. [21].
Each component is allocated to five equally spaced values,
typically coded as per the procedure of Box and Draper [22].
The experiment consists of four variables, five levels of CCD,
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and experimental sets of actual states are shown in Table 1.
The cutting condition ranges are selected from The IMOA
Practical Guidelines Handbook [23]. Trial runs using the
specified parameters generated to precise projected values
given in Tables 1, the upper bound (+2) and the lower bound
(2) levels of each of the four independent variables. The
interpolation method was used to determine all intermediate
variables levels 1, 0, and +1. A four-factor CCD with 30 sets
of coded conditions of full replication, where 24 are non-
center points and 6 are center points, was chosen as the design
matrix to carry out the experiments using the DoE technique.
Table 2 shows the 30 sets of coded trail experiments.

4. Regression Equations

Karthik et al. [24] conducted the regression analysis based on
the DoE considering spindle speed, feed rate, and depth of
cut under dry and wet conditions. According to the set of
techniques provided by the authors. The 2nd-order qua-
dratic mathematical regression models were developed for
the parameters as follows:

Tm ¼þ5:58776 − 0:023294 × Vc − 0:510281 × Fz
− 1:53034 × Dc − 0:023342 × Rtip − 0:010000 × Vc × Fz
þ 0:000500 × Vc × Dc − 0:002467 × Vc × Rtip þ 0:525000
× Fz × Dc − 0:404018 × Fz × Rtip þ 0:179911 × Dc × Rtip

þ 0:000125 × Vc
2 þ 0:393431 × Fz2 þ 0:140737 × Dc

2

− 0:043329 × Rtip
2

ð1Þ

Regression equations are used to predict the machin-
ing time.

5. Results and Discussion

The Design-Expert V12 software is a statistical tool used to
conduct experiments based on the DoE and examine the
impacts of the response variable. The design matrix used
to carry out the experiments is shown in Table 2. The
ANOVA was performed to verify the adequacy of the model.
The findings of an ANOVA used to predict Tm are shown in
Table 3. Table 4 shows the percentage contribution of ANOVA.

The F value is 2.96, which is significant, and the P value is
2.26%, which may occur due to noise. The lack of fit (LF) F
value is 0.2787, showing that the models’ terms are not sig-
nificant and have a noise of 95.54%.

6. Analysis of 3D Interaction Effect

The impact of process parameters cutting velocity (Vc), rate
of feed (Fz), cutting depth (Dc), and Tooltip nose radius (Rtip)
on machining time (Tm) is addressed below.

The interaction effect of cutting velocity and rate of feed
on machining time is shown in Figure 1. The cutting velocity
versus the rate of feed over machining time, as shown in
Figure 1, has a significant influence on the machined surface
and tends to increasemachining time in hard turning. Figure 1
illustrates that when cutting velocity increases, machining
time also increases; the machining time is minimum between
100 and 140m/min. The rate of energy lost, plastic expan-
sion, and friction increases as cutting velocity increases.
When the feed rate increases, the machining time also
increases proportionally, as illustrated in Figure 1; this is
due to the larger cutting zone area between the tool and the
workpiece, so a large amount of heat is developed at the
tooltip, propagating the tool wear. The results are verified
using the ANOVA table. The result concludes that the cut-
ting velocity is the most influencing variable compared to
other parameters.

The cutting depth plays a vital role throughout the machin-
ing, as shown in Figure 2. The cutting depth increases and the
machining time increases; as a result, the quantity of workpiece
materials is reduced.

Figure 3 shows the machining time relationship between
cutting velocity and tooltip nose radius. The 3Dplot in Figure 3
shows the machining time is high when the nose radius is at
2.8mm and low at 0.8mm. Figure 4 depicts the relationship
between predicted and actual values. It helps to identify the
observations by showing a graph of observed values vs. pre-
dicted values. The data points are evenly divided along the
45° line.

7. ANN Optimization

Hariche et al. [25] demonstrated that a mathematical model
that attempts to simulate the structure and functions of bio-
logical neural networks is called an ANN. In recurrent ANN,
information travels in one direction and the opposite direc-
tion in artificial outputs. An ANN has three layers: source,
hiding, and destination. According to the author, the source
and destination layers are called nodes, while the hiding layer
links the origin and destination [26]. Rajesh et al. [27] devel-
oped a predictive model using the ANN technique to opti-
mize the machining parameter during the turning of Inconel
625. To reduce the number of experiments and time-
consuming trials, five learning techniques were utilized in

TABLE 1: Response table of process parameters.

Levels Cutting velocity (Vc /m/min) Rate of feed (Fz /mm/rev) Cutting depth (Dc /mm) Tooltip nose radius (Rtip / mm)

−2 80 0.2 2.5 0.8
−1 100 0.3 3.0 1.2
0 120 0.4 3.5 1.6
1 140 0.5 4.0 2.4
2 160 0.6 4.5 2.8
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ANN models to forecast the damage factor [28]. Eser et al.
[29] used ANOVA and RSM to develop a prediction model to
forecast surface roughness during the milling of AA6061
alloy. The ANNmodel was employed to identify the optimum
machining conditions and evaluate the cutting parameters’
impact. Manoj et al. [30] suggested that the ANN technique
was the most effective method for the prediction of response
parameters and also reduced the error percentage.

ANNs may solve complicated real-world issues by pro-
cessing fundamental building blocks in nonlinear, distrib-
uted, parallel, and local ways. An ANN model is developed
using the MATLAB NN tool.

The use of ANN to reduce machining time is described:

To Minimize :Tm Vc; Fz;Dc;Rtip

� � ð2Þ

within limits,

(i) 90m/min≤Vc≤ 120m/min,
(ii) 0.18mm/rev≤ Fz≤ 0.36mm/rev,
(iii) 0.20mm≤Dc≤ 0.60mm,
(iv) 0.40mm≤Rtip≤ 0.80mm.

TABLE 3: Analysis of variance to predict—Tm.

Source S.S. df M.S. F p

Model of experiment 0.2183 14 0.0156 2.96 0.0226 Significant
Residual error 0.0789 15 0.0053 — — —

Lack of fit (LF) 0.0282 10 0.0028 0.2787 0.9594 Not significant
Pure error (PE) 0.0507 5 0.0101 — — —

Cor total 0.2972 29 — — — —

TABLE 4: Percentage contribution of ANOVA.

Cutting parameters Sum of squares Degree of freedom Mean square F-ratio % Of contribution

A—Cutting velocity 0.0192 1 0.0192 3.65 56.804
B—Rate of feed 0.0002 1 0.0002 0.0290 00.592
C—Cutting depth 0.0140 1 0.0140 2.65 41.420
D—Tool tip nose radius 0.0004 1 0.0004 0.0779 01.183
Total 0.0338 4 — — 100
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FIGURE 1: 3D plots (Vc versus Fz) over Tm.
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Subhash et al. [31] investigated the machinability and
unstable process-induced chatter vibrations of dry-turning
SDSS.

The input and output parameters will be trained using
the ANN technique. The inputs, hidden, and output layers of
the ANN levels are 1, the input layer unit is 4, the hidden
layer and output layer unit is 5, and Epochs are 1,000. The
back propagation neural network algorithm (gradient descent
learning rule) was used for processing ANN. The sigmoid

activation function was used to train the neural network
model.

Figure 5 shows the machining time ANN structure, and
Figure 6 depicts the input, hidden, and output layers used in
the ANN model. The machining time was estimated using
the NN trainer, which drives through 1,000 repetitions, as
shown in Figure 7. Figures 8 and 9 show the regression plot
and ANN validation performance; these show the gradient,
validation check, and learning rate. Figure 10 shows the
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FIGURE 2: 3D plots (Vc versus Dc) over Tm.

1.25 1.61

Design points above predicted value
Design points below predicted value

Design-Expert® Software
Factor coding: Actual
Machining time (min)

X1 = A: Cutting velocity
X2 = D: Tool tip nose radius
Actual factors
B: = Rate of feed = 0.4
C: = Cutting depth = 3.5

0.8

1.3

1.8

2.3

2.8

1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

80
100

120

140
160

A: Cuttin
g velocity (m

/min)
D: Tool tip nose radius (mm)

M
ac

hi
ni

ng
 ti

m
e (

m
in

)

FIGURE 3: 3D plots (Vc versus Rtip) over Tm.
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results of ANN validation performance; these show that the
training, validation, and testing using ANN are very close to
the predicted values.

The output of experimental and trained ANN data is
shown in Figure 11. This graph shows the experimental
results obtained by using ANN are very close, and evalua-
tions are accurate to their values. The output of experimen-
tal, RSM, and trained ANN data are shown in Figure 12. This
graph shows that the experimental, RSM result obtained
from Design Expert software and ANN result are adjacent
to their output values. Figure 13 shows the error percentage
between RSM and ANN over the experimental value. The
ANN predicted values show the lowest deviation than RSM

values. The ANN was successfully trained for better predic-
tion than RSM.

8. Validation of the Model Using ANN
Transfer Functions

Various types of standardized statistical performance evalu-
ation criteria are used to assess and validate the models
applied in ANNs. Three different kinds of transfer functions
have been used for neurons in hidden layers: hyperbolic
tangent sigmoid (TANSIG), log sigmoid (LOGSIG), and
PURELIN are compared and investigated for improving
the performance of the proposed neural networks [32–34].

1.25 1.61

Design-Expert® Software
Machining time
Color points by value of
machining time:

1.2

1.2 1.3 1.4
Actual

1.5 1.6 1.7
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1.4Pr
ed
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te

d 1.5

1.6

1.7
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FIGURE 4: Predicted versus actual result.

Input layer Output layer

Machining time

BIASBIAS

ANN structure for machining time

Input
Cutting speed (Uc)

Rate of feed (fz)
Cutting depth (ap)
Nose radius (rn)

Hidden layer

FIGURE 5: ANN structure for machining time.
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The ANN is trained by transfer functions using scaled gra-
dient Descent with Momentum & Adaptive L.R. method.
TANSIG and purely transfer function models are trained
in the ANN network to compare whether the model is effi-
cient and provides less predicted value. The 15 datasets are
selected for testing. The results are compared; the LOGSIG is
the most suitable transfer function that reflects the minimum
prediction result. The predicted value of the three transfer

functions is shown in Table 5. The validation result is shown
in Table 6.

9. Validation Using Gray Relational
Analysis (GRA)

GRA is an efficient approach for maximizing the complex inter-
relationships between multiple performance variables. Prasad

FIGURE 6: The input, hidden, and output layer.

FIGURE 7: Neural network training.
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et al. [35] proposed the GRA technique to optimize the pulsed
current MPAW process, considering quality factors. Srivastava
et al. [36] utilized a combination of RSM and GRA approaches
to improve the process parameters of the FDM. GRA was used
to handle the multiresponse optimization problem by altering
the weights for distinct replies based on the quality or produc-
tivity needs of the process [37]. Kirti and Raju [38] studied how
to use GRA to optimize the WEDM process parameters of

Inconel 600 with other performance attributes. Deng [39] pro-
posed GRA based on the gray system theory to solve the intri-
cate interrelationships among several responses.

The objective is to reduce machining time. The proce-
dures are mentioned as follows:

(1) The experimental values were first normalized from
0 to 1.

FIGURE 8: Plot regression.
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(A) Smaller-the-better criteria

yi mð Þ ¼ max xi mð Þð Þ − xi mð Þ
max xi mð Þð Þ −min xi mð Þð Þ ; ð3Þ

(B) Higher-the-better criteria

yi mð Þ ¼ xi mð Þ −max xi mð Þð Þ
max xi mð Þð Þ −min xi mð Þð Þ ; ð4Þ

where yi (m) is the value after gray relational genera-
tion; min xi (m) is the smallest value of xi (m) for the
mth response; max xi (m) is the largest value of xi (k)
for the mth response.

(2) The gray relational coefficient (γ) was computed using
normalized experimental findings in the next phase.

γi mð Þ ¼ Δmin − εΔmax

ΔOi mð Þ þ εΔmax
; ð5Þ

where γi is the distinguishing coefficient: if γ is smal-
ler, then the distinguishing ability is larger. In com-
mon, γ = 0.5 is used; Δmin represents the smallest

value of ΔOi (m); Δmax represents the largest value
of ΔOi (m), ε represents the distinguishing coefficient.

(3) The overall gray relational grade (GRG) was calcu-
lated by averaging the gray relational coefficients for
each chosen response.

Xi ¼
1
n

∑
n

m¼1
wkγi mð Þ; ð6Þ

where Xi represents the overall GRG; wk represents
the normalized weightage of factor m.

The relevance of factors with uneven weightage is borne
by diverse aspects of a simple engineering system.

The primary purpose of this research is to minimize
machining time. As a result, GRA optimization, the “lower
is better” approach, was applied. To begin, trial data were
standardized using Equation (3) to achieve gray relational
generation, as tabulated in Table 7. The GRA coefficient
(γ) was computed from normalized experimental results
using Equation (5). The overall GRA grade (Xi) was calcu-
lated by averaging the GRA coefficients for each selected
response. For all of the processing, variables are weighted;

FIGURE 9: Plot train state (1,000 epoch).
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equally, Xi equals 0.5. If all of the processing variables are
weighted equally, Xi equals 0.5. Table 5 shows the overall
gray relational rank. As a result, the level with the highest
GRA grade value is the optimal level for the machining
variables.

10. Conclusion

The turning operation was performed using DSS 2025 work-
piece material and input factors: cutting velocity, rate of feed,
cutting depth, and tooltip nose radius. The 2nd-order

statistical model is developed to forecast machining time
utilizing CCD and DoE of RSM. This method examines
the interaction impact of the process parameter. A heuristic
ANN is used to optimize and analyze the ANNmodel, which
yields more accurate forecast data.

In terms of prediction, the findings demonstrate that the
ANN outperforms the RSM.

The cutting velocity has the most significant influence
compared to the other parameters, and the machining time
is low when the cutting velocity of 100–140m/min.
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FIGURE 11: Output comparison—trail (experimental) and ANN
data.
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FIGURE 12: Output comparison—RSM, ANN, trail (experiment)
values.

FIGURE 10: ANN validation performance.
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To produce the optimum results, the nose radius of the
cutting tool should be 2.8mm. In the ANN optimization, the
observed values and the ANN projected values correlate closely.

The results are further evaluated using GRA and exposed
that the ideal machining settings are Vc= 140m/min,
Fz= 0.5mm/rev, Dc= 0.5mm, and Rtip= 2.4mm.

The ANN and GRA results are the same; it is confirmed
that ANN performs well. Confirmation tests were done using
the GRA method and were validated for the performance
measures. The anticipated data from the ANN has a margin
of error of less. Consequently, the model is acceptable,
and the optimum cutting parameters ensured significant
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FIGURE 13: Comparison of RSM, ANN over % of trail (experiment) error.

TABLE 5: Prediction value of LOGSIG, PURELIN, and TRANSIG transfer functions.

Experimental run
Factor 1 Factor 2 Factor 3 Factor 4

Machining time (Tm) predicted by
MATLAB software

Cutting velocity (Vc) Feed rate (Fz) Cutting depth (Dc) Nose radius (Rtip) ANNLOGSIG ANNPURELIN ANNTANSIG

16 120 0.4 3.5 1.6 1.3301 1.4210 1.4532
17 140 0.3 3 1.2 1.5811 1.5174 1.5826
18 120 0.6 3.5 1.6 1.3463 1.4101 1.4354
19 140 0.3 4 1.2 1.5106 1.5502 1.5845
20 100 0.3 3 1.2 1.5149 1.5375 1.5867
21 140 0.5 3 2.4 1.2551 1.2623 1.2731
22 100 0.5 4 2.4 1.5714 1.5802 1.5873
23 120 0.4 2.5 1.6 1.5092 1.5184 1.5247
24 100 0.5 3 2.4 1.3867 1.4603 1.4684
25 120 0.2 3.5 1.6 1.4171 1.4354 1.4432
26 100 0.3 4 1.2 1.3741 1.3747 1.3864
27 160 0.4 3.5 1.6 1.6082 1.6186 1.6201
28 120 0.4 3.5 2.8 1.3090 1.3124 1.3205
29 140 0.3 3 2.4 1.4959 1.5021 1.5122
30 120 0.4 3.5 0.8 1.3323 1.3487 1.3492
Average 1.4361 1.4566 1.4752

TABLE 6: Validation of ANN data transfer functions.

Sl. no Transfer functions
The Max. predicted value of machining

time
The Min. predicted value of machining

time

1 LOGSIG function 1.6082 1.2551
2 PURELIN function 1.6186 1.2623
3 TANSIG function 1.6201 1.2731
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improvement in the machining time. The result of the exper-
iment assists the industrialists in improving the performance
measure by reducing the machining time, which saves the
operator energy/cost and improves productivity.

11. Future Studies

Studies and experiments in the fields of machinability,
impact toughness, MRR, etc., will be carried out in order
to optimize the DSS 2025 machining process. To ascertain
the effects of cutting fluids, MQL, and cryogenic machining,
further research must be done. Modifying the nomenclature
of the tools to guarantee precise machining. Future use of
sustainable machining technology is possible to reduce envi-
ronmental pollution.
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TABLE 7: Gray relational generations—analysis of turning data.

Sl. no Normalization—smaller the better Deviation sequence Gray relational coefficients (GRC) Rank

1 0.2162 0.7838 0.3895 22
2 0.4324 0.5676 0.4684 11
3 0.1622 0.8378 0.3737 24
4 0.0000 1.0000 0.3333 30
5 0.2703 0.7297 0.4066 17
6 0.3784 0.6216 0.4458 13
7 0.2432 0.7568 0.3978 19
8 0.0270 0.9730 0.3394 28
9 0.2973 0.7027 0.4157 14
10 0.4054 0.5946 0.4568 12
11 0.2162 0.7838 0.3895 22
12 0.7027 0.2973 0.6271 6
13 0.1081 0.8919 0.3592 26
14 0.6757 0.3243 0.6066 7
15 0.2973 0.7027 0.4157 14
16 0.9189 0.0811 0.8605 2
17 0.0270 0.9730 0.3394 28
18 0.7297 0.2703 0.6491 5
19 0.2703 0.7297 0.4066 17
20 0.2432 0.7568 0.3978 19
21 1.0000 0.0000 1.0000 1
22 0.1351 0.8649 0.3663 25
23 0.2432 0.7568 0.3978 19
24 0.4865 0.5135 0.4933 9
25 0.4595 0.5405 0.4805 10
26 0.5676 0.4324 0.5362 8
27 0.0811 0.9189 0.3524 27
28 0.8108 0.1892 0.7255 3
29 0.2973 0.7027 0.4157 14
30 0.7568 0.2432 0.6727 4
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