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Tis paper presents the study of time-fractional nonlinear ffth-order Korteweg–de Vries equations by utilizing an adequate novel
technique, namely, the q-homotopy analysis transform method. Te ffth-order Korteweg–de Vries equation has got its im-
portance in the study of magneto-sound propagation in plasma, capillary gravity water waves, and the motion of long waves under
the infuence of gravity in shallow water. To justify the efectiveness and pertinence of the contemplated technique, we take a look
at three examples of the time-fractional ffth-order Korteweg–de Vries equations. Te q-homotopy analysis transform method
ofers us to modulate the range of convergence of the series solution using Z, called the auxiliary parameter or convergence control
parameter.Te study of the fractional behaviour of the considered equations expresses the originality of the presented work.Tere
is a visible variation in the obtained solutions for diferent fractional orders and which can lead to diferent consequences for
future work. As a future research direction, readers can use the hybrid methodologies merging with our projected scheme to
achieve better consequences. Additionally, to validate the precision and reliability of the proposed method, we organized suitable
numerical simulations. Te obtained fndings show that the proposed method is very gratifying and examines the complex
nonlinear challenges that arise in science and innovation.

1. Introduction

As we can diferentiate or integrate a function one time, two
times, or any whole number of times, diferentiation and
integration both are treated as discrete mathematical op-
erations. However, fractional order derivatives have ade-
quate potential to tackle out most complex systems. Te
history of derivatives of fractional order was going back to
the times of Leibnitz and L’Hospital. Te concept of frac-
tional calculus (FC) in the feld of mathematical analysis is
mainly focused on the scrutiny and application of integrals
and derivatives of noninteger order. Indeed, this concept
provides us with a great degree of freedom in solving various

types of equations (diferential, integral, and integrodifer-
ential), problems under mathematical physics involving
some special functions and their generalizations, and ex-
tensions in one or more variables. Fractional calculus helps
us to explain the naturalism of the universe in a brilliant and
symmetric manner in the classical calculus. Tis is due to its
ability to interpret the paradoxical attitude and memory
efects that occur in nonlinear phenomena. Te mathe-
matical foundation for the concept of fractional order de-
rivatives was excellently carried out with the eforts of
pioneers such as Reimann [1], Podlubany [2], Liouville [3],
Miller and Ross [4], Caputo [5], and many others. Te
speculation of fractional partial diferential equations
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captured consciousness, popularity, and importance by
many mathematical minds during the past forty years and
longer as the best way to make discoveries in science and
engineering, particularly in chaos theory [6], human diseases
[7, 8], fuid dynamics [9, 10], nanotechnology [11], fnancial
models [12], biomathematics [13], and many others. To
describe the tendency of nonlinear problems that exist in
day-to-day life, the solutions of fractional diferential
equations play an essential role.

In physics, plasma is usually considered a distinct phase
of matter and does not have a defnite shape or volume. Te
plasma responds strongly to electromagnetic felds because
the free electric charges make the plasma electrically con-
ductive. Tus, making its properties dominated by electric
and/or magnetic forces. Te most signifcant pragmatic uses
of plasmas lie in the feld of intensity creation. Utilizing heat
sources to convert water to steam, which powers turbo
generators, has been a key approach for generating electric
power. Tese heat sources depend on igniting petroleum
derivatives such as oil, coal, and gaseous gasoline. In plasma,
diferent types of acoustic waves will propagate and they are
important for the heating mechanism. Compressible un-
settling infuences spread in plasma as magneto-acoustic
waves driven by both gas pressure and attractive power. In
part, ionized plasmas, the elements of ionized and unbiased
species, are coupled because of particle nonpartisan impacts.
As an outcome, the magneto-acoustic wave carries on as
particle acoustic waves and Alfvén waves in the scope of the
low magnetic feld and low temperature, respectively. Te
magneto-acoustic waves have an important role in solar
corona heating [10, 14].

Te phenomenon of nonlinear equations describes the
fundamental physical aspects in nature ranging from chaotic
behaviour in biological systems [15], plasma physics-plasma
containment in stellarators, and tokamaks to energy gen-
eration [16, 17], quantum mechanics [18], nonlinear optics
[19], solid-state physics and up to fbre optical communi-
cation devices [20], dual wave soliton solution [21], unidi-
rectional shallow water waves [22], analytical wave solutions
[23], unmagnetized dust plasma [24], optimal solitons for
the nonlinear dynamics [25], and so on [26–28]. Te various
phenomena of nonlinear equations are modelled in terms of
many orders of nonlinear partial diferential equations
(29)–(31). Partial diferential equations are largely utilised to
represent physical systems, but unfortunately, many of them
don’t have the exact solution. Moreover, the accurate so-
lution to this nonlinear phenomenon is not available in the
literature and hence to solve these nonlinear systems, there is
an essence of studying the nonlinear phenomena with ap-
propriate and more efcient methods.

In 1895, two Dutch scientists, Korteweg and de Vries
derived a celebrated generic model equipped with the
nonlinear dispersive partial diferential equation to study the
motion of long waves with a smaller amplitude under the
infuence of gravity in shallow water, called Korteweg–de
Vries (KdV) equation [32, 33]. Rayleigh’s method of 1876
was elongated by Korteweg and de Vries to include the efect
of capillarity, oscillatory waves, the study of higher-order

terms present in the Lagrange–Rayleigh expansion, and long
waves of evolving shape.

Since the solution of the KdV equation can be explained
exactly and precisely, it is predominantly distinguished as
the archetypal illustration of an exactly solvable model
[32, 34]. Te KdV equation amalgamates dispersion and
nonlinearity and provides stationary solutions tracing both
periodic and solitary waves. Tis equation can be recast as
follows:

ut + cux + αuux + βuxxx � 0, (1)

where c, α, and β are nonzero real parameters and u �

u(x, t) is an unknown smooth function. Equation (1) rep-
resents a model for the interpretation of long waves which
are weakly nonlinear with small dispersion in media. Here, if
parameter c is zero, then the above equation includes a well-
known evolution equation and the term ut depicts the time
evolution of the wave with the linear propagation in one
direction. Te nonlinear term ux + αuux deals for tilting of
the wave, and the linear dispersive term uxxx reports
spreading of the wave. Subsequently, various kinds of KdV
equations possess many remarkable properties and are being
considered as a model to explain the wide range of physical
phenomena which exist in the connected branches of
mathematics and physics.

Te ffth-order KdV equations are employed to inves-
tigate the numerous nonlinear dispersive phenomena in
plasma waves when the third-order contributions are small.
It has substantial usage in wave propagation [13] and can
describe the real features in nonlinear optics and quantum
physics. Te general form of the ffth-order KdV equation is
as follows:

ut � uxxxxx + f x; t; ux; uxx; uxxx( . (2)

Tere are various analytical and numerical methods
available for handling various forms of ffth-order KdV-type
equations in the literature. Some of them are the Adomian
decomposition technique [35], modifed Adomian decom-
positionmethod [36], Laplace decomposition approach [37],
diferential transform technique [38, 39], Hirota’s bilinear
techniques [40], inverse scattering algorithm [41], He’s semi-
inverse scheme [42], extended Tanh method [43], homotopy
analysis technique [14, 44], fractional homotopy analysis
transform algorithm [45], modifed homotopy perturbation
technique [46], variational iteration technique [47],
homotopy perturbation method [48, 49], homotopy per-
turbation transform method [50], hyperbolic and expo-
nential ansatz methods [51], multiple exp-function method
[52], and others [53–55]. Moreover, many methods are
available to solve the fractional-order KdV equations. In the
present investigation, we consider the time-fractional ffth-
order KdV equations with initial conditions as follows [56]:

D
α
t u(x, t) + ux + u

2
uxx + uxuxx − 20u

2
uxxx + uxxxxx � 0,

(3)

with the initial condition u(x, 0) � 1/x.
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D
α
t u(x, t) + uux − uuxxx + uxxxxx � 0, (4)

with initial conditions u(x, 0) � ex.

D
α
t u(x, t) + uux + uxxx − uxxxxx � 0, (5)

with initial conditions u(x, 0) � 105/169sech4 (x − k/
2

��
13

√
).

Here, equations (3) and (4) are called ffth-order KdV
equations and equation (5) is called the Kawahara equation.

KdV equations (3) and (4) are crucial for explaining how
long waves move in shallow water when there is gravity. In
order to study the propagation of oscillatory solitary waves
in a dispersive medium, Kuwahara frst applied Kawahara
equation (5) in 1972 [57]. Te above equations describe the
interaction between nonlinearity and dispersion in the
theoretically simplest terms possible. Te higher-order
nonlinear factors that are present in the equations under
consideration express higher amplitude internal waves.

Now, the solutions for the abovementioned equations
have been investigated by employing a new computational
technique, known as the q-homotopy analysis transform
method (or briefy, q-HATM).Te considered technique is a
graceful unifcation of the Laplace transform and homotopy
algorithm [58]. Here, it is mentioned that Liao is the frst
person who introduced the concept of the homotopy
analysis method [59, 60], which is an excellent analytical tool
in order to get the solution of highly nonlinear problems that
have physical parameters with small/large scale or not. Te
proposed technique gives a great degree of freedom in
picking initial approximations and auxiliary linear opera-
tors; as a result, the complexity of the problem can be re-
duced by transforming it into an infnitely countable
number of easier, linear subproblems, helping in reducing

the time of computational work. Tis method is an efcient
delegacy to fnd numerical solutions to an enormous kind of
physical problems existing in various felds of science, f-
nancial modelling, and engineering [61–64] and the refer-
ences therein.

Te article’s remaining portion is decorated as follows.
Te fundamental and standard defnitions of the fractional
derivatives, table of nomenclature, and also, the basic idea of
Laplace transform of Caputo fractional derivative are pre-
sented in Section 2. Te methodology of the considered
analytical technique for nonlinear fractional partial difer-
ential equations can be seen in Section 3.Te investigation of
the considered problem along with the incorporation of
their graphical results using the projected technique is
shown in Section 4. Section 5 cites the description of the
obtained results. Section 6 is decorated with the concluding
remarks followed by the references.

2. Preliminaries

Te fundamental formulations of fractional calculus and the
Laplace transform, which are relevant in the current context,
are provided in this portion of the article.

Defnition 1. Te fractional Riemann–Liouville integral of a
function f(t) ∈ Cμ(μ≥ − 1) is presented [2, 64] by the
following formula:

J
α
f(t) �

1
Γ(α)


t

0
(t − ϑ)

α− 1
f(ϑ)dϑ. (6)

Defnition 2. Te derivative of fractional order α of f ∈ Cn
− 1

in the Liouville–Caputo sense is defned [5, 6] as follows:

D
α
t f(t) �

d
n
f(t)

dt
n , α � n ∈ N,

1
Γ(n − α)


t

0
(t − ϑ)

n− α− 1
f

(n)
(ϑ)dϑ, n − 1< α< n, n ∈ N.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(7)

Defnition 3. Te Laplace transform (LT) of a Caputo
fractional derivative Dα

t f(t) is represented [6] as follows:

L D
α
t f(t)  � s

α
F(s) − 

n− 1

r�0
s
α− r− 1

f
(r) 0+

( , (n − 1< α≤ n), (8)

where F(s) is the representation of L[f(t)].

3. The Basic Concept of the Q-HATM to Solve
Nonlinear Fractional Partial Differential
Equation (NFPDE)

To demonstrate the reliability of the considered technique,
we will consider the NFPDE with the initial conditions as
follows:

D
α
t u(x, t) + Ru(x, t) + Nu(x, t) � f(x, t), n − 1< α≤ n,

(9)

where Dα
t u(x, t) symbolize noninteger order derivative of

u(x, t) in the Liouville–Caputo sense, f(x, t) cites the source
term, linear and nonlinear diferential operators are rep-
resented by R and N,respectively.

Currently, putting the LT to equation (9) using Def-
nition 3 leads to the following equation:

s
α
L[u(x, t)] − 

n− 1

k�0
s
α− k− 1

u
(k)

(x, 0) + L[Ru(x, t)]

+ L[Nu(x, t)] � L[f(x, t)].

(10)
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By simplifying equation (10), we have the following
equation:

L[u(x, t)] −
1
s
α 

n− 1

k�0
s
α− k− 1

u
k
(x, 0) +

1
s
α (L[Ru(x, t)]

+ L[Nu(x, t)] − L[f(x, t)]) � 0,

(11)

where the nonlinear operatorN is defned in complying with
HAM lead to the following equation:

N[φ(x, t; q)] � L[φ(x, t; q)] −
1
s
α 

n− 1

k�0
s
α− k− 1φ(k)

(x, t; q) 0+
(  +

1
s
α L[Rφ(x, t; q)] + L[Nφ(x, t; q)] − L[f(x, t)] , (12)

where φ(x, t; q) is a real function of x, t and q and
q ∈ [0, 1/n].

Te zeroth order deformation equation involving the
auxiliary function H(x, t) is as follows:

(1 − nq)L φ(x, t; q) − u0(x, t)  � ZqH(x, t)N[φ(x, t; q)],

(13)

where Z≠ 0 is the convergence control parameter, L sym-
bolizes the Laplace transform, q ∈ [0, 1/n](n≥ 1) is the
embedding parameter, u0(x, t) is an initial guess of u(x, t),
φ(x, t; q) is an unknown function. Te following equations
justify for q � 0 and q � 1/n:

φ(x, t; 0) � u0(x, t),φ x, t;
1
n

  � u(x, t), (14)

respectively. As we move q from 0 to 1/n, the solution
φ(x, t; q) converges from u0(x, t) to the solution u(x, t).
After operating, the Taylor theorem for the function
φ(x, t; q) around q leads to the following equation:

φ(x, t; q) � u0(x, t) + 
∞

m�1
um(x, t)q

m
, (15)

where

um(x, t) �
1

m!

z
mφ(x, t; q)

zq
m |q�0. (16)

On choosing the appropriate auxiliary parameter Z, the
initial guess u0(x, t), and H(x, t), the auxiliary linear op-
erator, series (15) converges at q � 1/n, which leads to one of
the solutions of the original nonlinear equation as follows:

u(x, t) � u0(x, t) + 
∝

m�1
um(x, t)

1
n

 
m

. (17)

Next, the mth order deformation equation obtained by
diferentiating the zeroth order deformation equation
m-times followed by dividing the resulting equation by m! at
q � 0 leads to the following equation:

L um(x, t) − Kmum− 1(x, t)  � ZH(x, t)Rm u
→

m− 1( , (18)

and the vector u
→

m is demarcated as follows:

u
→

m � u0(x, t), u1(x, t), · · · , um(x, t) . (19)

Te following recursive is obtained by hiring the inverse
Laplace transform to equation (18) as follows:

um(x, t) � Kmum− 1(x, t) + ZL
− 1

H(x, t)Rm u
→

m− 1(  ,

(20)

where

Rm u
→

m− 1(  �
1

(m − 1)!

z
m− 1

N[φ(x, t; q)]

zq
m− 1 |q�0. (21)

Km �
0, m≤ 1,

n, m> 1.
 (22)

Lastly, the terms of the q-HATM series solution are
attained by evaluating equation (20).

4. Application of the Considered Scheme to
Solve the Nonlinear Time-Fractional Fifth-
Order KdV Equation

Te investigation of the following examples witnesses the
efcacy and resolution of the contemplated scheme.

Example 1. Te ffth-order time-fractional KdV equation
defned in equation (3) is as follows:

D
α
t u(x, t) + ux + u

2
uxx + uxuxx − 20u

2
uxxx + uxxxxx � 0,

(23)

with the initial condition

u(x, 0) �
1
x

. (24)

We introduced LT in equation (23) along with the
starting solution in equation (24), which leads to the fol-
lowing equation:
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L[u(x, t)] −
1
s

1
x

  +
1
s
α L

zu

zx
+ u

2z
2
u

zx
2 +

zu

zx

z
2
u

zx
2 − 20u

2z
3
u

zx
3 +

z
5
u

zx
5  � 0. (25)

Te nonlinear operator N is defned as follows:

N[φ(x, t; q)] � L[φ(x, t; q)] −
1
s

1
x

 

+
1
s
α L

zφ(x, t; q)

zx
+ φ2

(x, t; q)
z
2φ(x, t; q)

zx
2 +

zφ(x, t; q)

zx

z
2φ(x, t; q)

zx
2 − 20φ2

(x, t; q)
z
3φ(x, t; q)

zx
3 +

z
5φ(x, t; q)

zx
5 .

(26)

Te mth order deformation equation is as follows:

L um(x, t) − Kmum− 1(x, t)  � ZRm u
→

m− 1 , (27)

where

Rm u
→

m− 1  � L[u(x, t)] − 1 −
Km

n
 

1
s

1
x

 

+
1
s
α L

zum− 1

zx
+ 

i

j�0


m− 1

i�0
ujui− j

z
2
um− 1− i

zx
2 + 

m− 1

i�0

zui

zx

z
2
um− 1− i

zx
2 − 20

i

j�0


m− 1

i�0
ujui− j

z
3
um− 1− i

zx
3 +

z
5
um− 1

zx
5

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(28)

On implementing inverse LT with equation (27), we get
the following equation:

um(x, t) � Kmum− 1(x, t) + ZL
− 1

Rm u
→

m− 1  . (29)

Solving the above equations consistently gives the fol-
lowing equation:

u0(x, t) �
1
x

,

u1(x, t) �
Zt

α

Γ[α + 1]
−
1
x
2 ,

u2(x, t) �
(n + Z)Zt

α

Γ[α + 1]
−
1
x
2  +

2t
2α

Z
2

x
3Γ[2α + 1]

,

u3(x, t) �
(n + Z)

2
Zt

α

Γ[α + 1]
−
1
x
2  +

2(n + Z)t
2α

Z
2

x
3Γ[2α + 1]

−
2t

3α
Z
3 1080 + 2x + 3x

4
 Γ[1 + α]

2
− (540 + x)Γ[2α + 1] 

x
8Γ[α + 1]

2Γ[3α + 1]
,

⋮

(30)

Finally, after getting further iterative terms, the essential
series solution of equation (23) is presented by the following
equation:

u(x, t) � u0(x, t) + 
∞

m�1
um(x, t)

1
n

 
m

. (31)

By taking α � 1, Z � − 1, and n � 1, then the obtained
solution 

N
m�1um(x, t)(1/n)m converges to the exact solu-

tion u(x, t) � 1/x − t of equation (23), as N⟶∞.

Example 2. Consider the nonlinear time-fractional ffth-
order KdV equation cited in equation (4) as follows:
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D
α
t u(x, t) + uux − uuxxx + uxxxxx � 0, (32)

with initial conditions

u(x, 0) � e
x
. (33)

We introduced LT in equation (32) along with the
starting solution in equation (33), which leads to the fol-
lowing equation:

L[u(x, t)] −
e

x

s
+
1
s
α L u

zu

zx
− u

z
3
u

zx
3 +

z
5
u

zx
5  � 0. (34)

Te nonlinear operator N is defned as follows:

N[φ(x, t; q)] � L[φ(x, t; q)] −
e

x

s
+
1
s
α L φ(x, t; q)

zφ(x, t; q)

zx
− φ(x, t; q)

z
3φ(x, t; q)

zx
3 +

z
5φ(x, t; q)

zx
5 . (35)

Te mth order deformation equation is as follows:

L um(x, t) − Kmum− 1(x, t)  � ZRm u
→

m− 1 , (36)

where

Rm u
→

m− 1  � L[u(x, t)] − 1 −
Km

n
 

e
x

s
  +

1
s
α L 

m− 1

i�0
ui

zum− 1− i

zx
− 

m− 1

i�0
ui

z
3
um− 1− i

zx
3 +

z
5
um− 1

zx
5

⎧⎨

⎩

⎫⎬

⎭. (37)

When treated with inverse LTwith equation (36), we get
the following equation:

um(x, t) � Kmu(x, t) + ZL
− 1

Rm u
→

m− 1  . (38)

Solving the above equations consistently gives the fol-
lowing equation:

u0(x, t) � e
x
,

u1(x, t) �
Zt

α
e

x

Γ[α + 1]
,

u2(x, t) �
(n + Z)Zt

α
e

x

Γ[α + 1]
+

[ee]
x
t
2α

Z
2

Γ[2α + 1]
,

u3(x, t) �
(n + Z)

2
Zt

α
e

x

Γ[α + 1]
+

(n + Z)[ee]
x
t
2α

Z
2

Γ[2α + 1]
+

[ee]
x
t
3α

Z
3

Γ[3α + 1]
,

⋮

(39)

Finally, after getting further iterative terms, the essential
series solution of equation (32) is presented by the following
equation:

u(x, t) � u0(x, t) + 
∞

m�1
um(x, t)

1
n

 
m

. (40)

Taking n � 1, Z � − 1, and α � 1, then the solution which
we obtained is in the form 

N
m�1um(x, t)(1/n)m that con-

verges to the exact solution u(x, t) � ex− t of equation (31),
equation as N⟶∞.

Example 3. We considered the time-fractional ffth-order
KdV equation considered in equation (5) as follows:

D
α
t u(x, t) + uux + uxxx − uxxxxx � 0, (41)

with initial condition

u(x, 0) �
105
169

sech4
x − k

2√13
 . (42)

By performing Laplace transform on equation (41) and
then considering equation (42), we get the following
equation:

6 Mathematical Problems in Engineering



L[u(x, t)] −
1
s

105
169

sech4
x − k

2
��
13

√   +
1
s
α L u

zu

zx
+

z
3
u

zx
3 −

z
5
u

zx
5  � 0. (43)

Te nonlinear operator N is defned as follows:

N[φ(x, t; q)] � L[φ(x, t; q)] −
1
s

105
169

sech4
x − k

2
��
13

√   +
1
s
α L φ(x, t; q)

zφ(x, t; q)

zx
+

z
3φ(x, t; q)

zx
3 −

z
5φ(x, t; q)

zx
5 . (44)

Te mth order deformation equation is as follows:

L um(x, t) − Kmum− 1(x, t)  � ZRm u
→

m− 1 , (45)

where

Rm u
→

m− 1  � L[u(x, t)] − 1 −
Km

n
 

1
s

105
169

sech4
x − k

2
��
13

√   +
1
s
α L 

m− 1

i�0
ui

zum− 1− i

zx
+

z
3
um− 1− i

zx
3 −

z
5
um− 1

zx
5

⎧⎨

⎩

⎫⎬

⎭. (46)

By enforcing the inverse LT with equation (45), we get
the following equation:

um(x, t) � Kmu(x, t) + ZL
− 1

Rm u
→

m− 1  . (47)

Solving the above equations consistently gives the fol-
lowing equation:

u0(x, t) �
105
169

sech4
x − k

2
��
13

√ ,

u1(x, t) � −
7560Zt

α

28561
��
13

√
Γ[α + 1]

sech4
x − k

2
��
13

√ tanh
x − k

2
��
13

√ ,

u2(x, t) � −
(n + Z)7560Zt

α

28561
��
13

√
Γ[α + 1]

sech4
x − k

2
��
13

√ tanh
x − k

2
��
13

√ 

+
136080t

2α
Z
2 sech6 (x − k/2

��
13

√
)

62748517 Γ[1 + 2α]
− 3 + 2 cosh

x − k
��
13

√  ,

u3(x, t) � −
7560(n + Z)

2
Zt

α

28561
��
13

√
Γ[α + 1]

sech4
x − k

2
��
13

√ tanh
x − k

2
��
13

√  +
(n + Z)136080t

2α
Z
2 sech6 (x − k/2

��
13

√
)

62748517 Γ[2α + 1]
− 3 + 2 cosh

x − k
��
13

√  

+
204120t

3α
Z
3

10604499373
��
13

√
Γ[1 + α]

2Γ[1 + 3α]
sech10

x − k

2
��
13

√ tanh
x − k

2
��
13

√ tanh
x − k

2
��
13

√ ×

− 765 + 650 cosh
x − k

��
13

√  + 9 cosh
2(x − k)

��
13

√ Γ[1 + α]
2

− 6 cosh
3(x − k)

��
13

√  Γ[1 + α]
2



+140 3 − 2 cosh
x − k

��
13

√  Γ[1 + 2α],

⋮
(48)
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Finally, after getting further iterative terms, the essential
series solution of equation (41) is presented by the following
equation:

u(x, t) � u0(x, t) + 
∞

m�1
um(x, t)

1
n

 
m

. (49)

If we take Z � − 1, α � 1, and n � 1, then the secured
solution 

N
m�1um(x, t)(1/n)m converges to the exact solution

u(x, t) � 105/169 sech4 (1/2
��
13

√
(x + 36t/169 − k)) of

equation (41) as N⟶∞.

5. Numerical Results and Discussion

Tis portion of the article provides incorporation of nu-
merical simulations of the investigated problem that show
the validity and efectiveness of the considered scheme q-
HATM.Moreover, we incorporated a detailed description of
the graphical solutions that were found. Te secured results
are very satisfying and in good ft with the exact solutions to
the contemplated problem. Te comparison of 3D surface
plots of the obtained approximate solution and the exact
solution along with their absolute error solutions is pre-
sented in Figure 1. We can see the accuracy of the obtained

approximated solution of Example 1 in Figure 1(c) with the
least error values. Te nature of the obtained solutions for
diferent fractional order α as we move along time t is cited
in Figure 2. We can see the variation in the solution afected
by diferent fractional orders. Figure 3 cites the plot of
solution curves for distinct fractional orders, which gives the
precise range of convergence control parameter ℏ to achieve
convergence. Te fgure shows that we can choose ℏ values
between − 1.4 and − 0.4 for the faster convergence of the
approximated solution towards the exact solution. Te
convergence of the obtained solution is achieved by con-
sidering ℏ � − 1 in this work. Table 1 depicts the comparison
of secured results with the homotopy perturbation trans-
formmethod (HPTM) in terms of absolute error values with
ℏ � − 1, n � 1, and α � 1. Te calculations of Table 1 are
carried out by taking x � − 6, 6, and 8 with the time interval
[0, 0.5]. Surface plots of the q-HATM solution, the exact
solution, and the approximated error solution for Example 2
are cited in Figure 4. Te 2D plot of the obtained solution of
Example 2 with respect to time t for diferent fractional order
α is cited in Figure 5. We can observe that the solution curve
leads to diferent consequences for diferent fractional orders
α. Te performance of n with ℏ in an accomplished outcome
of the provided method is shown in Figure 6.Te solution of

1

0

–1

u (x,t)

–10
–5

0
5

10

x

1.0

0.5

0.0

t

(a)

1.0

0.5

0.0

t

1.0
0.5
0.0

–0.5
–1.0

u (x,t)

–10
–5

0
5

10

x

(b)

1.0

0.5

0.0

t
–10

–5
0

5
10

x

1.×10–8

5.×10–9

0
–5.×10–9

u (x,t)

(c)

Figure 1: (a) 3D plot for the q-HATM solution, (b) surface of the exact solution, and (c) approximated solution surface at α � 1, n � 1, and
Z � − 1 for Example 1.
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α = 1
= = 0.75
= = 0.50

0.2 0.4 0.6 1.00.0 0.8
t

0.20

0.21

0.22

0.23

0.24

0.25

0.26

0.27

u 
(x

, t
)

Figure 2: u(x, t) versus t for contemplated Example 1 when Z � − 1, x � 5, and n � 1 for distinct α.

α = 1
= = 0.75
= = 0.50

0.40

0.41

0.42

0.43

0.44

u 
(x
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)
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ћ

(a)

α = 1
= = 0.75
= = 0.50

0.40

0.41

0.42

0.43

0.44

0.45

0.46

0.47
u 

(x
, t

)

–2.5 –2.0 –1.5 –1.0 –0.5 0.0–3.0
ћ

(b)

Figure 3: Z-curve for the acquired solution y(x, t) versus Z for considered Example 1 when (a) n � 1 and (b) n � 2 when t � 0.01, x � 2.5 for
distinct α.

Table 1: Comparison of secured 3rd and 6th-order q-HATM solutions with HPTM [14] in terms of absolute error values for Example 1 at
Z � − 1, α � 1, and n � 1.

x t u
(3)
HPTM(x, t) [14] u

(3)
q− HATM(x, t) u

(6)
HPTM(x, t) [15] u

(6)
q− HATM(x, t)

− 6

0 0 0 0 0
0.1 1.01250 × 10− 8 1.26493 × 10− 8 2.00000 × 10− 12 5.85415 × 10− 14

0.2 1.58853 × 10− 7 1.99124 × 10− 7 8.00000 × 10− 12 7.37493 × 10− 12

0.3 7.88790 × 10− 7 9.92063 × 10− 7 1.0300 × 10− 10 1.24008 × 10− 10

0.4 2.44582 × 10− 6 3.08642 × 10− 6 7.66000 × 10− 10 9.14495 × 10− 10

0.5 5.85975 × 10− 7 7.41928 × 10− 6 3.61500 × 10− 9 4.29356 × 10− 9

6

0 0 0 0 0
0.1 1.43062 × 10− 6 1.30780 × 10− 8 1.41911 × 10− 6 6.05531 × 10− 14

0.2 5.64584 × 10− 6 2.12857 × 10− 7 5.55361 × 10− 6 7.88358 × 10− 12

0.3 1.25341 × 10− 5 1.09649 × 10− 6 1.22222 × 10− 5 1.37061 × 10− 10

0.4 2.19832 × 10− 5 3.52734 × 10− 6 2.12426 × 10− 5 1.04514 × 10− 9

0.5 3.38845 × 10− 5 8.76824 × 10− 6 3.24352 × 10− 5 5.07421 × 10− 9
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Example 2 in terms of an absolute error from 3rd-order to
6th-order approximations is given in Table 2. Tat shows we
can achieve better results by increasing the number of it-
erations. Figures 7(a) and 7(b) explore the 3D surfaces of the
q-HATM solution and the exact solution of Example 3. Te
approximated absolute error solution of Example 3 is cited
in Figure 7(c). Te fractional behaviour of the considered
nonlinear time-fractional ffth-order KdV equation over
time t for distinct fractional order α is plotted in Figure 8. To
attain the precise range of convergence control parameters
to have a faster rate of convergence to the exact solution, we
have plotted Figure 9. Table 3 cites the approximated ab-
solute error values of Example 4.3 for diferent values of x

and t.

Te 3D plots presented in Figures 1, 4, and 7 describe the
wavy nature of the considered nonlinear KdV equations. For
the purpose of accuracy we can consider the plots for the
fractional/classical order α � 1, there we can see the close
association of the q-HATM solution with the exact solution.
Te physical interpretation of the considered fractional
problems is well described by the fractional orders α � 0.75
and α � 0.50 due to their feature of memory efect. From the
2D plots, one can see the considered value for the con-
vergence control parameter ℏ � − 1 works for all the frac-
tional orders.

From all fgures, we can observe that the hired fractional
operator in the considered model exemplifes some inter-
esting consequences and it authorizes the model which
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0.5
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t

(a)

150
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0

u 
(x

, t
)

5
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–5

x
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0.5

1.0

t
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6.×10–9

4.×10–9

2.×10–9

u (x,t)

5

0

0

–5
x

0.0

0.5

1.0

t

(c)

Figure 4: 3D plots of solution surfaces indicating q-HATM solution, the exact solution, and an approximated error solution, respectively
(a–c) at α � 1, n � 1, and Z � − 1 for Example 2.

Table 1: Continued.

x t u
(3)
HPTM(x, t) [14] u

(3)
q− HATM(x, t) u

(6)
HPTM(x, t) [15] u

(6)
q− HATM(x, t)

8

0 0 0 0 0
0.1 3.10937 × 10− 9 3.09039 × 10− 9 1.89934 × 10− 12 6.02791 × 10− 15

0.2 5.00750× 10− 8 5.00801 × 10− 8 4.34135 × 10− 11 7.8252 × 10− 13

0.3 2.56853× 10− 7 2.56823 × 10− 7 4.34570 × 10− 11 1.35434 × 10− 11

0.4 8.22400× 10− 7 8.22368 × 10− 7 1.34375 × 10− 10 1.02796 × 10− 10

0.5 2.03447× 10− 6 2.03451 × 10− 6 4.63377 × 10− 10 4.96705 × 10− 10
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α = 1
= = 0.75
= = 0.50

1.0

1.5

2.0
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, t
)
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Figure 5: u(x, t) versus t for the contemplated Example 2 at Z � − 1, x � 5, and n � 1 for distinct of α.
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Figure 6: Z-curve for acquired solution u(x, t) for Example 2 when (a) n � 1 and (b) n � 2 when x � 1 and t � 0.001 for distinct α.

Table 2: Tis cites the 3rd to 6th-order approximations of the obtained q-HATM series solution for Example 2 at Z � − 1, α � 1, and n � 1.

x t u
(3)
q− HATM(x, t) u

(4)
q− HATM(x, t) u

(5)
q− HATM(x, t) u

(6)
q− HATM(x, t)

− 5

0 0 0 0 0
0.1 2.75225 × 10− 8 5.52269 × 10− 10 9.22623 × 10− 12 1.32034 × 10− 13

0.2 4.31811 × 10− 7 1.73856 × 10− 8 5.82235 × 10− 10 1.66938 × 10− 11

0.3 2.14415 × 10− 6 1.29903 × 10− 7 6.54040 × 10− 9 2.81769 × 10− 10

0.4 6.64842 × 10− 6 5.38726 × 10− 7 3.62459 × 10− 8 2.08553 × 10− 9

0.5 1.59285 × 10− 5 1.61828 × 10− 6 1.36397 × 10− 7 9.82624 × 10− 9

5

0 0 0 0 0
0.1 6.06224 × 10− 4 1.21645 × 10− 5 2.03221 × 10− 7 2.90825 × 10− 9

0.2 9.51127 × 10− 3 3.82944 × 10− 4 1.28246 × 10− 5 3.67705 × 10− 7

0.3 4.72281 × 10− 2 2.8613 × 10− 3 1.44062 × 10− 4 6.20638 × 10− 6

0.4 1.46441 × 10− 1 1.18662 × 10− 2 7.98369 × 10− 4 4.59368 × 10− 5

0.5 3.50848 × 10− 1 3.56449 × 10− 2 3.00433 × 10− 3 2.16437 × 10− 4
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Figure 7: (a) 3D plot for the q-HATM solution, (b) surface of the exact solution, (c) approximated error solution surface, at ℏ� − 1, a� 4,
n� 1, and α� 1.
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Figure 8: u(x, t) versus t for the contemplated Example 3 at Z � − 1, x � 5, k � 2, and n � 1 for distinct of α.
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noticeably defends time and history behaviour. Moreover,
the illustrated numerical simulations confrm the applica-
bility as well as the accuracy of the considered solution
procedure, and we proved that we can go close to the exact
solution as we increase the number of iterations.

6. Conclusion

In the present work, the investigation of the time-fractional
nonlinear ffth-order KdV equation is carried out using an
analytical algorithm called q-HATM. We have taken three
nonlinear problems to testify to the ability of the projected
method to handle complex nonlinear problems. Te results
are highly pleasing and attest to the efectiveness of the
strategy under consideration. Te fractional operator con-
sidered in the present framework gives more degrees of

freedom and incorporates the nonlocal efect in the pro-
jected model. Te innovative aspect of this approach is its
straightforward process, which enables us to arrive at a
solution quickly and identify a substantial region of con-
vergence. Te rate of convergence of the obtained series
solution to the exact solution is accelerated with the help of
optimal values of the convergence control parameter Z.
Presented numerical simulations guarantee the results with
higher accuracy. Tables provide great satisfactory results
when compared with the homotopy perturbation transform
method (HPTM).

Te defned homotopy may not produce the continuous
family of terms in terms of the embedding parameter when
using analytical procedures such as HPTM and other
methods. By including a convergence control parameter in
q-HATM, this constraint can be eliminated. Te range of

α = 1
= = 0.75
= = 0.50
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ћ
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Figure 9: Z-curve for acquired solution u(x, t) for Example 3 when (a) n � 1 and (b) n � 2 when x � 2.5, k � 2, and t � 0.01 for distinct α.

Table 3: Numerical study of the achieved results in terms of absolute error for Example 3 at Z � − 1, α � 1, and n � 1 and diferent values of x

and t.

x t u
(2)
q− HATM(x, t) u

(3)
q− HATM(x, t)

− 5

0 0 0
0.1 2.11915 × 10− 3 2.11916 × 10− 3

0.2 4.23833 × 10− 3 4.23836 × 10− 3

0.3 6.35756 × 10− 3 6.35768 × 10− 3

0.4 8.47686 × 10− 3 8.47714 × 10− 3

0.5 1.05963 × 10− 2 1.05968 × 10− 2

5

0 0 0
0.1 4.12712 × 10− 3 4.12709 × 10− 3

0.2 8.25406 × 10− 3 8.25384 × 10− 3

0.3 1.23807 × 10− 2 1.23799 × 10− 2

0.4 1.65068 × 10− 2 1.65050 × 10− 2

0.5 2.06322 × 10− 2 2.06287 × 10− 2

10

0 0 0
0.1 1.47761 × 10− 3 1.47762 × 10− 3

0.2 2.95525 × 10− 3 2.95530 × 10− 3

0.3 4.43297 × 10− 3 4.43312 × 10− 3

0.4 5.91079 × 10− 3 5.91116 × 10− 3

0.5 7.38874 × 10− 3 7.38947 × 10− 3
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auxiliary parameter ℏ that we get in the consideredmethod is
very small, we can achieve a better range of ℏ to accelerate
the convergence of the obtained series solution by com-
bining the presented method with suitable numerical
techniques. As a future research direction, readers can use
the hybrid methodologies merging with our projected
scheme to achieve better consequences.

Finally, we claim that our proposed technique is in-
credibly dependable and can be applied to large study
classifcations relating to fractional-order nonlinear scien-
tifc methods, which aid us in better understanding the
nonlinear compound phenomena in linked domains of
innovation and science.
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