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Pharmaceutical waste management is a significant concern that poses risks to human and environmental health. The ineffective
management of expired and unused medications can harm individuals and communities. This study proposes a novel approach to
address the issue of pharmaceutical waste management by developing a location-routing problem (LRP) model using mixed-integer
linear programing (MILP) to optimize the collection and disposal of pharmaceutical waste. The proposed model aims to minimize
transportation costs, construction of collection centers, disposal costs, and carbon dioxide emissions, making it a cost-effective and
environmentally sustainable approach to managing pharmaceutical waste. Initially, the feasibility, validity, and efficiency of the
proposedmodel are examined by solving the problem in the GAMS software using CPLEX solver for small-scale problems. Sensitivity
analyses are conducted to ensure the accuracy, reliability, robustness, and usefulness of themathematical model for decision-making. In
view of the inherent computational complexity of the proposed model, which is classified as nondeterministic polynomial time-hard
and poses considerable difficulties when exact solutions are sought for large-scale problems, the present study resorts to two metaheur-
istic algorithms, specifically particle swarm optimization (PSO) and genetic algorithm (GA), as a means minimizing the computational
burden. The results indicate that GA outperforms PSO in terms of objective function and solution time, with an average improvement of
approximately 1% and 20%, respectively. The proposed model and algorithms provide a comprehensive approach to addressing the
critical issue of pharmaceutical waste management, benefiting the healthcare industry, and society as a whole.

1. Introduction

In recent years, waste production has increased across the globe
as a result of urbanization, population growth, and economic
development. Due to this, it is critical to consider the environ-
mental effects of solid waste. A total of 33% of the world’s
2.01 billion tons of solid waste generated annually are uncol-
lected, and that number is likely to increase to 3.40 billion tons
by 2050 [1]. Consequently, solid waste management (SWM) is
essential for preventing these challenges, which entails the col-
lection, transportation, tracking, processing, disposal, or recy-
cling of solid wastes [2]. Based on their source, solid wastes can
be classified as municipal, hazardous, radioactive, or medical.
Nevertheless, medical waste plays an extremely significant role
in SWM throughout theworld, as was demonstrated during the

coronavirus pandemic. Among the most critical types of waste
are medical wastes. Additionally, its management requires con-
siderable attention due to its complexity. It is therefore imper-
ative that medical waste is handled and disposed of properly, as
it can be hazardous and toxic, posing a risk to the environment
and the public good [3]. There has been a substantial increase
in pharmaceutical waste over the past century due to increased
patient numbers, prescriptions, consumption, and overproduc-
tion of medication, which constitutes the majority of medical
waste. Therefore, pharmaceutical waste has ecological, finan-
cial, and ethical consequences that should be examined from
several perspectives [4]. To consider the supply chain’s envi-
ronmental aspects, reverse logistics (RL) can be an effective
solution. The reduction of carbon footprint is one of the ben-
efits of using RL. In most cases, RL systems result in additional

Hindawi
Mathematical Problems in Engineering
Volume 2023, Article ID 6165495, 18 pages
https://doi.org/10.1155/2023/6165495

https://orcid.org/0000-0002-9476-548X
https://orcid.org/0009-0006-2908-5775
https://orcid.org/0009-0005-0544-7076
mailto:p6industrial@gmail.com
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/6165495


profits for companies in the long run [5]. Thus, the RL network
for the pharmaceutical supply chain (PSC) provides significant
benefits to society. A similar approach is taken by the circular
economy (CE) within the PSC, which works to reduce waste,
maximize the value of medicines, and ensure a sustainable
supply chain [6, 7]. Medical waste management issues can be
divided into three primary categories. Identifying the most
efficient routes in each area is the first category. In the second
category, it is necessary to evaluate where different facilities
(such as recycling companies or separate waste disposal cen-
ters) should be located within the waste supply chain. As a
result of combining the two categories previously mentioned,
a third category is formed, known as location routing problems
(LRPs). It deals with the routing and location of various SWM
supply chain components [8].

In contrast, the LRP, which combines the facility location
problem (FLP) and the vehicle routing problem (VRP), has
been an essential tool in logistics since Maranzana [9] noted
the need to determine the locations of facilities and delivery
routes simultaneously. Furthermore, the CE is a holistic the-
ory that promotes resource management and preservation
through recycling and reuse [6]. Along with the previous
definition above, RL is generally defined as the movement
of materials and products in the opposite direction of the
main flow. Thus, it has become significant to integrate CE
and RL into the supply chain to foster environmental and
economic growth [10]. It is given that the principal core of
the CE is 3R, which is reduction, reuse, and recycling, it
provides practical guidelines for reducing waste and encour-
aging recycling. Moreover, the main focus of RL is on return
management, and it can be said that RL has a strong con-
nection with CE regarding technical aspects [11]. As a result,
CE and RL, along with LRP, are the best tools for engaging
with waste management.

Healthcare plays a crucial role in life. Assessing the devel-
opment level of a country is also a crucial factor. In contrast,
healthcare is a significant source of pollution, but recycling
such materials requires large budgets and unique techniques,
and the global economy has been strained by rising health-
care costs in recent years. As a consequence, regulatory agen-
cies identify drug-tracking collaboration and sharing as the
most critical issues in healthcare [12]. However, despite var-
ious waste management studies, few have reported pharma-
ceutical waste management. While most studies on medical
waste management have only focused on the management
aspect, studies on analytical models, or quantity techniques
are rare. Moreover, in the articles related to waste in the
literature, the subject of waste is mainly discussed in a gen-
eral way. Still, the field of medicine and its waste, due to the
mentioned importance and different characteristics com-
pared with the rest of the waste, requires a more focused
investigation and involves its significance and characteristics.
Moreover, in the waste collection field, separating expired
drugs and drugs with an expiration date of less than 1 year
to be sent to developing and deprived areas with less or no
cost has rarely been addressed.

This study presents a multilevel supply chain model for
efficient pharmaceutical waste management. The proposed

model addresses the hazardous medical waste first and sub-
sequently redirects the reusable medicines back into the sup-
ply chain. This approach can benefit countries with lower
levels of welfare, by providing them access to these reusable
medicines. Additionally, the model aims to minimize cost
while taking into consideration the emission of carbon diox-
ide as a cost. Thus, the model not only reduces financial
expenses but also mitigates the environmental impact. An
initial evaluation of the model was conducted using GAMS at
a small scale. Subsequently, the model was solved at a large
scale through the application of two different metaheuristic
algorithms; GA and PSO. The proposed model is a novel
approach to address the issue of pharmaceutical waste man-
agement, with the potential to improve the efficiency of the
healthcare supply chain and contribute to the establishment
of a green supply chain.

The structure of this research article is organized as fol-
lows: Section 2 provides a summary of the related literature,
specifically focusing on LRP, in relation to the case of phar-
maceutical supply chain and waste management; Section 3
describes the problem and introduces a mathematical model
for LRP; in Section 4, the solution approach for the proposed
model is presented; Section 5 outlines the process of solving
the proposed model on a small scale, to assess the sensitivity
of the mathematical model to its modeling assumptions;
Section 6 employs sensitivity analysis; in Section 7 the proposed
model is solved on a medium and large scale in Section 7;
managerial insights are presented in Section 8; finally, Section 9
concludes the research by summarizing the key findings and
their implications for future research in this area.

2. Literature Review

In the literature, some scholars investigated medical and
pharmaceutical waste recycling networks as supply chain
network design and construction problems. The supply
chain management helps companies to reduce operating
costs, speed up processes, and ultimately increase customer
satisfaction [13]. A number of these studies are presented.
Lotfi et al. [14] presented the medical waste chain network
design, which includes the landfill, waste purchase contractor
(WPC), waste segregation (WS), and health center. They
suggested finding WS, recovering them, and sending them
to theWPC to reduce waste. Consequently, a novel two-stage
robust stochastic programing method is proposed that con-
siders sustainability and resilience. Ahmadi et al. [15] pre-
sented a mathematical model aimed at minimizing the costs
of the entire chain, including fixed construction costs, trans-
portation costs, and inventory holding costs, and minimizing
the maximum unanswered demand. Besides, Kargar et al. [7]
developed a linear programing model under uncertainty to
design a medical waste reverse supply chain. The proposed
multiitem and multiperiod model with three objective
functions, minimizing the total cost, the best treatment tech-
nology, and the entire medical waste stored: a robust possi-
bilistic programing approach and a fuzzy goal programing
method were employed in modeling. From the standpoint of
the producers of medical materials, Shi [16] addressed the
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design of the RL network for medical waste. In order to
operate the RL network with the lowest possible operational
costs, a mixed integer programing (MIP) model is built, and
Lingo 8.0 to find the best solution is used. In the context of
medical waste management, Sara and Btissam [17] presented
the green RL network, and a model with multiple goals and
products was created to reduce the network’s adverse effects
on the environment and minimize its reverse costs. Further,
Taleizadeh et al. [18] examined the impact of uncertainty
using robust optimization and made an effort to optimize
reverse supply chain (RSC) members’ profits to increase the
returns of leftover medications and improve sustainability
for a RSC in the pharmaceutical industry. Mei et al. [19]
addressed the issue of locating facilities in a RL network.
They proposed a multiperiod medical waste emergency RL
network model to achieve this, with the objectives of mini-
mizing costs, minimizing risk to safety, and maximizing
response time for the disposal of medical waste.

In general, in order to reduce logistics costs or protect the
environment from pollution such as CO2 emissions, there are
two approaches in the literature: in the first approach, special
transport vehicles that produce low pollution, such as drones,
are used. The amount of CO2 emitted by these vehicles and
logistics costs could be optimized by planning and modeling
logistics networks [20, 21]. The second approach is to reduce
logistics costs and environmental pollution by providing struc-
tures and methods for creating a distribution and collection
logistics network. A good example of the second approach is
the construction of collection or distribution centers or con-
sidering hierarchical hubs to reduce the number of vehicles
and use vehicles with greater capacity, which leads to the
reduction of logistics costs and environmental pollution [22].

To save the environment from the pollution brought on
by greenhouse gas emissions, it is crucial to plan transporta-
tion routes and place facilities in the most advantageous
locations possible for medical waste management. Hence,
some of the papers that contributed to the VRP, FLP, and
LRP applications focused on medical waste management are
available in the following. In this work, Tirkolaee et al. [23]
looked into a time-windowed sustainable multitrip LRP for
managing medical waste. Adarang et al. [24] addressed an
LRP under uncertainty for providing emergency medical
services during disasters. Osaba et al. [25] aimed to design
an algorithm that plans distribution and collection routes in
such a way as to minimize the operating costs of the distri-
bution company. Gao et al. [26] looked at a network of urban
medical waste recycling to solve an integrated optimization
problem. It merged the collecting issue for medical waste
from clinics to the associated hospital with the vehicle rout-
ing issue for medical facilities with various requirements.
They suggested a compact mixed-integer linear programing
(MILP) model address this issue, considering the distinct
collecting approach and time windows. To create a weekly
inventory routing schedule to deliver medical waste to rehab
centers, Taslimi et al. [27] looked into a periodic load-
dependent capacitated VRP experienced by healthcare
facilities and medical waste collecting businesses. The occu-
pational risk associated with temporarily storing hazardous

wastes at health centers is considered in addition to reducing
transportation risk. The collection of medical waste in
Northern Jordan was the subject of a stochastic model cre-
ated by Alshraideh and Qdais [28]. To cut down on the
overall trip distance, which lowers transportation costs and
emissions, a route scheduling model was presented. A MILP
model utilizing fixed routing optimization with static data
and variable routing optimization with real-time data was
developed to improve collection efficiency, save collection
costs, and reduce emissions [2]. In the TRB1 region of Tur-
key, a geographic information system solution method is
suggested by Mete and Serin [29] as a means of presenting
a solution for the medical waste routing problem. Since a
complete internal collection is crucial to reducing the risk
to patients, hospital employees, visitors, and the surrounding
environment, Hajar et al. [30] highlighted onsite healthcare
waste collection. Tirkolaee and Aydın [31] created a biobjec-
tive MILP model, which is essentially a capacitated VRP, to
address the issue of transportation planning and outsourcing
of MWM services during pandemics and from a sustainabil-
ity standpoint.

Globally, the unprecedented COVID-19 outbreak rein-
forced the critical importance of rapid development vs. sur-
vival for pharmaceutical companies and had a significant
impact on the medical supply chain as well [32, 33]. During
the COVID-19 outbreak, Govindan et al. [34] created a biob-
jective MILP model for managing medical waste to reduce
the overall costs and dangers of the population’s exposure to
pollution. To handle both infectious and noninfectious med-
ical waste, they also took into account several realistic
hypotheses for the first time, including the LRP, the time
window-based green VRP, the scheduling of vehicles, the
failure of those vehicles, split deliveries, population risk,
and load-dependent fuel consumption [35] proposed a novel
multiobjective multiperiod MIP for RL network design,
which aimed at determining the most effective temporary
facility locations and transportation plans for handling the
rapidly growing medical waste. To evaluate the influence of
the coronavirus pandemic on the healthcare and noncold
pharmaceutical care distribution supply chain, Abdolazimi
et al. [36] developed a multiobjective model to minimize the
total costs, environmental impacts, lead time, and the prob-
ability of a healthcare provider being infected by a sick per-
son. Another research Goodarzian et al. [37] considered the
distribution of medicines related to COVID-19 patients and
modeled a multiobjective, multilevel, multiproduct, and mul-
tiperiod problem for a sustainable medical supply chain net-
work being designed. In the study of Eren and Tuzkaya [38],
a model for the safest and shortest route for the transporta-
tion of medical waste vehicles inside the city of Istanbul is
provided. Scores used in this research came from Eren and
Tuzkaya [39]. They were employed in a traveling salesman
issue with multiple objectives to derive two objective func-
tions based on safety scores and total travel distance. Table 1,
summarizes the previous studies done regarding mathemati-
cal models in healthcare waste management.

While there are some existing papers that focus on PSC
management, our paper focuses specifically on the challenges
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of pharmaceutical waste management, while taking environ-
mental considerations into account. Our article provides a com-
prehensive approach to managing pharmaceutical waste, taking
into consideration various factors and proposing adaptable
solutions suitable for different contexts. Furthermore, our
research extends beyond small-scale problem solving, as we
employ two distinct metaheuristic algorithms to solve our
model at a larger scale. This allows us to provide insights into
the effectiveness of our proposed model under a range of con-
ditions, which has not been explored in previous literature. By
filling this research gap, we hope to provide valuable contribu-
tions to the field of PSC management and waste reduction.

3. Problem Definition

This study considers a multiechelon supply chain, including
distribution centers, customer points containing pharma-
cies and hospitals, collection centers, disposal centers, recy-
cling centers, and airports. In this regard, pharmaceutical
waste will be collected by vehicles and will be carried to the
collection points that separate them. Medicines that expire
in 1 year [50] are considered expired medicines and trans-
ferred to recycling and disposal centers to treat properly,
which reduces the hazard risk of pharmaceutical waste. The
unused medicines of patients with expiration dates of more
than 1 year are sent to developing countries through air-
ports so that they can use the medicines without paying any
money; this will help those countries to increase the level of
their societies’ health. In this model, in addition to collect-
ing pharmaceutical waste, the amount of carbon dioxide
produced by vehicles will be reduced, that have an environ-
mental aspect.

Furthermore, strategic determinations are undertaken
regarding the optimal locations and number of collection
centers. In other words, potential locations are carefully eval-
uated through thorough economic analyses to determine
whether they are suitable for the establishment of collection
centers. Additionally, a comprehensive vehicle routing prob-
lem is formulated to efficiently transport pharmaceutical
waste from the constructed collection centers to waste and
recycling centers or airports. Finally, the purpose of this
model is to minimize the costs of the supply chain. The
designed supply chain is shown in Figure 1.

3.1. Assumptions

(i) Each medicine has an expiration date and, after
that, cannot be used.

(ii) The capacity of vehicles is determined.
(iii) Each place will be visited only once.
(iv) The number of pharmaceutical waste in each phar-

macy is not more than the capacity of vehicles.
(v) The delivery time for pharmaceutical waste is instant.
(vi) The place of pharmacies, hospitals, disposal, and

recycling centers are fixed, while there are several
candidate locations for collection centers.

(vii) The cost of constructing collection centers is con-
sidered fixed.

(viii) The cost of commuting and transporting between
each point by vehicle is determined.

(ix) Expired drugs include medications with a date of
use under 1 year in pharmacy and other unused
drugs returned by patients.

Pharmacies and hospitals

Collection point

Disposal centersDeveloping countries

Airport

FIGURE 1: The designed supply chain.
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(x) Due to the low volume of reusable drugs, only one
vehicle from collection centers is headed to airports
to transport the medicines to developing countries.

3.2. Symbols and Signs in the Mathematical Model

3.2.1. Sets

I: The set of nodes of pharmacy and hospital
M: The set of distributors
R: The set of collection centers
N: The set of the union of pharmacies, hospitals, and
collection centers
K: The set of existing vehicles in the collection of phar-
maceutical waste’s route (tour between pharmacy, hospi-
tals, and collection points)
A: The set of disposal and recycling of pharmaceutical waste
H: The set of the union of disposal and recycling centers
and collection points
L: The set of existing vehicles in a tour between collection
points and disposal and recycling centers
F: The set of airports
P: The set of pharmacies and hospitals
UUrl: The set of allocation of vehicles to the collection
centers in the tour between the collection, recycling, and
disposal points.

3.2.2. Indexes

i2 P, p2 P: Elements of the nodes of pharmacies and
hospitals set
r2R: Elements of the collection points set
n2N, n12N: Elements of the set of the union of phar-
macies, hospitals, and collection centers
k2K: Elements of the set of existing vehicles in the route
of collecting pharmaceutical waste
a2A, a′2A: Elements of the set of disposal and recycling
of pharmaceutical waste
h2H, h′2H: Elements of the set of the union of disposal
and recycling centers and collection points
l2 L: Elements of the set of the vehicle exist in the dis-
posal of pharmaceutical waste routes
f2 F: Elements of the airport’s set
UUl: Elements of collection center’s R, so that vehicle L
belongs to them
m2M: Elements of the set of distributors.

3.2.3. Parameters

MM: A vast number
demi: The existing amount of pharmaceutical waste in
node i
Demp: Demand of pharmacies and hospitals
capVk: Capacity of vehicle k

capDr: Capacity of collection centers
capAa: Capacity of disposal and recycling centers
capmm: Capacity of distributors
RRr: Coverage radius of collection centers
ddrf: The distance between airport f and collection center r
csa: The cost of disposing and recycling
vc′l: The variable transportation cost between collection
points and disposal, recycling points
trebellowr: The number of vehicles used for the collection
of pharmaceutical waste
crfrf : Transportation cost between collection points and
airports
disnn1: Distance between collection point and pharmacies
or hospitals
disshh′: Distance between collection points and disposal
and recycling points
treabover: The number of vehicles used for disposing of
pharmaceutical waste
Pricer: Cost of construction of collection points
Vf: The amount of carbon dioxide that vehicles consume
in the tour between collection centers and pharmacies
and hospitals per unit distance and each unit of weight
Vf′: The amount of carbon dioxide that vehicles consume in
the tour between collection centers and recycling and dis-
posal centers, and airports per unit distance and each unit
of weight
Pco2: Cost per unit of carbon dioxide consumption
Apercentr: Percentage of pharmaceutical waste that is
disposed
vck: Variable cost of the vehicle per unit of distance in a tour
between collection center and pharmacies, and hospitals
fck: Fixed cost of transportation in a tour between collec-
tion center and pharmacies and hospitals
ffcl: Fixed cost of transportation in a tour between collec-
tion center and recovery center.

3.2.4. Variables

zzr: If the collection point is selected 1, otherwise 0
xnn1k: If there is a route from node n to node n1 with the
vehicle k1, otherwise 0
aapr : If the node of pharmacy and hospital allocates to the
collection point r1, else 0
Earl : If vehicle l of collection center r allocates to disposal
node a, 1, else 0
yy0rf : If medicines from collection point r transfers to the
developing countries via airport f1, if not 0
ual: Variables to remove subtour in the route for dispos-
ing of medicines
wwnn1k: The amount of medicine shipped from node n to
node n1 is by vehicle k
whh0 l: The amount of medicine that is transferred from
node n to node n1 is by vehicle l.
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sral: The amount of pharmaceutical waste collected in the
center a is emptied by vehicle l, which belong to the
collection center r
yhh0 l: If there is a path from node h to node h′ with vehicle
l1, otherwise 0
yyrf : The amount of medicine transported from the col-
lection center r to the airport f
yzmp: The amount of medicine sent from the distributor
m to the pharmacy p.

3.3. Mathematical Model

3.3.1. Objective Function. A single objective function is con-
sidered here, whose goal is to minimize supply chain costs.
Costs like variable and fixed transportation costs, co2 emis-
sion costs, construction of the collection centers costs, dis-
posal, and recycling costs are addressed in this article.

3.3.2. Constraints.

Z ¼ min F: ð1Þ

The single objective function of the model.

F ¼ f1 þ f2 þ f3 þ f4 þ f5 þ f6 þ f7 þ f8 þ f9 þ f10: ð2Þ

F is the summation of the 10 different supply chain costs
which descriptions are as followed:

f1 ¼ ∑
r2R

zzr ⋅ pricer: ð3Þ

The cost of construction of collection centers.

f2 ¼ ∑
n2N

∑
n12N

∑
k2K

vck ⋅ disn1n ⋅ xn1nk: ð4Þ

The variable cost of transportation from collection cen-
ters to pharmacies and hospitals.

f3 ¼ ∑
h2H

∑
h02H

∑
l2L

vc0l ⋅ disshh0 ⋅ yhh0l: ð5Þ

The variable cost of transportation from collection cen-
ters to disposal and recycling centers.

f4 ¼ ∑
a2A

∑
r2R

∑
l2L

csa ⋅ sral: ð6Þ

The cost of disposal and recycling of pharmaceutical
waste.

f5 ¼ ∑
n2N

∑
n12N

∑
k2K

disn1n ⋅ wwn1nk ⋅ vf ⋅ Pco2 : ð7Þ

The cost of emitted carbon dioxide due to the transporta-
tion between collection centers and pharmacies and hospitals.

f6 ¼ ∑
h2H

∑
h02H

∑
l2L

disshh0 ⋅ whh0 l ⋅ vf 0 ⋅ Pco2 : ð8Þ

The cost of emitted carbon dioxide due to the transporta-
tion from collection centers to disposal and recycling centers.

f7 ¼ ∑
k2K

∑
r2R

∑
n2N

fck ⋅ xrnk: ð9Þ

The fixed cost of transportation between collection cen-
ters and pharmacies and hospitals.

f8 ¼ ∑
l2L

∑
r2R

∑
h2H

f fcl ⋅ yrhl: ð10Þ

The fixed cost of transportation from collection centers
to disposal and recycling centers.

f9 ¼ ∑
r2R

∑
f2F

ddrf ⋅ crf rf ⋅ yyrf : ð11Þ

The variable cost of transportation from collection cen-
ters to the airports.

f10 ¼ ∑
r2R

∑
f2F

ddrf ⋅ vf 0 ⋅ Pco2 ⋅ yyrf : ð12Þ

The cost of emitted carbon dioxide from transportation
between collection centers and airports.

∑
n2N

∑
k2K

xpnk ¼ 1  8p 2 P ð13Þ

∑
n2N

∑
k2K

xnpk ¼ 1  8p 2 P: ð14Þ

The previous and subsequent routes (the last and the
next node) are set per node. It is essential to know that
each node will be visited only once.

∑
n12N

xn1nk ¼ ∑
n12N

xnn1k  8n 2 N; p 2 P: ð15Þ

If any k-type vehicle enters each node, the exact vehicle
must be got out of the node.

∑
n2N

xrnk þ ∑
n2N

xnpk ≤ 1þ aapr  8p 2 P; r 2 R; k 2 K:

ð16Þ

According to each node’s allocation to one of the collec-
tion centers. They must either be connected to the other
node or the collection center.

∑
r
aapr ¼ 1  8p 2 P: ð17Þ

Each node is allocated to just one collection center.

wrpk ¼ 0  8p 2 P; r 2 R; k 2 K: ð18Þ

No pharmaceutical waste is transported from the collec-
tion center to the first node, which is related to vehicle k.
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wwipk≥ ∑
n12N

wwn1ikþdemi−MM ⋅ 1−xipk
� �

  8p; i2P; k2K:

ð19Þ

Calculate the number of medicines vehicles k transfers
from node p to a collection center.

∑
p2P

aapr ⋅ demp ≤ capDr ⋅ zzr 8r 2 R: ð20Þ

Determines the capacity of the collection center based on
its chosen location.

∑
p2P

aapr ⋅ demp ≥ zzr 8r 2 R: ð21Þ

If the collection center r is selected, then aapr ¼ 1

wwnpk ≤ capVk 8p; i 2 P; k 2 K: ð22Þ

The amount of pharmaceutical waste collected by a vehi-
cle should not exceed the vehicle’s capacity.

∑
p2P

∑
k2K

xrpk ≤ trebellowr ⋅ zzr 8r 2 R: ð23Þ

Determines the desired number of vehicles for routing
tours between the collection center and pharmacy and hos-
pital for each collection center.

∑
h2H

yahl ¼ Earl 8a 2 A; r 2 UUl; l 2 L; ð24Þ

∑
h2H

yhal ¼ Earl 8a 2 A; r 2 UUl; l 2 L: ð25Þ

Each node’s entering and leaving routes per vehicle are
determined based on the nodes assigned to the collection
center.

ua0 l − ual þ Ak kya0al ≤ Ak k − 1 8a; a0 2 A; r 2 R; l 2 L:

ð26Þ

The constraint of omitting the subtour.

∑
h02H

yh0hl ¼ ∑
h02H

yhh0l 8n 2 N; p 2 P: ð27Þ

If vehicle l entered each node, the same vehicle l should
leave that node.

∑
h2H

yrhl þ ∑
h2H

yhal ≤ 1þ Earl 8a 2 A; r 2 UUl; l 2 L:

ð28Þ

Each node should connect to the other node or the col-
lection center according to their allocation to one of the

collection centers.

∑
a2A

yrhl ⋅MM ≥ ∑
a2A

Earl 8r 2 UUl; l 2 L: ð29Þ

Vehicle l goes to the next node from collection point r
when the related vehicle and node are selected.

wral ≥ ∑
n12N

∑
k2K

wwn1rk ⋅ Apercentr
� �

−MM ⋅ 1 − yralð Þ 
8r 2 UUl; a 2 A; l 2 L;

ð30Þ

wahl≥ ∑
h02H

wah0 l− ∑
r2UUl

sral−MM ⋅ 1−yahlð Þ 8a2A;h2H; l2L:

ð31Þ

Determine the number of medicines each vehicle trans-
fers from one node to the other.

∑
a2A

∑
l2UUr

sral ¼ ∑
n12N

∑
k2K

wwn1rk ⋅ Apercentr 8r 2 R: ð32Þ

Determines the transfer value of each vehicle to the
nodes based on the percentage of waste.

sral ≤ Earl ⋅MM 8r 2 UUl; a 2 A; l 2 L; ð33Þ

sral ≥ Earl8r 2 UUl; a 2 A; l 2 L: ð34Þ

If the variable Earl equals to 1, then variable sral will get
value.

∑
l2L

∑
r2UUl

sral ≤ capAa 8a 2 A: ð35Þ

Determines the allocation capacity of each node.

∑
a2A

∑
l2UUr

yral ≤ treabover ⋅ zzr 8a 2 A: ð36Þ

The number of vehicles used in each collection center for
routing pharmaceutical waste is determined.

∑
f2F

yyrf ≤ ∑
n12N

∑
k2K

wwn1rk ⋅ 1 − Apercentrð Þ 8r 2 R:

ð37Þ

Determines the amount of medicine sent to airports.

RRr ⋅ yy0rf ≥ ddrf  8r 2 R; f 2 F: ð38Þ

If airports exist in the coverage area of the collection
center, then the medicines will be sent to the airports.
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yy0rf ⋅MM ≥ yyrf  8r 2 R; f 2 F; ð39Þ

yy0rf ≤ yyrf  8r 2 R; f 2 F: ð40Þ

Determine the relation between 0 and 1 variable yy0rf and
the transferred amount of yyrf :

∑
m2M

yzmp ¼ Demp 8p 2 P: ð41Þ

The amount of distributed medicines by distributors is
the same as the demand of pharmacies and hospitals.

∑
p2P

yzmp ≤ capmm 8m 2M: ð42Þ

The amount of distributed medicines is not more than
the capacity of the distributors.

xn1nk; zzr; aark; Earl; yy
0
rf ; yhh0l 2 0; 1f g: ð43Þ

The abovementioned variables are the 0 and 1 variables.

wwnn1k; whh0 l; sral; yyrf ≥ 0: ð44Þ

The variables above are positive.

4. Solution Approach

In this paper, in order to evaluate the performance of the
proposedmodel and validate it, small-scale problems are solved
by GAMS software using a CPLEX solver and then, sensitivity
analysis was conducted to examine the robustness of the model
to changes in parameters. Then, this problem was solved in
small size using metaheuristic algorithms, particle swarm opti-
mization (PSO), and genetic algorithm (GA), by MATLAB
software to evaluate accuracy and validity of employed meta-
heuristic algorithms. Finally, for several medium- and large-
scale problems, PSO and GA algorithms have been implemen-
ted using MATLAB software.

4.1. Particle Swarm Optimization. PSO is an optimization
method that originated from the idea of computational intel-
ligence, utilizing existing natural interactive systems. The
concept was first developed by a social psychologist named
Kennedy and an electrical engineer named Eberhart. The
concept of PSO was inspired by the behavior of social ani-
mals such as bird flocks searching for food [51–53].

An algorithm based on PSO places particles at random in
the search space in order to optimize a fitness function simi-
lar to that of a flock of birds in search of food. Each particle
evaluates its quality or fitness at that position, and for a
predefined number of iterations, each particle moves to a
new location which gives a better fitness than the previous
position. This movement is based on the particle’s own his-
tory of best and current locations with those of the best
positions attained by other particles in the swarm, with
some random perturbations. In this manner, the swarm

continues until it obtains the best solution to the fitness
function in the problem space [51]. The fitness or objective
function in PSO depends on the application area of the algo-
rithm, and it is usually defined by a mathematical formula-
tion to quantify the system performance achieved through a
performance index. Unlike survival of the fittest, PSO is
based on analogies with the social behavior of animals and
birds. Unlike other evolutionary algorithms (EAs), there is
no selection operation in PSO algorithm, and all the particles
of the swarm are retained throughout the search process.
Particle positions and velocities are updated in every itera-
tion in accordance with the group’s and the particle’s best
positions [54]. The fundamental algorithm for PSO involves
a group of “n” particles, where each particle’s position repre-
sents a potential solution in a D-dimensional search space.
The particle’s state is modified by three elements [55]:

(i) Its own inertia.
(ii) Personal most optimal position.
(iii) Swarm’s most optimal position.

In PSO algorithm, the position and speed of the particles
in the swarm change. In accordance with the following equa-
tions (6):

vkþ1
id ¼ wvkid þ c1rk1 pbestkid − xkid

� �þ c2rk2 gbestkid − xkid
� �

;

ð45Þ

xkþ1
id ¼ xkid þ vkþ1

id : ð46Þ

xkid and vkid represents position and velocity of ith particle
(out of n particles) at d-dimension in kth iteration, respectively.

Best position and global best position (i.e., group’s best)
of ith particle (out of n particles) at d-dimension in kth itera-
tion are represented by pbestkid and gbestkid . w represents
inertial weight attached to the particle’s previously attained
position.

c1 and c2 represent acceleration constants.
rk1 and rk2 represent random numbers in the range of

[0, 1].
Figure 2. shows the flowchart of PSO algorithm.

4.2. Genetic Algorithm. The GA is a type of search method
that uses natural selection and genetics as a basis. It was
created by John Holland in the 1970s and involves starting
with a group of solutions, known as a population, repre-
sented by chromosomes. The fitness of each chromosome
is evaluated and the next generation is created based on their
fitness values, with some selected chromosomes mating and
producing offspring through crossover and mutation. The
population size remains the same throughout the process,
and the algorithm continues to repeat until the end condition
is met [56–58].

A GA is a type of search method used in computing to
find approximate or exact solutions to search and optimiza-
tion problems. It is considered a global search heuristic and a
subcategory of EAs. GAs draw inspiration from evolutionary
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biology and use techniques such as inheritance, mutation,
selection, and crossover to find optimal solutions to complex
problems in various fields like biology, engineering, computer
science, and social science. EAs, including GAs, are used to
solve problems that lack a well-defined and efficient solution.
GAs have been applied successfully to solve optimization pro-
blems such as scheduling and shortest path, and to model
systems with random elements like the stock market [56].

The GA methodology is comprised of four main parts,
namely initialization, selection, reproduction, and termina-
tion. The initial population is formed by generating a large
number of individual solutions at random during the initiali-
zation phase. The size of the population depends on the
nature of the problem. Solutions may also be placed in areas
where optimal solutions are likely to exist [56].

During the selection phase, a portion of the existing
population is chosen to breed the next generation. Individual
solutions are selected based on fitness, where solutions with a
higher fitness value are more likely to be chosen. There are
various selection methods that may be used to determine the
fitness of each solution or a random sample of the population.
In order to maintain population diversity and prevent prema-
ture convergence, stochastic functions select a small number of
less fitting solutions. Roulette wheel selection and tournament
selection are two well-known selection methods. As a method
of selection, roulette wheel selection is used in this paper [56].

In the reproduction phase, a second generation popula-
tion of solutions is generated using genetic operators such as
crossover and mutation. For each new solution, a pair of
parent solutions is chosen from the previously selected
pool. Crossover functions on part portion of genes from
parent chromosomes which results in creation of a new off-
spring. The purpose of mutation is to prevent all solutions in
a population from falling into a local optimum of the solved
problem. Offspring results from crossover randomly changes
by mutation operation. By creating a child solution using
crossover and mutation methods, a new solution is produced
that shares many characteristics of its parents. This process
continues until a new population of appropriate size is cre-
ated [56, 59, 60].

The termination phase involves repeating the genera-
tional process until a termination condition is met. In this
paper, maximum number of iterations is used as termination
condition. This results in a new population of chromosomes
that is different from the initial population, with an increase
in average fitness due to the selection of the best solutions
from the previous generation along with some less fit solu-
tions to maintain diversity [56].

Algorithm 1 shows the pseudocode of GA [61].

4.3. Parameters. Algorithm parameters for each PSO and GA
are as follows in Tables 2 and 3.

The problem parameters of this research are set based on
the articles and sources available in this field and based on
random experiments. They are shown in Table 4.

Start

Initialization
Random values are assigned to the position and

velocity of each particle.

Fitness Evaluation
Using a fitness function, each particle’s fitness is

determined.

Compare and Update
By comparing the fitness of the particles, PBEST, 

and GBEST values are updated.

Is iteration equal to the maximum
number of iterations?

Yes Stop

No

Update Velocity and Position
Update rule (1 – 2) used to update velocity and

position of each particle.

FIGURE 2: Flowchart of PSO [52].

Input:
Population size (n)

Maximum number of iterations (MAX)

Output:
Global best solution, Ybt

Begin
# Create an initial population of n chromosomes Yi (i =

1, 2,…, n)

For i = 1 to n

Yi = generate_chromosome()

compute_fitness(Yi)

Set iteration counter t= 0

While (t <MAX)
A selection of two chromosomes is made from the

initial population based on fitness

Apply crossover operation on selected pair with cross-
over probability

Apply mutation on the offspring with mutation
probability

Replace old population with new offspring

Increase the current iteration t by one.

end while
return the best solution found, Ybt

end

ALGORITHM 1: Genetic Algorithm (GA).
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5. Solving the Proposed Model in Small-Scale
Problems Using Gams Software, GA, and
PSO Algorithms

In this section, three small-scale case studies are analyzed
utilizing CPLEX solver (branch and bound algorithm) in
GAMS software, GA, and PSO to assess their performance

in solving the problem. The results of these case studies
are presented in tabular form and compared in terms
of the objective function values obtained by each method.
This comparison allows for a comprehensive evaluation
of the efficiency and effectiveness of CPLEX solver in
GAMS, GA, and PSO in addressing the problem under
consideration.

TABLE 3: Parameters considered in the PSO algorithms.

PSO

Maximum number of iterations MaxIt 100
Population size (swarm size) nPop 120
Inertia Weight w 0, 3
Interia weight damping ratio wdamp 0, 99
Personal learning coefficient c1 2, 5
Global learning coefficient c2 0, 7

TABLE 2: Parameters considered in the GA algorithms.

GA

Maximum number of iterations MaxIt 100
Population size nPop 100
Crossover size pc 0, 9
Number of offspring (parents) nc 2∗round (pc∗nPop/2)
Mutation percentage pm 0, 1
Number of mutants nm Round (pm∗nPop)

TABLE 4: Problem parameters.

Parameters Unit Parameter distribution

Coverage radius of collection centers km1 U (15, 80)
Distance between collection points and pharmacies or hospitals km U (1, 20)
Distance between a pharmacy or hospital and another pharmacy or hospital km U (0.1, 2)
A vast number 100,000
The capacity of disposal and recycling centers kg2 U (20, 60)
Percentage of pharmaceutical waste that is disposed U (0.5, 1)
Number of vehicles used for the collection of pharmaceutical waste Round (U (1, 4))
Number of vehicles used for disposing of pharmaceutical waste Round (U (1, 4))
Cost of disposing and recycling Mt3 U (0.0001, 0.0004)
The variable cost of the vehicle per unit of distance in a tour between collection centers and
pharmacies, and hospitals

Mt U (0.01, 0.02)

Fixed cost of transportation in a tour between collection centers and pharmacies, and hospitals Mt U (7, 18)
The demand for pharmacies and hospitals kg Round (U (30, 60))
The capacity of vehicle k kg U (100, 150)
The capacity of collection centers kg U (200, 300)
Capacity of distributors kg U (200, 400)
Cost of construction of collection points Mt U (100, 300)
Cost per unit of carbon dioxide consumption Mt U (3, 7)
Amount of carbon dioxide that vehicles consume in the tour between collection centers and
pharmacies, and hospitals per unit distance and each unit of weight

kg U (0.2, 1)

Amount of carbon dioxide that vehicles consume in the tour between collection centers and
recycling and disposal centers, and airports per unit distance and each unit of weight

kg U (0.1, 0.99)

Distance between collection points and disposal and recycling points km U (30, 100)
Distance between disposal and recycling centers km U (30, 100)
The variable cost of the vehicle per unit of distance in a tour between collection centers and
recycling and disposal centers

Mt U (0.1, 0.4)

Fixed cost of transportation in a tour between collection centers and recovery centers Mt U (10, 30)
Distance between airport f and collection center r km U (200, 245)
Transportation cost between collection points and airports Mt U (20, 30)

Existing amount of pharmaceutical waste in pharmacies and hospitals kg

demi= (l, m, u)
l∼U (1, 2)
m∼U (3, 4)
u∼U (5, 7)

1Kilometer, 2Kilogram, 3Million toman (currency of Iran).
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For example, in the first small-scale problem, the issue is
implemented for two distributors, two collection centers,
three pharmacies and hospitals, three places for disposal
and recycling, and two airports. Figure 3 is the schematic
of the first example.

According to the example schematic, despite two candi-
date locations for the collection center, only one collection
center has been constructed due to its economic examina-
tion. Moreover, only one distributor was sufficient to deliver
the medicines to three points of hospitals and pharmacies,
and there was no need to use a second distributor. We con-
sidered three recycling and disposal centers in this model,
but two were chosen. Moreover, reusable medicines were
sent to only one airport. The result of the first small-scale
problem and the two others are mentioned in Tables 5 and 6.

The second example has implemented the issue for two
distributors, two collection sites, four pharmacies and hospi-
tals, four places for disposal and recycling, and two airports.
The third example has implemented the issue for three dis-
tributors, two collection sites, four pharmacies and hospitals,
four places for disposal and recycling, and four airports.
Table 7 exhibits the outcomes derived from the application
of GAMS, GA, and PSO in the aforementioned examples.
The deviation between the exact solution obtained from
GAMS and the solutions derived from the metaheuristic
approaches, namely PSO and GA, is below 7%. This indicates
that the metaheuristic algorithms have produced satisfactory
results.

6. Sensitivity Analysis

To further understand the performance of the proposed
model, a sensitivity analysis of the parameters affecting the

cost has been performed, and the changes of the objective
function based on the changes of the mentioned parameters
in the model are investigated based on the information of the
fourth example. The results are shown in Table 7.

In order to perform the sensitivity analysis, because the
capacity of disposal centers is one of the factors determining
whether the model can be done or not, as a result, we analyze
the model by changing the parameters of node a1 capAa1 .
When we increase it, due to the rise in the capacity of the
disposal center and the lower cost of disposing of that center
compared with the costs of other centers, the model tries to
allocate more waste to this center (taking into account other
costs). Therefore, this increase leads to a decrease in other
costs like transportation and environmental costs. Finally,
the whole objective function will be dropped when other
costs decrease. Table 8 demonstrates the changes in objective
function based on the changes in the capacity of the disposal
center.

The cost crf r1f will play a significant role in the model
due to the influence of allocating the hospital location to the
desired depot for sending medicines to airports (developing
countries). As a result, with the increase in the cost of the
first depot, the allocation of hospitals to those depots
decreases until a balance between the increase of this cost
and other costs according to the objective through the num-
ber and diversity in the allocation of different hospitals,
leading to a reduction in the cost of transferring from the
depot to the airport location (developing countries). More-
over, reducing the total cost, on the other hand, reducing
this cost (crf r1f ) will lead to the allocation and diversity of
more hospitals to this depot to reduce the total costs of the
target functions.

1

1

2

1

1

2

2

3

32

1

2

Distributor

Hospital and pharmacy

Collection center

Disposal and recycle center

Airport

Allocation of distributors to the hospitals and pharmacies

Route of movement in the tour between the collection center
and hospitals and pharmacies

Route of movement in the tour between the collection center
and disposal and recycle centers

Allocation of collection centers to the hospitals and
phamacies

FIGURE 3: The network for the first example.
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TABLE 5: The result of implementing the model for the first example in GAMS, GA, and PSO.

First example

Algorithm Vehicle Routes Distributor
Pharmacy and

hospital Collection
center

Airport Solving
duration

Result of
objective
functionp1 p2 f1 f2

GAMS

The route between
collection centers
and hospitals and
pharmacies

k1 r1 p2 r1

m1 20 15

r1 0 4.5

1.042 s 55,395.48

k2 r2 p1 r2

The route between
collection centers
and recycling and
disposal points

l1 r1 a1 r1

r2 4 0
l2 r2 a2 r2

GA

The route between
collection centers
and hospitals and
pharmacies

k1 r2 p1 p2 r2 m1 3.4057 15

r2 7.2894 6.9993 8.542 s 55,589.67
The route between
collection centers
and recycling and
disposal points

l2 r2 a1 r2 m2 16.5943 0

PSO

The route between
collection centers
and hospitals and
pharmacies

k1 r2 p1 p2 r2 m1 9.9922 9.9922

r2 0.0014 6.9986 9.8137 s 55,591.45
The route between
collection centers
and recycling and
disposal points

l2 r2 a1 r2 m2 10.0574 5.0078

TABLE 6: The result of implementing the model for the second example.

GAMS GA PSO

Example Objective function Solving duration Objective function Solving duration Objective function Solving duration

2 104,907.8 1.49 s 110,807 8.9385 s 111,492.2 10.2819 s
3 187,743.1 3.35 s 183,344.7 8.9082 s 185,460.2 10.4789 s

TABLE 7: Sensitivity analysis for the capacity parameter of node a1.

Parameter
Changes in the capacity of the

disposing center
Disposal cost in a1 Objective function

capAa1

+50% 8,121.353 158,710
+20% 6,497.083 163,890
0 5,414.236 168,630

−20% 4,331.389 170,750
−35% 3,519.253 171,600

TABLE 8: Sensitivity analysis for the transportation cost parameter between the collection center and the airport.

Parameter
Changes in the cost of

transportation from the first
depo to the airport

Allocated amount from hospital to the
first depo

Objective function related to the cost
of the transportation from the first depo

to the airport

Objective
function

crf r1f

+50% 1 97,178.142 180,070
+20% 1 90,531.739 173,420
0 2 89,386.585 168,630

−20% 2 83,478.671 162,730
−35% 2 70,956.823 150,050
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7. Solving Medium- and Large-Scale Problems
Using GA and PSO

Table 9 shows the amount of each set considered for the
examples that need to be implemented in the metaheuristic
algorithms.

In Table 10, there is the information that is extracted
from the implementation of the meta-heuristic algorithms
for examples 4–8.

8. Managerial Insights

Managers’ viewpoints in each field are one of the main fac-
tors in the success of a system. In a system like the PSC,
where the cost of production is high, and waste is hazardous,
reducing the waste and improving the chain’s productivity
are considered the management focus. In this article, we
create a model which ensures that medicines are used unless
they do not have an expiration date; this approach not only
decreases the waste but also lowers the demand for medi-
cines and thus helps the drug industry to produce less. This
model also guarantees that the wastes are appropriately trea-
ted (recycled or disposed of). This article also allows man-
agers to pay less tax than regular tax. In some countries,
when a company does some charity activity, the government
offers them discounts on their taxes. With this model, drugs
with an expiration date will be sent to the airports to transfer
to developing countries whose people cannot afford to buy
medicines. With this action, the level of health in developing
countries will be increased, influencing the whole world’s
health. As a result, this article aids managers in improving
their performance.

9. Conclusion

Environmental and economic issues are among the most
critical concerns in modern society. Numerous reputable
companies worldwide strive to improve their ecological
image in addition to enhancing the quality of their products
and services. The current study addresses the issue of phar-
maceutical waste management and the reduction of carbon
dioxide emissions by finding the optimal location for estab-
lishing collection centers and identifying optimal routes. The
proposed approach aims to contribute to the environmental
image of the implementing company while also reducing
costs incurred throughout the chain. The present study tries
to simulate and optimize a multilevel PSC with the aim of
minimizing various expenses of the entire chain associated
with transportation, construction, and allocation by develop-
ing a mathematical model for small- and large-scale scenar-
ios. Metaheuristic algorithms such as GA and PSO have been
applied to this problem to identify the optimal locations for
collection centers and routes for vehicle transportation
between collection centers, hospitals, pharmacies, and dis-
posal/recycling centers. Additionally, the study seeks to
determine the appropriate allocation of medicines from dis-
tributors to pharmacies or hospitals, as well as the allocation
of reusable drugs from collection centers to airports. The
study finds that the GA algorithm generally outperforms
the PSO algorithm regarding both computational efficiency
and solution quality. In this study, the GA and PSO algo-
rithms were found to produce high-quality solutions in a
short amount of time. These algorithms produced results
close to those of the exact solution algorithm, particularly
in small-scale problems.

TABLE 9: The number of sets considered in medium and large examples.

Example
Sets

|P| |A| |F| |M| |R|

4 5 4 3 3 3
5 6 5 3 4 4
6 7 6 4 5 5
7 8 8 5 6 6
8 10 10 6 6 6

TABLE 10: The result obtained from the execution of algorithms for problems with large examples.

Example
GA PSO

Objective function Solving duration Objective function Solving duration

4 168,861.4272 18.7259 169,246.001 23.3391
5 173,631.1846 18.7671 180,015.735 22.5382
6 214,571.382 22.4777 238,912.132 31.0459
7 355,649.5141 24.3952 371,432.312 31.1444
8 583,891.7895 25.9036 547,771.199 33.1042
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Advanced optimization algorithms have proven highly
effective in solving complex problems in various domains,
including online learning, scheduling, multiobjective optimi-
zation, transportation, medicine, data classification, and
more. These algorithms are designed to find the optimal solu-
tion among a large number of possible solutions, often in a
highly constrained environment. Their ability to handle com-
plex decision-making problems with many variables and con-
straints has made them highly popular in many applications.
In recent years, there has been growing interest in applying
optimization algorithms to address complex optimization
problems.

One of these types of algorithms is the metaheuristic algo-
rithm. In the realm of optimization problems with high-
dimensional search spaces, exact optimization algorithms
may not be a viable solution. This is because the search space
exponentially increases with problem size, and exhaustive
search is impractical. Furthermore, classical approximate opti-
mization methods, such as greedy-based algorithms, may
require certain assumptions that are difficult to validate for
each problem. As a result, metaheuristic algorithms have
gained prominence in solving optimization problems due to
their ability to search through vast candidate solution spaces
without requiring many assumptions about the problem.
Population-based metaheuristic algorithms, in particular, are
ideal for global searches as they possess both global exploration
and local exploitation capabilities [62]. These algorithms are
capable of handling complex optimization problems with mul-
tiple objectives and constraints. They work by iteratively
exploring the search space and identifying candidate solutions
that are improved upon in each iteration until a satisfactory
solution is found. These algorithms are capable of finding opti-
mal or near-optimal solutions, which are essential for decision-
makers in location–allocation, routing, and scheduling pro-
blems because these problems are often complex, with various
multiobjective and single-objective structures. Therefore, find-
ing the exact optimal solution using exact algorithms can be
time-consuming. In recent years, various advanced optimiza-
tion algorithms based on heuristic and exact methods have
been proposed, withmany achieving impressive results, includ-
ing but not limited to simulated annealing, GA, PSO, ant col-
ony optimization, artificial bee colony algorithm, harmony
search algorithm, and many others [63–69]. Besides, several
recent studies have explored the combination of exact and
heuristic algorithms in order to achieve an acceptable result
in terms of both time efficiency and a good solution, such as
hybridizing GAs with branch and bound techniques, branch
and bound-PSO hybrid algorithms [63, 64].

Therefore, future research could explore more complex and
advanced optimization algorithms methods to improve upon
the results of the present study. For example, Dulebenets [65]
proposes a new algorithm called adaptive polyploid memetic
algorithm for scheduling cross-docking terminal trucks. It relies
on the polyploidy concept to store copies of parent chromo-
somes for crossover operations. The algorithm uses problem-
specific hybridization techniques to improve solution quality
and outperforms state-of-the-art metaheuristics. To solve pro-
blems of spatially constrained berth scheduling, Kavoosi et al.

[66] proposes an island-based metaheuristic algorithm
(UIMA). The UIMA population is divided into four subpopu-
lations, with four different population-based metaheuristics,
including EA, PSO, estimation of distribution algorithm, and
differential evolution, used to search each island. Various opera-
tors are incorporated into the metaheuristics, which aid in the
discovery of better results.Moreover, in paper [68] a novel EA is
created to solve amathematical model using an augmented self-
adaptive parameter control strategy. The algorithm’s parame-
ters are adjusted throughout the search process. It is compared
with nine other meta-heuristic algorithms that are commonly
used for berth scheduling in marine container terminal
operations.

In terms of problem structure and attributes, future
research could consider incorporating pharmaceutical waste
uncertainty into the model to enhance its applicability to
real-world problems. Additionally, different types of VRPs,
such as VRPs with a time window and long-distance ps,
could be explored. Adopting different vehicle types based
on the capacity of each collection point can also help reduce
costs. Overall, the study offers insights into optimizing phar-
maceutical waste management and can help organizations
make informed environmental and economic sustainability
decisions.

Consequently, this paper can benefit companies operat-
ing in this field, as well as the government, from both eco-
nomic and environmental perspectives.
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