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Efective and fexible procurement and production strategies are capable of alleviating and mitigating supply disruption and
demand risk. Considering the price fuctuation caused by environmental change, we investigate the optimal procurement and
production strategies under supply disruption and demand uncertainty based on option contract in a two-stage supply chain
consisting of a retailer who has two procurement opportunities and a supplier who has the emergency production chance. We
explore the value of option contract by comparing it with the optimal decision making under no option contract.Te result shows
that option ordering and emergency procurement can coordinate the optimal strategies under uncertain environment, improving
the economic performance of whole supply chain.When the disruption probability is high or the price of emergency procurement
is lower, the higher option price can stimulate the supplier to produce more products to satisfy the retailer’s emergency order at a
low price, which is benefcial to both, and the value of option ordering is greater. Otherwise, the emergency procurement is worth
more for the core enterprise. Te moderate exercise price is conducive to the long-term cooperation of the supplier and
the retailer.

1. Introduction

As supply chain becomes increasingly complex, supply
disruption caused by unexpected situations (e.g., natural
disaster, man-made destruction, machine failure, transport
obstruction, economic crisis, and other factors) occurs
frequently, thus causing catastrophic damage to relevant
enterprises and even adversely afecting economic market
and social stability [1, 2]. In 2018, ZTE blocked the chip
supply from Qualcomm due to violating the U.S. export
control policy on Iran, which led to a loss of more than 20
billion yuan and total chaos on market. Besides, the un-
certainty of market demand is also one of the important
factors afecting the profts of enterprises. Te fast demand
update and large market fuctuation of some industries (e.g.,
clothing and semiconductor industries) inevitably lead to
surplus or shortage of products, which drops the proftability
of upstream and downstream enterprises. However, one-
time ordering and traditional bilateral procurement

contracts, which are generally adopted in many industries,
are difcult to cope with complex market demand change.
Accordingly, supply uncertainty has gradually attracted the
attention of enterprises and has also been widely concerned
and studied by scholars [3]. Emergency replenishment and
fexible supply have taken on a critical signifcance in dealing
with supply uncertainty [4]. In fact, some enterprises have
adopted more fexible contracts and more than one pro-
curement opportunity. For instance, international enter-
prises such as IBM andOracle and domestic enterprises such
as HP have adopted the combination measure of option
contract and two procurement opportunities in practice
[5–7].

At the same time, the procurement price is not always
fxed, which is usually ignored. Changes lead to fuctuation
of price with purchasing relationship, social factors, policy
changes, and the instability of the market environment.
Japanese earthquake in 2011 led to supply disruption of
many electronic products enterprises, causing the price of
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related products to increase signifcantly [8, 9]. Te price of
DRAM used by HP decreased by more than 90% in 2001 but
increased by more than three times after the outbreak of
SARS in 2002. Besides, the outbreak of COVID-19 in 2020
has led to the disruption of numerous global supply chains,
resulting in the shortage of high-end components of Huawei
and leading to a signifcant increase in price of related
products. At the same time, the adverse impacts on the
national economy have led to a decline in the purchasing
power of consumers, so the prices of some medium- and
low-end products have also been reduced to promote
purchase. Terefore, it is necessary to consider the fuctu-
ation of procurement price during the development of the
two-stage model.

2. Literature Review

Our model is mainly related to two streams of established
literature. One stream is about supply disruption manage-
ment. Te other stream is about response to demand
uncertainty.

2.1. Supply Disruption Management. Supply disruption
management has been widely concerned recently. Dong and
Tomlin [10] pointed out that various measures should be
made to prevent and respond to supply disruption including
double sourcing, backup suppliers, and business disruption
insurance. Snyder et al. [11] proposed multisource supply
and backup supply to deal with the risk of raw material
supply disruption. Wang et al. [12] considered that con-
structing a supply chain elastic cycle control framework,
establishing standby coping strategies, and reserving standby
personnel can deal with disruption risk. Li et al. [13] adopted
strategic supplier and backup supplier to construct two
option operation modes to cope with supply disruption.
Yavari and Zake [14] built a resilient supply chain network to
cope with disruption in the perishable food and power
networks. Li et al. [15] developed dynamic response strat-
egies to deal with the impacts of supply disruption on the
supplier’s inventory, including passive backup strategy
without preventive measures and recovery backup strategy
composed of proactive prevention and active strategy.
Concerning the management of demand uncertainty, He
and Li [16] showed how to manage the supply disruption
and demand changes caused by the unexpected situation and
established the recovery optimization model of the supply
chain with uncertain disruption events.

Te abovementioned literature investigates the methods
of dealing with supply disruption from two aspects of
prevention and response. However, there is less research on
quantity decision under the risk of supply disruption, and
most scholars ignore the price fuctuation under the change
of market environment. Based on the above research, this
study explores how eachmember of the supply chain decides
the optimal quantity strategy under the background of
supply disruption risk and uncertain market demand and
investigates the impacts of emergency procurement price

fuctuation caused by environmental change on the optimal
decisions.

2.2. Response to Demand Uncertainty

2.2.1. Option Contract. Tere is a small but signifcant body
of literature that concentrates on option contract under
uncertain environment. Option contract is more fexible
than other contracts, which is capable of increasing the
fexibility of the supply chain efectively [17]. Accordingly,
more and more scholars have studied the application of
option contract in responding to changes in the external
environment, especially in the semiconductor
manufacturing and electronics industries [18]. Barnes-
Schuster et al. [19] showed that option contract can make the
retailer fexible to deal with the uncertainty of market de-
mand and realize the coordination of the supply chain. Hu
et al. [20] constructed an emergency material reservation
supply model with option contract. As revealed by com-
parison, the option contract mechanism can achieve a win-
win situation in two-level supply chain and the coordination
of emergencymaterial supply chain. Zhao et al. [21] explored
the value of option contract in two-level supply with sto-
chastic market demand and information update. Basu et al.
[22] studied how to hedge demand uncertainty in a supply
chain consisting of a risk-neutral supplier and a risk-averse
retailer with a buyback option contract.

Te above scholars have extended the value of option
contract in the supply chain management. Nevertheless,
most of them only consider demand uncertainty, not supply
disruption at the same time. On the basis of the above re-
search, we comprehensively consider the two, introduce the
option contract in this context, and explore the value of it
through comparison.

2.2.2. Two Procurement Opportunities. Our study is also
related to the strategy of two procurement opportunities
under uncertain environment. Many scholars assume that
the retailer has one procurement opportunity: if the market
demand cannot be satisfed, the retailer must bear the
shortage loss caused by insufcient order. To solve the above
problem, some scholars proposed that inventory can be
replenished in sales season. Ma et al. [23] considered a risk-
averse retailer with two procurement opportunities, which
can order before and after the start of the sales season. Xue
et al. [24] investigated the situation that reliable supplier can
carry out emergency production to satisfy the demand in
case of disruption and how core enterprises adopt the option
contract and order commitment contract extensively
employed in practice to deal with supply disruption and
demand risk. On that basis, Xue et al. [25] considered the
selection problem of enterprise between diferent ordering
strategies with random emergency procurement price under
disruption and demand risk.

Ma et al. [23] proposed the concept that enterprises have
two procurement opportunities earlier but ignored the risk
of supply disruption. Te strategy of two procurement
opportunities to deal with uncertainty was studied by Xue
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et al. [24, 25], but option contract was not considered. Under
the background of disruption risk and uncertain market
demand, we assume that the retailer has two procurement
opportunities and the supplier has emergency production
chance. Taking the price fuctuation of the emergency
procurement caused by environmental changes as the node,
we discuss the coordination between option orders and
emergency procurement.

2.3. Innovation. As stated above, the supply disruption
management and the procurement strategy have attracted
extensive attention under demand uncertainty in academia
and have been applied in diferent industries. Te role of
option contract has been fully understood with reliable
supply, but it is rarely applied under unreliable supply and
random demand. Although the strategy of two procurement
opportunities is considered recently to deal with uncertain
demand, most scholars ignore the impacts of emergency
procurement price fuctuation on decision making. We
employ the coordination of option ordering and emergency
procurement to deal with the adverse efects caused by
environmental change. Considering the risk of supply dis-
ruption, uncertainty of market demand, and the fuctuation
of emergency procurement price comprehensively, we in-
vestigate how the retailer with two procurement opportu-
nities and the supplier with emergency production chance
make the optimal quantity decisions based on option
contract. Furthermore, we analyze the value of option
contract by comparison, expanding to demand uncertainty
and supply disruption management.

3. Model Description and Symbol Description

3.1. Model Description. Te Stackelberg model is con-
structed in a two-level supply chain system with a supplier
(he) as a follower and a retailer (she) as a leader. Te retailer
purchases products from the supplier and sells them to the
end market to satisfy the need of customers. Figure 1
presents the complete decision process of supply chain
members.

Before sales season t0, the retailer and the supplier sign
option contract (o, w). After that, the retailer decides the
number of option ordering Q, and the supplier decides the
quantity of production Z (the minimum promised

production quantity meets Zmin ≥Q). After sales season of t1,
the retailer exercises her options not to exceed Q at unit price
of w and decides whether to repurchase according to the
update of demand information. When option ordering
quantity and market demand meet Q< ζ, the retailer
repurchases products from the supplier, which is called
emergency procurement, and the price in this stage is also
adjusted with environmental change. When the quantity of
demand exceeds supply, the procurement price rises; oth-
erwise, the price falls. At the same time, the production cost of
products is not constant in diferent periods. When Z< ζ <Q,
the supplier’s frst production quantity is enough to satisfy all
of the retailer’s orders. When ζ >Z, the supplier decides
whether to carry out emergency production. If the emergency
order leads to positive returns for the supplier, he uses surplus
warehouse [Z − Q]+ produced at frst stage and then puts into
emergency production [ζ − Z]+ to satisfy all of the retailer’s
orders. Otherwise, themaximum emergency order that he can
deliver to the retailer is [Z − Q]+, which is his surplus
warehouse.

Troughout the decision-making process, the supplier
is subject to a random disruption (exogenous) whose
probability of occurrence is β. Te disruption is a type
disruption of “all-or-nothing,” which is widely used in
emergency management [24, 26, 27]. If supply disruption
occurs, Z � 0, the supplier has to implement emergency
production under the option commitment so that the
retailer can exercise her rights normally. Te emergency
production refers to the overtime work, the use of spare
production lines, and high-end or similar products to
replace each other, which leads to a higher cost [25, 28].
For example, in 2000, a fre broke out in a semiconductor
factory owned by Philips Electronics NV, which disrupted
the supply chain of ASCI chips to Nokia and Ericsson.
Philips replaced the original chips with similar ones and
enabled the backup production line [6]. Te remaining
products are treated after the end of the sales season
according to the salvage value.

3.2. Parameters in the Model. Te notations and defnitions
are shown in Table 1.

(1) v< c< ce: prevent the supplier from over production,
profting from salvage value.

Retailer exercises her
options, and determines
whether to repurchase

Demand is
satisfied

Retailer
determines Q

Disruption with
probability β

t2t1

ce < p:

ce > p:

Supplier
determines Z

Supplier conducts
emergency production
and delivers products

t0

Supplier conducts
emergency production
Supplier doesn’t conduct
emergency production

Figure 1: Sequence of events.
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(2) c<w< o + e<p< r: the price of terminal sales is high
to ensure that both the supplier and the retailer can
gain profts from the transaction.

(3) In order to simplify the model, the shortage cost is
not considered temporarily, and the price fuctuation
is only considered when the supplier purchases
products from the manufacturer after the sales
season starts.

(4) Te supplier and the retailer are independent risk-
neutral individuals.

(5) Te information among supply chain members is
completely symmetrical.

(6) Te option contract involved is American call
option.

4. Model Analysis

Based on the relative size between the emergency production
cost ce and procurement price p, i.e., ce <p and ce >p, this
section discusses the optimal production strategy of the
supplier and the optimal ordering strategy of the retailer in
two cases, respectively.

4.1. Scenario I(ce <p). Under the condition of no disruption
occurring, when ce <p, the supplier profts from the
emergency order regardless of using surplus stock or

carrying out emergency production. Tus, he satisfes all of
the retailer’s orders on the premise of unlimited production
capacity.

4.1.1. Supplier’s Production Decision. When Q< ζ, the re-
tailer repurchases from the supplier. Under the situation of
Q< ζ, when ζ ≤Z, the surplus inventory of the supplier at the
frst production is enough to meet the retailer’s emergency
order; when ζ >Z, he makes an emergency production to
achieve the part that exceeds the initial production quantity.
If supply disruption occurs, the supplier has to carry out
emergency production to promise the normal exercise of
options due to option commitment, i.e., min Q, ζ{ }. Ac-
cordingly, the supplier’s proft function can be expressed as

πs Z|ce <p( 􏼁 � − cZ + oQ + eE[min Q, ζ{ }] + pE ζ − Q{ }
+

􏼂 􏼃

− βceE[ζ] − (1 − β)ceE ζ − Z{ }
+

􏼂 􏼃

+(1 − β)vE Z − ζ{ }
+

􏼂 􏼃,

(1)

where the frst three items denote the supplier’s initial
production cost and the revenues from option ordering and
exercise and the last four items denote the income from
satisfying the retailer’s emergency order, the investments of
emergency production when disruption occurs and does not
occur, and the salvage value. Combined with the random
demand distribution of products, (1) can be expressed as

πs Z|ce <p( 􏼁 − cZ + oQ + e 􏽚
Q

0
xf(x)dx + 􏽚

A

Q
Qf(x)dx􏼠 􏼡 + p 􏽚

A

Q
(x − Q)f(x)dx

− βce 􏽚
A

0
xf(x)dx − (1 − β)ce 􏽚

A

Z
(x − Z)f(x)dx +(1 − β)v 􏽚

Z

0
(Z − x)f(x)dx.

(2)

Table 1: Notions and defnitions.

Illustration
c Supplier’s production cost of per unit
w Retailer’s frst ordering price per unit without option contract
o Option price per unit
e Option exercise price per unit
r Retail price per unit
ce Supplier’s emergency production cost per unit
p Retailer’s emergency procurement price per unit
v Unit salvage value after sales season
β Disruption probability
Z Supplier’s production quantity (decision variable)
Q Retailer’s option ordering quantity (decision variable)

ζ Te market demand is stochastic, which is a continuous stochastic variable, ζ ∼ [0,A], whose probability density function and
cumulative distribution function are f (·) and F(·), with mean value μ � a/2

πi i � s, r, denotes the proft function of the supplier and the retailer
∗ Denotes optimum
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4.1.2. Retailer’s Purchase Decision. All of the orders will be
met, and the proft function of the retailer can be expressed
as

πr Q|ce <p( 􏼁 � − oQ − eE[min Q, ζ{ }] − pE ζ − Q{ }
+

􏼂 􏼃 + rE[ζ],

(3)

where the frst two items denote the retailer’s cost of option
purchase and exercise and the last two items are investments
in emergency procurement and sales revenue, respectively.
Combined with the random demand distribution of prod-
ucts, (3) can be expressed as

πr Q|ce <p( 􏼁 � − oQ − e 􏽚
Q

0
xf(x)dx + 􏽚

A

Q
Qf(x)dx􏼠 􏼡

− p 􏽚
A

Q
(x − Q)f(x)dx + r 􏽚

A

0
xf(x)dx.

(4)

Proposition 1. When ce <p, with a threshold
􏽢β1 � 1 − c(p − e)/o(ce − v) + v(p − e), the optimal produc-
tion quantity of the supplier Z∗ and the optimal ordering
quantity of the retailer Q∗ meet the following conditions:

(1) If 0≤ β< 􏽢β1,Z
∗ >Q∗, F(Z∗) � (1 − β)ce − c/(1 − β)

(ce − v), F(Q∗) � 1 − o/p − e.
(2) If 􏽢β1 ≤ β≤ 1 − c/ce, Z∗ � Q∗, F(Z∗) � F(Q∗) �

1 − o/p − e.

Appendix presents the Proof of Proposition 1 and all
proofs of the following propositions and corollaries. By
Proposition 1 and Figure 2, when ce <p, the retailer’s op-
timal ordering quantity is independent of the disruption
probability, and the supplier’s optimal production quantity
decreases with the increase of the disruption probability.
When the disruption probability reaches the threshold 􏽢β1,
both optimal quantities are consistent.

No matter whether the supply chain is disrupted or not,
all of the retailer’s orders are met.Tus, her optimal ordering
quantity has nothing to do with supply disruption proba-
bility. When the disruption probability is relatively low, the
supplier produces more products as backup inventory and
satisfes the retailer’s emergency order at a low cost if the
option order is not enough to meet uncertain demand. Te
higher the probability of disruption is, the greater risk of loss
the supplier needs to bear. When supply disruption prob-
ability exceeds 􏽢β1, the optimal production quantity reaches
the lowest, which is consistent with the optimal ordering
quantity. If the market demand cannot be met, he carries out
emergency production to continue supplying.

Corollary 1. When ce <p, there is

(1) If 0≤ β< 􏽢β1, zZ∗/zβ< 0, zZ∗/zc < 0, zZ∗/zce > 0,

zZ∗/zv> 0, zQ∗ /zo< 0, zQ∗/ze< 0, zQ∗/zp > 0.
(2) If 􏽢β1 ≤ β≤ 1 − c/ce, zZ∗/zo � zQ∗/zo< 0, zZ∗/ze �

zQ∗/ze< 0, zZ∗/zp � zQ∗/zp> 0.

Based on Corollary 1 and under the condition of ce <p,
the higher unit price of option ordering and exercise means
that the larger the option ordering is, the greater risk of loss
the retailer has to bear. Accordingly, she reduces option
ordering quantity. With the increase of emergency pro-
curement price, the retailer’s profts from the order become
less. Terefore, she increased option ordering quantity to
minimize her emergency investment. If the supply disrup-
tion probability is relatively low (0≤ β< 􏽢β1), the supplier
reduces his initial production quantity with increase of the
frst production cost in order to decrease his risks under
uncertain demand. But when the cost of the emergency
production is higher, he produces more before sales season.
Supposing that the demand cannot be met by the initial
order, the supplier tries to use surplus products in the initial
production to supply, avoiding the huge cost caused by large
emergency production. If the supply disruption probability
is relatively high (􏽢β1 ≤ β≤ 1 − c/ce), the supplier’s optimal
production quantity is equal to the retailer’s optimal or-
dering quantity.

4.2. Scenario II (ce >p). When ce >p, the supplier gets
negative income in case that he makes emergency pro-
duction. Terefore, he only uses the surplus inventory in the
initial production to satisfy the retailer’s emergency order.

4.2.1. Supplier’s Production Decision. When ζ >Q, the
supplier does not produce urgently under no disruption
occurring. If the disruption occurs, he has to produce ur-
gently min Q, ζ{ } with option commitment. Accordingly,
supplier’s proft function can be expressed as

πs Z|ce >p( 􏼁 � − cZ + oQ + eE[min Q, ζ{ }]

− βceE[min Q, ζ{ }]

+(1 − β) pE min Z, ζ{ } − Q{ }
+

􏼂 􏼃 + vE Z − ζ+
􏼈 􏼃􏼂􏼈 􏼉,

(5)

where the frst four items denote the supplier’s initial
production cost, the income of option ordering and exercise,
and the investments in emergency production when the
disruption occurs and the last two items are the revenues for
satisfying the retailer’s emergency order and the salvage
value. Combined with the random demand distribution of
products, (5) can be expressed as

Z* = Q* =F–1
p–e1 − o

β̂1 1 − c
ce

β

min {Q,ζ}
p–e1 −F–1

o

Z/Q

ce − v
ce − vF–1 (1 − β) (ce − v)

(1 − β) ce − c 
=F–1Z*

Figure 2: Correlation between optimal decisions and disruption
probability (ce <p).
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πs Z|ce >p( 􏼁 � − cZ − βce 􏽚
Q

0
xf(x)dx + 􏽚

U

Q
Qf(x)dx􏼠 􏼡 + oQ + e 􏽚

Q

0
xf(x)dx + 􏽚

U

Q
Qf(x)dx􏼠 􏼡

+(1 − β) p 􏽚
Z

Q
(x − Q)f(x)dx + 􏽚

U

Z
(Z − Q)f(x)dx􏼢 􏼣 + v 􏽚

Z

0
(Z − x)f(x)dx􏼨 􏼩.

(6)

4.2.2. Retailer’s Purchase Decision. Option order of the
retailer is supplied, while the emergency order achieves the
maximum supply of [Z − Q]+. Terefore, the proft function
of the retailer can be expressed as

πr Q2|ce >p( 􏼁 � − oQ − eE[min Q, ζ{ }] + rE[min Q, ζ{ }]

+(1 − β)(r − p)E min Z, ζ{ } − Q
+

􏼈􏼂 􏼃,

(7)

where the frst two items denote the retailer’s investments in
option ordering and exercise and the last two items are the
sales revenues and the emergency procurement cost.
Combined with the random demand distribution of prod-
ucts, (7) can be expressed as

πr Q|ce >p( 􏼁 � − oQ +(r − e) 􏽚
Q

0
xf(x)dx + 􏽚

A

Q
Q(x)dx􏼠 􏼡

+(1 − β)(r − p) 􏽚
Z

Q
(x − Q)f(x)dx + 􏽚

A

Z
(Z − Q)f(x)dx􏼢 􏼣.

(8)

Proposition  . When ce >p, with a threshold 􏽢β2, which is the
solution of β in the equation (1 − β)p − c/(1 − β)(p − v) �

1 − o/r − e − (1 − β)(r − p). 0< β< 1 − c/p, 􏽢β2 < 1 − c/p. Te
optimal production quantity of the supplier Z∗ and the op-
timal ordering quantity of the retailer Q∗ meet the following
conditions:

(1) If 0≤ β< 􏽢β2, Z∗ >Q∗, F(Z∗) � (1 − β)p − c/(1 − β)

(p − v), F(Q∗) � 1 − o/r − e − (1 − β)(r − p).
(2) If 􏽢β2 ≤ β< 1 − c

p
, Z∗ � Q∗, F(Z∗) � F(Q∗) � 1 − o

/r − e − (1 − β)(r − p).

As revealed by Proposition 2 and Figure 3, when ce >p,
the retailer’s optimal ordering quantity is positively related
to the disruption probability. Te supplier’s optimal pro-
duction quantity is negatively related to the disruption
probability before 􏽢β2 and positively related to it after 􏽢β2,
which is consistent with that of the retailer.

Since ce >p, negative income is generated when the
supplier takes the initiative to make an emergency pro-
duction. Considering that supply disruption leads to a large
loss, the number of products put into production for the
initial time by the supplier decreases with the increase of

disruption probability, until it just meets the retailer’s initial
order. Accordingly, the maximum number of products
meeting the emergency order becomes less. In order to
promote the supplier to produce more products for
responding to uncertain demand, the retailer increases his
optimal ordering quantity instead.

Corollary  . Under ce >p, the conclusions are as follows:

(1) If 0≤ β< 􏽢β2, zF(Z∗)/zβ< 0, zF(Z∗)/zp> 0, zF(Z∗)

/zv> 0, zF(Q∗)/zβ> 0, zF(Q∗)/zo< 0, zF(Q∗)/ze<
0, zF(Q∗ )/zp> 0, zF(Q∗)/zr> 0.

(2) If 􏽢β2 ≤ β≤ 1 − c/p, zF(Z∗)/zβ � zF(Q∗)/zβ> 0, zF

(Z∗)/zo � zF(Q∗)/zo< 0, zF(Z∗)/ze � zF(Q∗)/ze

< 0, zF(Z∗)/zp � zF(Q∗)/zp> 0, zF(Z∗)/zr � zF

(Q∗)/zr> 0.

Based on Corollary 2 and under the condition of ce >p,
the impacts of the cost of emergency procurement, option
ordering, and exercise are the same as those of ce <p. Te
diference is that the optimal ordering quantity is related
to the retail price and the disruption probability. If the
probability of supply disruption is relatively low
(0≤ β< 􏽢β2), the retailer purchases more options with
increase of the emergency procurement cost in order to
reduce large expenses incurred by emergency order. At
the same time, the supplier increases production quantity
as inventory in order to satisfy the emergency order at a
low investment. If the probability of supply disruption is
relatively high (􏽢β2 ≤ β≤ 1 − c/ce), the supplier’s optimal
production quantity is minimized, which is consistent
with the optimal ordering quantity.

4.3. Special Case of No Option Contract. When the option
ordering price or exercise price is large enough, the retailer
does not accept the option contract anymore. Te initial
procurement price of unit w0 is determined by consultation.
Whether the supplier produces urgently to satisfy the re-
tailer’s emergency order depends on the price relationship.
Te production is no longer limited by the promise of
option, so the risks are jointly borne by the two.

When the cost of emergency production ce meets ce <p,
the proft functions of the supplier and the retailer can be
expressed as
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πs Z|ce <p( 􏼁 � − cZ + wQ +(1 − β)pE ζ − Q{ }
+

􏼂 􏼃 − (1 − β)ceE ζ − Z{ }
+

􏼂 􏼃 +(1 − β)vE Z − ζ{ }
+

􏼂 􏼃 + βpE[ζ] − βceE[ζ]

� − cZ + wQ +(1 − β) p 􏽚
A

Q
(x − Q)f(x)dx − ce 􏽚

A

Z
(Z − x)f(x)dx + v 􏽚

Z

0
(Z − x)f(x)dx􏼢 􏼣 + β p − ce( 􏼁 􏽚

A

0
xf(x)dx

� − cZ + wQ +(1 − β) p 􏽚
A

Q
(x − Q)f(x)dx − ce 􏽚

A

Z
(Z − x)f(x)dx + v 􏽚

Z

0
(Z − x)f(x)dx􏼢 􏼣 + β p − ce( 􏼁 􏽚

A

0
xf(x)dx,

πr Q|ce <p( 􏼁 � − wQ − (1 − β)pE ζ − Q{ }
+

􏼂 􏼃 − βpE[ζ] + rE[ζ] � − wQ − (1 − β)p 􏽚
A

Q
(x − Q)f(x)dx +(r − βp) 􏽚

A

0
xf(x)dx.

(9)

When the cost of emergency production ce meets ce >p,
the proft functions of the supplier and the retailer can be
expressed as

πs Z|ce <p( 􏼁 � − cZ + wQ +(1 − β) pE[ min Z, ζ{ } − Q]
+

􏼈 􏼁 + vE Z − ζ+
􏼈􏼂 􏼃􏼂 􏼃

� − cZ + wQ +(1 − β) p 􏽚
Z

Q
(x − Q)f(x)dx + 􏽚

A

Z
(Z − Q)f(x)dx􏼠 􏼡 + v 􏽚

Z

0
(Z − x)f(x)dx􏼢 􏼣

πr Q|ce >p( 􏼁 � − wQ +(1 − β)rE[min Q, ζ{ }] +(1 − β)(r − p)E min Z, ζ{ } − Q
+

􏼈􏼂 􏼃

� − wQ +(1 − β)r 􏽚

Q

0

xf(x)dx + 􏽚
A

Q
Qf(x)dx⎛⎜⎜⎝ ⎞⎟⎟⎠ +(1 − β)(r − p) 􏽚

Z

Q
(x − Q)f(x)dx + 􏽚

A

Z
(Z − Q)f(x)dx􏼢 􏼣.

(10)

Proposition 3. Under the condition of no option contract,
with a threshold 􏽢β3 � 1 − cp − w(ce − v)/vp, the optimal
production quantity of the supplier Z∗ and the optimal initial
ordering quantity Q∗ of the retailer meet the following
conditions:

0≤ β< min 1 −
c

ce

, 1 −
w

p
􏼨 􏼩,

F Z
∗

( 􏼁 �
(1 − β)ce − c

(1 − β) ce − v( 􏼁
,

F Q
∗

( 􏼁 � 1 −
w

(1 − β)p
.

(11)

As revealed by Proposition 3 and Figures 4 and 5, the
retailer’s optimal initial ordering quantity and the supplier’s
optimal production quantity are both negatively correlated
with the supply disruption probability. Under the condition
of ce <p, the supplier’s frst production quantity is larger
when 0< β< 􏽢β3 and smaller when 􏽢β3 < β< 1 − w/p. Under

the condition of ce >p, the supplier’s frst production
quantity is always larger than the initial ordering quantity.

If option contract is invalid, the risk of supply disruption
is shared by the retailer and the supplier who bears more.
Terefore, the optimal ordering and production decisions of
both decrease with supply disruption probability, and the
latter decreases faster. When ce <p, the supplier is willing to
put into emergency production actively. If the emergency
production exceeds the certain threshold 􏽢β3, the supplier
would rather bear more cost of emergency ordering. When
ce >p, the emergency production will not be considered
under no disruption, so the supplier’s frst production
quantity is always larger than the retailer’s ordering quantity
in order to have more surplus inventory to deal with demand
uncertainty. At the same time, the rational supplier does not
produce too many products, which will inevitably lead to
risks and losses.

Corollary 3. Under the condition of no option contract, the
conclusion is as follows:

0≤ β< min 1 −
c

ce

, 1 −
w

p
􏼠 􏼡,

zZ
∗

zβ
< 0,

zZ
∗

zc
< 0,

zZ
∗

zce

> 0,
zZ
∗

zv
> 0,

zQ
∗

zβ
< 0,

zQ
∗

zw
< 0,

zQ
∗

zp
> 0. (12)

Based on Corollary 3, with the increase of the frst
procurement price, the retailer decreases the quantity of

initial ordering to reduce the waste caused by the excessive
ordering. As the emergency procurement price increases, the
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retailer’s profts decrease. Accordingly, she increases initial
ordering quantity to decrease large expense caused by
emergency procurement.

4.4. Value of Option Contract. Compared the supplier’s
and the retailer’s optimal quantity decisions with and
without option contract, the value of option contract is
explored under uncertain demand and supply disruption
risk.

Proposition 4. Compared with low probability (β4 ≤ β< 1 −

c/ce), the value of option contract is more obvious when the
disruption probability is relatively higher (β4 ≤ β< 1 − c/ce).
Defne 􏽢β4 satisfying 􏽢β4 � 1 − w(p − e)/op.

Under the risk of supply disruption and demand uncer-
tainty, the optimal production quantity of the supplier with
option contract is always not larger than that without option
contract, which indicates that option contract can reduce in-
vestments and inventory risks of the supplier. When 0≤ β< β4,
the supplier takes an active role in producing more products as
inventory in order to obtain higher income by satisfying more
demand. Terefore, the retailer who has an emergency pro-
curement opportunity reduces her initial ordering quantity
under option contract. When β4 ≤ β< 1 − c/ce, the supplier
bears more risks so that he reduces investments in production
subjectively. Te retailer uses the characteristics of option
contract to increase the initial ordering quantity to stimulate
production. However, the number of option ordering should
not exceed the predicted demand for a rational retailer.

Proposition 5. Te value of option contract is more signif-
icant under ce <p than that under ce >p.

When ce <p, the value of option contract is mainly
refected in securing the frst phase of the supply process in
case of supply disruption occurring because the supplier
takes the initiative to fulfll the retailer’s emergency order.
When ce >p, the supplier has to satisfy the retailer’s option
order. Te retailer increases his inventory by purchasing
more options to stimulate the supplier to produce more
products, and the option contract is worth more.
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Figure 6: Q∗ and Z∗ with diferent β(ce <p).
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Figure 3: Correlation between optimal decision and disruption
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5. Numerical Examples

We apply an example to study the impacts of disruption
probability β, option price c0, and exercise price w on the
quantity strategies and proft changes of each party. Te
demand for the product follows ζ ∼ U(0.500). Other pa-
rameters are as follows: c � 4, c0 � 3.5, w � 5, p � 10, r � 15,
ce � 8 or ce � 12, and v � 2.

5.1. Impacts of Disruption Probability on Quantity.
Option contract can afect the quantity decision making of
the supplier and the retailer, efectively dealing with supply
disruption and demand uncertainty. In the following, the
value of option contract in this model is further verifed by
analyzing the trends of optimal quantity decisions with
disruption probability β in diferent situations, respectively.

5.1.1. Under Option Contract. Under option contract, the
retailer’s order is promised. We get 􏽢β1 � 0.355, 􏽢β2 � 0.35, and
1 − c/ce � 0.5 based on assumptions above. When ce � 8, it
yields that 0< β≤ 0.35; when ce � 12, it yields that β≤ 0.35.
Te infuence of β on the maximum quantity of each member
and the whole supply chain is verifed by calculation. Tere is
Z∗ ≥Q∗ in the β range. Te results of numerical analysis are
shown in Figures 6 and 7.

5.1.2. Under No Option Contract. When ce � 8, it yields that
β3 � 0.35 and 0≤ β≤ 0.45; when ce � 12, it yields that
0≤ β≤ 0.55. Te infuence of β on the maximum quantity of
the retailer, the supplier, and the whole supply chain is
verifed by calculation. Z∗ >Q∗ in 0≤ β≤ 0.35 and Z∗ <Q∗

in 0.35≤ β≤ 0.45. Te results of numerical analysis are
shown in Figures 8 and 9.
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Figure 12: πs
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Based on Figures 6–9, we once again verify the cor-
rectness and efectiveness of the above analysis results and
further get the conclusion that the option contract transfers
the risks of inventory and supply disruption to the upstream
supplier. At the same time, it ensures the retailer’s supply
stability and increases his product reserve.

5.2. Impacts of Disruption Probability on Profts

5.2.1. Scenario I (ce <p). When ce � 8, β≤ 0.35, the infu-
ence of β on the maximum profts of the retailer, the
supplier, and the whole supply chain is explored by calcu-
lation. Tere is Z∗ >Q∗ in the β range. Te results of nu-
merical analysis are shown in Figure 10. Te retailer’s profts
are almost unchanged with the increase of supply disruption
probability, and the supplier’s and the whole supply chain’s
profts decrease instead. When the probability of supply
disruption is zero, the profts of the supplier and the supply
chain reach the maximum.

Since the option commitment indicates that the risk of
disruption is solely borne by the supplier, it will not afect the
retailer’s profts. With the probability of disruption increase,
the supplier has to make an emergency production to
achieve his option commitment in the event of disruption,
which will incur a large loss. Terefore, he reduces pro-
duction and his profts also decrease.

5.2.2. Scenario II (ce >p). When ce � 12, β≤ 0.35, the re-
lationship between the optimal quantities is Z∗ >Q∗. Te
impacts of disruption probability β on the maximum profts
of the retailer, supplier, and whole supply chain are explored
by calculation.Te results of numerical analysis are shown in
Figure 11. Te profts of the supplier and the whole supply
chain are greatly afected by disruption probability. Tey
increase slightly at frst and then decrease with disruption
probability increase, reaching the maximum at β � 0.05. Te

retailer’s profts are negatively correlated with the disruption
probability.

When β � 0.05, the retailer partly decreases her pro-
duction in order to reduce the loss risk caused by supply
disruption. At the same time, her risk of inventory also
reduces. In fact, the loss risk of disruption is very small
because of the low disruption probability. When β � 0, the
retailer bears more inventory risk instead. Accordingly, the
profts of the retailer are higher when β � 0.05. Besides, the
retailer bears more loss risk and his profts also decrease with
the increase of disruption probability when β is larger than
the threshold (0.05).

5.3. Impacts of Option Price and Exercise Price on Profts

5.3.1. Scenario I (ce <p). When ce <p, assuming that the
disruption probability β � 0.2, Q∗ � 150, and Z∗ � 250 with
other parameters unchanged, diferent option ordering price
o and exercise price w are set, respectively. Because o + w<p

, when w � 5, 1 is the minimum value of o and 4.5 is the
maximum value of o. When o � 3.5, 2 is the minimum value
of w and 6 is the maximum value of w. Te following will
continue to study the infuence of o and w on the maximum
profts of the supplier, the retailer, and the overall supply
chain. Te results of numerical analysis are shown in Fig-
ures 12 and 13. With the increase of option ordering price,
the supplier’s profts increase, while the retailer’s profts
decrease frst and then increase. With the increase of option
exercise price, the supplier’s profts increase, but the re-
tailer’s profts decrease.Te profts of the whole supply chain
unchanged. Te infuence of option ordering price is greater
than that of exercise price for the whole supply chain.

Under the condition of ce <p, the closer the option
ordering price is to the critical maximum, the closer the
profts of the supplier, the retailer, and the whole supply
chain are to the maximum. Te higher the option exercise
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price is, the better it is for the retailer and the worse it is for
the supplier. Te impacts on both ofset each other, resulting
in no impacts on the profts of the whole supply chain.When
the option ordering price exceeds a certain threshold, the
higher option price motivates the supplier to produce more
products and makes the retailer reduce his option ordering
quantity, leading to the higher profts of the supplier and the
retailer. Te above analysis results show that the efects of
option contract are more obvious when the option ordering
price is higher under the condition of ce <p.

5.3.2. Scenario II (ce >p). Assume ce � 12 and β � 0.2, if
other parameters unchanged, then we can get
Q∗ � 210, Z∗ � 315. Set diferent option price o and option

exercise price w, respectively. We study how the profts of
the retailer, the supplier, and the whole supply chain change
with the changes of option price o and exercise price w. Te
results of numerical analysis are shown in Figures 14 and 15.
Option price has a great impact on the profts of the supplier
and the retailer but almost has no impact on the whole
supply chain. With increase of option ordering price and
exercise price, the supplier’s profts tend to rise, and the
retailer’s profts show a declining trend which is the same as
the trend under the situation of ce <p. Te efects of option
ordering and exercise price on both are almost ofset,
resulting in the fact that the overall profts of the supply
chain are almost unafected by the rise in option price.

When ce >p, the impacts of option ordering price on the
retailer are diferent from those when ce <p. Even though
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higher option ordering price will bring higher initial input
cost, the retailer only encourages the supplier to produce
more products to meet uncertain demand by increasing her
option ordering quantity under the condition of ce >p.
Higher option ordering price or exercise price is benefcial to
one part but harms the interests of the other. When the
exercise price and option price are moderate, it is conducive
to the long-term cooperation and development.

6. Conclusions

In order to reduce the adverse impacts of supply disruption
and demand uncertainty on enterprises, we investigate the
optimal quantity strategies based on option contract in the
two-stage supply chain, which consists of a supplier with
emergency production chance and a retailer with two
procurement opportunities, and explore the role of coor-
dination between option ordering and emergency pro-
curement in dealing with uncertain risks. In addition, the
infuence of disruption probability and option parameters
on profts is further discussed through vertical simulation.
Trough the above analysis, the following conclusions can be
drawn.

Firstly, if the retailer needs to pay a higher cost of
emergency procurement (ce <p), she just makes her deci-
sion of option ordering quantity based on the predictable
demand without considering the disruption risk under
option commitment and mainly deals with uncertainty
demand through the emergency ordering which will be met.
Otherwise (ce >p), she increases option ordering which is
worth more so that she can get more product inventory.

Secondly, when the emergency procurement cost is
higher (ce <p), it is proftable for the supplier to satisfy the
retailer’s emergency order by emergency production. Oth-
erwise (ce >p), the supplier just uses surplus inventory to
fulfll the retailer’s emergency order. At the same time, the
lower the probability of disruption occurring, the more
output the supplier will put into production for the frst time.
But for a rational supplier, his production should not exceed
the predictable market demand. With the probability of
supply disruption increase, the supplier reduces the pro-
duction volume until it is equal to the option ordering of the
supplier to ensure exercise of option contract.

Tirdly, when the price of emergency production is
lower (ce <p), setting a higher option ordering price and a
lower exercise price is benefcial to the retailer because the
adverse impacts caused by supply disruption are not obvious
on her under option contract. On the contrary (ce >p), it is
proftable for the retailer to set a lower option ordering and
exercise price. However, in both cases, the supplier’s profts
will be damaged. Terefore, a moderate option related price
is conducive to the long-term cooperation of the supply
chain.

Some possible extensions of this research are as follows.
First, the fuctuation of the emergency procurement price is
expressed by parameter in the article, and it can be set as a
variable in further study. Second, this article only analyzes
the supply chain composed of a supplier and a retailer, which
can be extended to the competition between two suppliers.

Tird, this study is conducted on the premise of information
symmetry, so we can continue to suppose information
asymmetry on this basis. In addition, the two-way option
contract can be studied in the future. Last, we can also study
the optimal decisions of companies with multiple contract
combinations.

Appendix

A. Proofs of Propositions 1–5

Proof of Proposition 1. Te frst derivative and second de-
rivative of supplier’s proft function πs(Z|ce <p) with re-
spect to Z are

zπs Z|ce <p( 􏼁

zZ

z
2πs Z|ce <p( 􏼁

zZ
2 � (1 − β) v − ce( 􏼁f(Z) < 0.

(A.1)

Since the second derivative of Z of πs(Z|ce <p) is less
than zero, it yields that πs(Z|ce <p) is a concave function
about Z. Tus, if the frst derivative is 0, it yields that
F(Z∗) � (1 − β)ce − c/(1 − β)(ce − v). Since F(Z∗)> 0, it
yields β< 1 − c/ce, so the optimal production quantity of the
supplier meets
F(Z∗) � max F(Q), (1 − β)ce − c/(1 − β)(ce − v)􏼈 􏼉, as
demonstrated by Z∗ ≥Q.

Te frst derivative and second derivative of the sup-
plier’s proft function πr(Q|ce <p) with respect to Q are

zπr Q|ce <p( 􏼁

zQ

z
2πr Q|ce <p( 􏼁

zQ
2 � − (p − e)f(Q)< 0.

(A.2)

Since the second derivative of Q of πr(Q|ce <p) is less
than zero, it yields that πr(Q|ce <p) is a concave function
about Q. Tus, if the frst derivative is 0, it yields that
F(Q∗) � 1 − o/p − e.Tus, the optimal production quantity
of the supplier meets F(Z∗) � max F(Q∗), (1 − β)ce􏼈

− c/(1 − β)(ce − v)}.
When (1 − β)ce − c/(1 − β)(ce − v)≤ 1 − o/p − e, F(Z∗)

≤F(Q∗), it yields 1 − c(p − e)/o(ce − v) + v(p − e)≤ β< 1 −

c/ce. Since p> o + w, 1 − c(p − e)/o(ce − v) + v(p − e)< 1 −

c/p. At this time, F (Z∗) � F(Q∗) � 1 − o/p − e.
When (1 − β)ce − c/(1 − β)(ce − v)> 1 − o/p − w, 0≤

β< 1 − c(p − w)/c0(ce − v) + v(p − w), F(Z∗)>F(Q∗), i.e.,
Z∗ >Q∗, F(Z∗) � (1 − β)ce − c/(1 − β)(ce − v), F(Q∗) �

1 − o/p − e. Since 􏽢β1 � 1 − c(p − e)/o(ce − v) + v(p − e),
Proposition 1 is achieved. □

Proof of Proposition 2. Te frst derivative and second de-
rivative of supplier’s proft function πs(Z|ce >p) with re-
spect to Z are
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zπs Z|ce >p( 􏼁

zZ

z
2πs Z|ce >p( 􏼁

zZ
2 � (1 − β)(− p + v)f(Z)< 0.

(A.3)

Since the second derivative of Z of πs(Z|ce >p) is less
than zero, it yields that πs(Z|ce >p) is a concave function
about Z. Tus, if the frst derivative is 0, it yields that
F(Z∗) � (1 − β)p − c/(1 − β)(p − v). Since F(Z∗)> 0, it
yields β< 1 − c

p
, so the optimal production quantity of the

supplier meets
F(Z∗) � max F(Q), (1 − β)p − c/(1 − β)(p − v)􏼈 􏼉, as
demonstrated by Z∗ ≥Q.

Te frst derivative and second derivative of the sup-
plier’s proft function πr(Q|ce >p) with respect to Q are

zπr Q|ce >p( 􏼁

zQ

+(1 − β)(r − p)(F(Q) − 1),

z
2πr Q|ce >p( 􏼁

zQ
2 � [w − p − β(r − p)]f(Q).

(A.4)

Since the second derivative of Q of πr(Q|ce >p) is less
than zero, it yields that πr(Q|ce >p) is a concave function
about ?. Tus, if the frst derivative is 0, it yields that
F(Q∗) � 1 − o/r − e − (1 − β)(r − p). Since o + w<p, it
yields that 1 − o/r − e − (1 − β)(r − p)> 0 is constantly
valid, so the optimal production quantity of the supplier
meets F(Z∗) � max F(Q∗), (1 − β)p − c/(1 − β)(p − v)􏼈 􏼉.

When
(1 − β)p − c/(1 − β)(p − v)≤ 1 − o/r − e − (1 − β)(r −

p), F(Z∗)≤F(Q∗), it yields 􏽢β2 ≤ β< 1 − c/p. At this time,
F(Z∗) � F(Q∗) � 1 − o/r − e − (1 − β)(r − p); when
(1 − β)p − c/(1 − β)(p − v)> 1 − o/r − e − (1 − β)(r − p),

i.e., 0≤ β< 􏽢β2, F(Z∗)>F(Q∗), Z∗ >Q∗, F(Z∗) � (1 − β)p −

c/(1 − β)(p − v), F(Q∗) � 1 − o/r − e − (1 − β)(r − p). To
be specifc, 􏽢β2 satisfes c − (1 − β)v/(1 − β)(p − v) � o/p −

r − w − (1 − β)(r − p), and Proposition 2 is achieved. □

Proof of Proposition 3. Based on the case of ce <p, the same
is true for ce >p.

Since the second derivative of Q of πr(Q|ce <p) is less
than 0, it yields that πr(Q|ce <p) is a concave function about
Q. Tus, if the frst derivative is 0, it yields that F(Q∗) �

1 − w/(1 − β)p. Since F(Q∗)> 0, it yields β< 1 − w/p, so the
optimal production quantity of the supplier meets F(Z∗) �

max F(Q∗), (1 − β)ce − c/(1 − β)(ce − v)􏼈 􏼉.
When

(1 − β)ce − c/(1 − β)(ce − v)> 1 − w/(1 − β)p, 0≤ β< 1 −

cp − w(ce − v)/vp, F(Z∗)>F(Q∗), i.e.,
Z∗ >Q∗, F(Z∗) � (1 − β)p − c/(1 − β)(p − v), F(Z∗) � 1 −

w/(1 − β)p.
When c − (1 − β)ce/(1 − β)(ce − v)≤ 1 − w/(1 − β)p,

F(Z∗)≤F(Q∗), it yields 1 − cp + w(v − ce)/vp< β≤ 1 − w/p.
Set 􏽢β3 � 1 − cp − w(ce − v)/vp, 0< 􏽢β3 < 1, and it is proven

that 1 − w/p> 1 − c/ce is established, so Proposition 3 is
achieved. □

Proof of Proposition 4. When the option contract is valid in
the model and ce <p, the retailer’s optimal order quantity is
1 − o/p − e. When ce >p, her optimal ordering quantity is
1 − o/r − e − (1 − β)(r − p). When the option contract is
invalid, her optimal initial ordering quantity is
1 − w/(1 − β)p. 1 − o/r − e − (1 − β)(r − p)≥ 1 − o/p − e is
constantly correct. When 1 − w/(1 − β)p> 1 − o/p − e,
β< 1 − w(p − e)/op. At this point, the retailer’s optimal
order quantity with option contract is less than that without
option contract. When β> 1 − w(p − e)/op, the optimal
order quantity of the retailer with option contract is more
than that without option contract, which is recorded as β4 �

1 − w(p − e)/op.
(1 − β)p − c/(1 − β)(p − v)< (1 − β)ce − c/ (1 − β)(ce −

v) is always valid, so the optimal production of the supplier
with option contract is always less than that without option
contract. □

Proof of Proposition 5. When ce <p, F(Q∗) � 1 − o/p − e,
F(Q∗) is independent of disruption probability and emer-
gency procurement price. Te retailer has an opportunity of
emergency procurement that the supplier can proft from.
All of the retailer’s orders can be fulflled under no dis-
ruption occurring. Terefore, the role of the option ordering
is less than that of emergency procurement.

When ce >p, F(Q∗) � 1 − o/r − e − (1 − β)(r − p).
Since zF(Q∗)/zβ> 0, zF(Q∗)/zp> 0, F(Q∗) is positively
correlated with disruption probability and the emergency
procurement price. At this point, the retailer relies more on
option ordering to promote production. Accordingly, the
role of option ordering is greater than that of emergency
procurement. □

B. Proofs of Corollaries 1–3

Proof of Corollary 1. When 0
≤ β< 􏽢β1, αF(Z∗)/αβ � − c/(1 − β2 v( − ce)< 0, αF(Z∗)/αc �

− 1/(1 − β)(ce − v)< 0, αF(Z∗)/αce � c − (1 − β)v/(1 −

β)(ce − v)2 > 0, αF(Z∗)/αv � (1 − β)ce − c/(1 −

β)(ce − v)2 > 0, αF(Q∗)/αo � − o/p − e< 0, αF(Q∗)/αw �

− o/(p − w)2 < 0, αF(Q∗)/αp � o/(p − e)2 > 0, αF(Q∗)/αo �

− o/p − e< 0, αF(Q∗)/αw � − o/(p − e)2 < 0, αF(Q∗)/αp �

o/(p − e)2 > 0.
When􏽢β1 ≤ β< 1 − c/ce,

αF(Z∗)/αo � αF(Q∗)/αo � − o/p − e< 0, αF(Z∗)/αe �

αF(Q∗)/αe � − o/(p − e)2 < 0, αF(Z∗)/αp � αF(Q∗)/αp �

o/(p − e)2 > 0. □

Proof of Corollary 2. When 0≤ β< 􏽢β2, zF(Z∗)/zβ � − c/(1 −

β2 p( − v)< 0, zF(Z∗)/zp � c/(1 − β2 p( −

v)> 0, zF(Z∗)/zv � (1 − β)[(1 − β)p −

c]/(1 − β􏼁
2
(p − v)2 > 0, zF(Z∗)/zc � − 1/(1 − β)(p − v)< 0;

zF(Q∗)/zβ � − (r −

p)o/[r − w − (1 − β)(r − p)]2 < 0, zF(Q∗)/zo � − 1/r − e −

(1 − β)(r − p)< 0, zF(Q∗)/zw �

− o/[r − e − (1 − β)(r − p)]2 < 0, zF(Q∗)/zr �
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βo/[r − e − (1 − β)(r − p)]2 > 0, zF(Q∗)/zp � (1 −

β)o/[r − e − (1 − β)(r − p)]2 > 0.

When 􏽢β2 ≤ β< 1 − c/p,

zF Z
∗

( 􏼁

zβ

zF Z
∗

( 􏼁

zo
�

zF Q
∗

( 􏼁

zo
� −

1
r − e − (1 − β)(r − p)

< 0,

zF Z
∗

( 􏼁

zw
�

zF Q
∗

( 􏼁

zw
� −

o

[r − e − (1 − β)(r − p)]
2 < 0,

zF Z
∗

( 􏼁

zp
�

zF Q
∗

( 􏼁

zp
,

�
(1 − β)o

[r − e − (1 − β)(r − p)]
2 > 0.

(B.1)

□
Proof of Corollary 3. When 0≤ β< min (1 − c/ce, 1 − w/p),
F(Z∗) � (1 − β)ce − c/(1 − β)(ce − v), F(Q∗) � 1 −

w/(1 − β)p.

αF Z
∗

( 􏼁

αβ

αF Z
∗

( 􏼁

αc
� −

1
(1 − β) ce − v( 􏼁

< 0,

αF Z
∗

( 􏼁

αce

�
c − (1 − β)v

(1 − β) ce − v( 􏼁
2 > 0,

αF Z
∗

( 􏼁

αv
�

(1 − β)ce − c

(1 − β) ce − v( 􏼁
2 > 0,

αF Q
∗

( 􏼁

αβ
� −

w

(1 − β)
2
p
< 0,

αF Q(
∗
􏼁

αw
� −

1
(1 − β)p

< 0,

αF Q(
∗
􏼁

αp
�

w

(1 − β)p
2 > 0.

(B.2)

□
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