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Circuit design plays a pivotal role in engineering, ensuring the creation of efficient, reliable, and cost-effective electronic devices.
The complexity of modern circuit design problems has led to the exploration of multi-objective optimization techniques for circuit
design optimization, as traditional optimization tools fall short in handling such problems. While metaheuristic algorithms,
especially genetic algorithms, have demonstrated promise, their susceptibility to premature convergence poses challenges. This
paper proposes a pioneering approach, the chaotic multi-objective Runge–Kutta algorithm (CMRUN), for circuit design optimi-
zation, building upon the Runge–Kutta optimization algorithm. By infusing chaos into the core RUN structure, a refined balance
between exploration and exploitation is obtained, critical for addressing complex optimization landscapes, enabling the algorithm
to navigate nonlinear and nonconvex optimization challenges effectively. This approach is extended to accommodate multiple
objectives, ultimately generating Pareto Fronts for the multiple circuit design goals. The performance of CMRUN is rigorously
evaluated against 11 multiobjective algorithms, encompassing 15 benchmark test functions and practical circuit design scenarios.
The findings of this study underscore the efficiency and real-world applicability of CMRUN, offering valuable insights for tailoring
optimization algorithms to the real-world circuit design challenges.

1. Introduction

Designing analog circuits can be frustrating due to the many
constraints to be attained for a circuit to function correctly.
An engineer aims to develop a circuit that meets certain
specifications and the International Electro-technical Com-
mission (IEC) standards [1]. For most integrated circuits, the
design of the analog part of the overall circuit takes the more
significant portion of the overall design time. This is because
analog circuit design involves tuning the circuit parameters
through trial and error until the required output is met. This
process is time-consuming and may not produce the desired
results.

Analog circuit design optimization refers to the improve-
ment of the performance of an analog circuit by adjusting its
parameters or components to meet specific performance
goals, such as increased accuracy, stability, power efficiency,
or reduced noise [2]. This process involves using mathemat-
ical models, simulation tools, and optimization algorithms to

identify the best combination of circuit components and
parameters to achieve the desired performance characteris-
tics. Optimization may be iterative, with multiple design
iterations being evaluated until the desired performance cri-
teria are met [2].

Circuit design requires the engineer to know the compo-
nents used in the design, and it generally involves three steps:
topology selection, component sizing, and layout generation
[1]. During topology selection, power loss, power gain, cur-
rent, temperature, circuit stability, and noise are specified,
and constraints are set. Component sizing ensures the circuit
design is not bulky and uses the fewest number of compo-
nents possible to avoid redundancy [1]. Many circuit simu-
lation software, such as Autodesk Eagle, NI Multisim, and
LTSpice, allow testing of the circuit parameters to see if the
desired results are obtained. This is the most widely used
method that involves iterative trial-and-error until the
parameters fit. Since the above process is time-consuming,
there have been several efforts to develop optimization tools
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to speed up analog circuit design [1]. However, traditional
optimization tools use direct or gradient search methods that
utilize initial guesses. These tools struggle with discrete vari-
ables and nonlinear constraints and get stuck in local minima
when optimizing complex, nonlinear, or nonconvex circuit
design problems [1].

Metaheuristic optimization algorithms (MOAs), divided
into three classes, namely physics-based, evolutionary, and
swarm-based algorithms, replaced the traditional optimiza-
tion tools for circuit design optimization, especially in han-
dling complex design problems, saving time and resources.
Metaheuristics are simply guidelines used to establish rules
when solving optimization problems. These rules are referred
to as heuristics and are the basic foundations of algorithms.
Despite their high performance in producing optimal solu-
tions, MOAs experience several limitations, such as increased
sensitivity and difficulty setting control parameters.

Themain problem for allMOAs is balancing the exploration
and exploitation phases for optimum performance [3]. The
exploration phase involves obtaining the global optimal solu-
tions, while the exploitation phase is when the algorithm
searches for the local optimal solutions. Algorithms stuck in local
optima experience premature convergence, leading to inaccurate
results [4]. Convergence is the rate at which an algorithm con-
verges at the global optimum solution. MOAs are stochastic
since they use randomly generated components in their optimi-
zation process; hence, achieving the appropriate balance
between the two phases is difficult [3]. Most researchers try
to improve this balance by combining MOAs with other opti-
mizers or choosing control parameters appropriately [4].

In 2021, Ahmadianfar et al. [3] proposed the Runge–Kutta
optimization algorithm (RUN) as a more robust alternative to
metaphor-based optimization algorithms. The RUN main-
tains a better balance between the exploration and exploitation
phases [3]. This algorithm is divided into two parts. The first
part is the search mechanism that utilizes slope calculations of
the Runge–Kutta (RK) method to provide a more powerful
search space for optimization, and the second part is the
enhanced solution quality (ESQ), which improves the algo-
rithm’s efficiency by producing more quality solutions than
the initially obtained solutions [3].

Despite the RUN showing superior performance com-
pared to metaphor-based algorithms, it still suffers from pre-
mature convergence for some problems; thus, Yıldız et al. [5]
proposed using chaos to enhance the base RUN, making it
chaotic (CRUN) and improving its performance by increas-
ing the convergence rate while maintaining the balance
between exploration and exploitation phases of the algo-
rithm. The CRUN was applied to the real-world design pro-
blems and showed superior performance regarding the
diversity of solutions and convergence speed [5]. However,
both the RUN and CRUN algorithms are single-objective,
and circuit design involves optimizing multiple objectives,
such as increasing power efficiency while minimizing cost.

This paper proposes a chaotic multi-objective Runge–Kutta
optimization algorithm (CMRUN) for circuit design optimi-
zation. Introducing chaos into the base RUN enhances its

performance by improving the balance between the exploitation
and exploration phases and, thus, a high-convergence rate while
avoiding local optima. Furthermore, multi-objective optimiza-
tion techniques are incorporated into this chaotic RUN, allow-
ing the optimization of multiple circuit performance metrics
simultaneously [6].

The organization of this paper is as follows: Section 2
explains the formulation and optimization methods of the
RUN algorithm, its limitations and methods undertaken to
improve it. Section 3 gives the background of the abstract
ideas (chaos, multi-objective optimization, and circuit design)
used to complete this work. Section 4 describes the methods
used to design the CMRUN, the performance measurement
criteria, and the circuit parameters to be optimized. Section 5
evaluates the performance of the CMRUN in optimizing
benchmark functions and circuit parameters. Section 6 pro-
vides the conclusions about this work and suggestions for the
future research.

2. Literature Review

2.1. The Runge–Kutta Optimization Algorithm (RUN)

2.1.1. Inspiration behind the Runge–Kutta Optimization
Algorithm. The RK method is one of the techniques in
numerical methods used to find solutions for first-order
ordinary differential equations:

dy
dt

¼ f x; yð Þ; y x0ð Þ ¼ y0: ð1Þ

The slope of the line of best fit at point ðx; yÞ is defined as
f ðx; yÞ in the equation above, giving the main idea of what
the algorithm will base its search space on. Figure 1 shows
the slopes utilized in the RK method.

As shown below, the RKmethod can be derived using the
Taylor series and ignoring the higher order terms.

(k1 + 2 × k2 + 2 × k3 + k4)

k1

k2
k3 k4

Error
y0 (x + Δx)

Exact
y0 (x + Δx)
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y0

1
6

x0 + Δx
2

FIGURE 1: Slopes utilized in the Runge–Kutta Method.
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y x þ Δxð Þ ¼ y xð Þ þ y
0 xð ÞΔx þ y00 xð Þ Δxð Þ2

2!
þ…

ð2Þ

The equation below is the approximate solution for the
Taylor series derivation of the RK method after dropping the
higher order terms:

y x þ Δxð Þ ≈ y xð Þ þ y0 xð ÞΔx: ð3Þ

From Equation (3), we can rewrite the equation as shown
below to begin finding the formula for the RK fourth-order
method:

y x þ Δxð Þ ¼ y xð Þ þ k1Δx; ð4Þ

where k1 ¼ y0ðxÞ¼ f ðx; yÞ; and Δx¼ xnþ1 − xn:
The first-order derivative, which is equivalent to k1 as

seen above, can be determined as shown in the expression
below:

y0 xð Þ ¼ y x þ Δxð Þ − y x − Δxð Þ
2

: ð5Þ

Therefore, we can use Equation (5) to rewrite Equation (4)
as shown below:

y x þ Δxð Þ ¼ y xð Þ þ y x þ Δxð Þ − y x − Δxð Þ
2

: ð6Þ

The solutions using this method are formulated as shown
below:

y x þ Δxð Þ ¼ y xð Þ þ 1
6

k1 þ 2 × k2 þ 2 × k3 þ k4ð ÞΔx;
ð7Þ

where

k1 ¼ y0 xð Þ ¼ f x; yð Þ
k2 ¼ f x þ Δx

2
; y þ Δx

2
× k1

� �

k3 ¼ f x þ Δx
2
; y þ Δx

2
× k2

� �
k4 ¼ f x þ Δx; y þ Δx × k3ð Þ:

ð8Þ

From the equations above, k1 uses y to give the slope at
the beginning of the interval [x; xþΔx]. k2 is defined by the
midpoint slope using y and k1 [3]. k3 is defined by the mid-
point slope using y and k2, and k4 is determined by the pitch
at the end using y and k3. Remember, from the Runge–Kutta
method, the value yðxþΔxÞ is given by the initial value yðxÞ
and the weighted averages of k1; k2; k3; and k4. This is
depicted in Figure 2. Figures 1 and 2 are obtained from the
study of Ahmadianfar et al. [3].

2.1.2. Optimization Steps of the RUN. This algorithm uses
random components in a swarm-based model, which is
population-based, and the RK logic to develop ordinary dif-
ferential equations used to find the slope [3]. This slope is
used as the search mechanism to explore and find the best
solutions while observing the rules of the evolution of the
swarm-based model. The RK optimizer is mathematically
formulated in the sections below.

(1) Initialization of the RUN Algorithm. An initial swarm
will undergo evolution for several iterations to start the algo-
rithm. Therefore, initializing a size N population means N
random positions are generated [3, 5]. The solutions of the
optimization problem are the members of the population
xn ðn¼ 1; 2;…;NÞ with a dimension D. The idea below is
used in generating the random initial solutions in the RUN
algorithm.

xn;l ¼ Ll þ rand ⋅ Ul − Llð Þ: ð9Þ

Ll—the lower limit of the l-th parameter and Ul—upper
limit of the lth parameter where l¼ð1; 2;…;DÞ rand—ran-
dom number in [0,1].

(2) Development of a Searching Mechanism Using the
Runge–Kutta Method. The RUN algorithm’s searching
mechanism is centered on the RK method and uses random
solutions to perform searches in the search space, both glob-
ally and locally [3, 5, 7]. Like every other optimizer, this is the
core of the program. From Equation (5) of the RK method,
the neighbors of xn are:

xn −Δx—best position and xn þΔx—worst position.
We can use Equation (5) to come up with the first coef-

ficient, k1, defining it as follows:

k1 ¼
xw − xb
2Δx

: ð10Þ

xw—worst solution at each iteration; xb—best solution at
each iteration; xw and xb are determined by selecting three
random solutions from the population. These three solutions
are: ðxr1; xr2; xr3Þ and r1 ≠ r2 ≠ r3 ≠ n.

From the equation of k1, we can see that it lacks stochas-
tic behavior. Therefore, to improve the exploration search
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FIGURE 2: Slopes used to determine xnþ1 in the RUN algorithm.
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phase, we introduce randomness and rewrite the equation as
follows:

k1 ¼
1

2Δx
rand × xw − u × xbð Þ; ð11Þ

rand—random number in the range [0,1]
The best solution (xb) is essential in enhancing the global

search to find the global best solution. Thus, parameter u is
introduced to grow the best solution’s importance [3].

u¼ round 1þ randð Þ × 1 − randð Þ: ð12Þ

The range between adjacent positions is given by:

Δx ¼ 2 × rand × Stpj j: ð13Þ

The step size (Stp) is given by the equation:

Stp¼ rand × xb − rand × xavg
À Áþ γ
À Á

: ð14Þ

γ—is the scale factor determined by:

γ ¼ rand × xn − rand × u − lð Þð Þ × exp −4 ×
i

Maxi

� �
:

ð15Þ

The scale factor decreases exponentially during optimi-
zation and is determined by the solution space size. The
randomness of the numbers in Equations (13)–(15) provides
diversification in the searches [3].

The rest of the coefficients k2, k3, and k4 are written
below:

k2 ¼
1

2Δx
rand ⋅ xw þ rand1 ⋅ k1 ⋅ Δxð Þð

− u ⋅ xb þ rand2 ⋅ k1 ⋅ Δxð ÞÞ;
ð16Þ

k3 ¼
1

2Δx
rand ⋅ xw þ rand1 ⋅

1
2
k2

� �
⋅ Δx

� ��

− u ⋅ xb þ rand2 ⋅
1
2
k2

� �
⋅ Δx

� ��
;

ð17Þ

k4 ¼
1

2Δx
rand ⋅ xw þ rand1 ⋅ k3 ⋅ Δxð Þð

− u ⋅ xb þ rand2 ⋅ k3 ⋅ Δxð ÞÞ:
ð18Þ

The numbers rand1 and rand2 are random numbers in
the range [0,1]. The program below determines the worst
and best solutions: xw and xb.

if f xnð Þ< f xbið Þ
  xb ¼ xn

 xw ¼ xbi
else

 xb ¼ xbi
  xw ¼ xn
end

: ð19Þ

xbi is the best random solution from random selections
(xr1, xr2, and xr3)

The searching mechanism of the RUN is shown in
Figure 3, and is given by:

SM¼ 1
6

xRKð Þ ⋅ Δx; ð20Þ

in which

xRK ¼ k1 þ 2 × k2 þ 2 × k3 þ k4: ð21Þ

(3) Modernizing the Solutions. During optimization, the
RUN algorithm updates the positions of the solutions at
each iteration using the RK method since the initial solutions
are random selections [3]. The following pseudocode shows
how the solutions are updated in the exploitation and explo-
ration phases.

if   rand<0:5
    exploration phaseð Þ
   xnþ1 ¼ xcð Þ þ SFþ SMþ μ × xs
else

   exploitation phaseð Þ
   xnþ1 ¼ xmð Þ þ SF × SMþ μ × xs0

         end;

ð22Þ

k4

k1

xc xm – xc

xc + 1/6 (xRK)Δxx c +
 SF · (1

/6 (x RK)Δx)
μ · (xm – xc)

r.S
F.

x c

xm

k2

k3

xn+1
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FIGURE 3: The search mechanism of the RUN.
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where

μ¼ 0:5þ 0:1 × randn; ð23Þ

where μ is a random number, and randn is a random number
with a normal distribution.

The expressions for xs and xs0 are:

xs ¼ randn ⋅ xm − xcð Þ; ð24Þ

xs0 ¼ randn ⋅ xr1 − xr2ð Þ: ð25Þ

The expressions for xc and xm are as follows:

xc ¼ φ × xn þ 1 − φð Þ × xr1; ð26Þ

xm ¼ φ × xbest þ 1 − φð Þ × xlbest; ð27Þ

where φ is a random number in [0 1]. xbest is the current best
solution. xlbest is the best solution at each iteration.

SF¼ 2 ⋅ 0:5 − randð Þ × f ; ð28Þ

f ¼ a × exp −b × rand ×
i

Maxi

� �� �
: ð29Þ

The adaptive factor, SF, is the one that provides the
balance needed between exploitation and exploration
[3, 5]. Initially, SF is large to enhance exploration by
increasing diversity, and it decreases in value afterward,
thus increasing the number of iterations and enhancing
exploitation.

a and b are the main control parameters of the SF. b and c
are constants; i—number of iterations; Maxi—maximum
number of iterations.

FromEquation (22), when rand<0:5 in the solution space,
the algorithm conducts a global search, and simultaneously,
around solution xc, it does a local search. The exploration
phase ensures all high-quality solutions are searched. When
rand≥ 0:5, the RUN applies a local search around xm. Exploi-
tation increases the speed of convergence, focusing on prom-
ising solutions. This is done by rewriting Equation (22) as
below, where,

r—integer number(either 1 or −1); g—random num-
ber in [0,2]; r increases diversity by changing the search
directions, and exploitation around xc reduces with each
iteration.

if   rand<0:5
  exploration phaseð Þ
  xnþ1 ¼ xc þ r ⋅ SF ⋅ g ⋅ xcð Þ þ SF ⋅ SMþ μ ⋅ randn

⋅ xm − xcð Þ
 else

  exploitation phaseð Þ
  xnþ1 ¼ xm þ r ⋅ SF ⋅ g ⋅ xmð Þ þ SF ⋅ SMþ μ ⋅ randn

⋅ xr1 − xr2ð Þ
end

:

ð30Þ

(4) Enhanced Solution Quality. This ensures solutions
after each iteration head toward better positions. It operates
using the following pseudocodes:

if   rand<0:5
 if  w<1

  xnew2 ¼ xnew1 þ r ⋅ w ⋅ xnew1 − xavg
À Áþ randn
�� ��

 else

 xnew2 ¼ xnew1 − xavg
À Áþ r ⋅ w ⋅ u ⋅ xnew1 − xavg

À Á��
þrandnj

  end

end

;

ð31Þ

in which

w¼ rand 0; 2ð Þ ⋅ exp −c
i

Maxi

� �� �
; ð32Þ

xavg ¼
xr1 þ xr2 þ xr3

3
; ð33Þ

xnew1 ¼ β × xavg þ 1 − βð Þ × xbest; ð34Þ

β—is a random number in [0,1]; c—random number is
equal to 5× rand; w—random number (decreases with
increase in iterations); r—integer number (either 1 or 0 or −1).

The solution (xnew2) may not be better than the current
solution; hence, the following equation gives the algorithm
another chance to find a better solution than the two [3].

if   rand<w
  xnew3 ¼ xnew2 − rand ⋅ xnew2ð Þ þ SF ⋅ rand ⋅ xRKð

þ v ⋅ xb − xnew2ð ÞÞ
end;

ð35Þ

where v¼ 2× rand.
The implementation of (xnew3) occurs when rand<w to

move (xnew2) to a better position. The parameter v enhances
the importance of the best solution and to find xRK; xb and

Mathematical Problems in Engineering 5



xw, respectively, become xk and xnew2 since the fitness of xn is
lower than that of xnew2. The flowchart of the RUN algorithm
is shown in Figure 4 [3].

(5) The Pseudocode for the RUN Algorithm.

2.1.3. Limitations of Runge–Kutta Optimizer. Despite the
RUN algorithm having better convergence speeds due to
appropriate balancing between the local and global searches,
it still suffers some limitations similar to the metaphor-based
optimizers mentioned below:

(i) The algorithm is single-objective based and cannot
solve multi-objective optimization problems [3].

(ii) The algorithm can be trapped in the local search
during ESQ, confining it to only locally optimal solu-
tions [3].

2.2. Methods Undertaken to Improve the RUN’s Performance.
The RUN is a fairly new optimizer designed in 2021. This
algorithm has demonstrated superior performance to tradi-
tional metaphor-based algorithms, and thus, several research-
ers have proposed ways to improve its performance even
more [7]. The RUN is a stochastic population-based algo-
rithm [5]. Unlike single-based optimizers, population-based
algorithms randomly generate solutions at each iteration to
avoid being trapped in local optima. Therefore, they are
superior to single-based algorithms as they attain quality solu-
tions and have increased convergence speed. The randomly
generated solutions can share information, ensuring conve-
nient search in complex feature space sceneries [5]. Table 1
shows the pseudocode for the RUN algorithm.

The RUN algorithm edges nature-inspired metaheuristic
algorithms in performance. Generally, metaheuristic algo-
rithms are divided into three: evolutionary algorithms (EAs),
swarm intelligence algorithms (SIAs), and physics-based algo-
rithms (PBAs) [3]. These algorithms have shown a high capa-
bility at obtaining optimum solutions at considerable speed
while avoiding getting trapped in local optima. However,

when solving complex design problems, they tend to suffer
from premature convergence and mismatch between the
design variables. Over the years, researchers developed hybrid
optimizers to fix the issues encountered by metaheuristics by
combining the domineering features of individual algorithms.

Initialize the
population size, max

iteration

Create initial
population

Evaluate objective
function

Calculate solution xn + 1
using Equation (30)

Calculate solution
xnew2 using Equation (31)

Calculate solution
xnew3 using Eq. (20)

rand < 0.5?

n < N ? i < Maxi ?

End

No

No

No

No

Yes

Yes

YesYes

Yes

Yes

No

No

f(xn+1) < f(xnew2)?

f(xn + 1) > f(xnew3)?

xn + 1 = xnew2

xn + 1 = xnew3

rand < w?

Start

  

FIGURE 4: Flowchart of the run algorithm.

Part 1. Initialization

Initialization parameters

Randomly generate the initial population of the RUN

Evaluate the objective function for each population member

Obtain xw, xb, and xbest
Part 2. RUN operators

for it= 1 : MaxIt

for i = 1 : np

for j= 1 : dim

Evaluate position xnþ1; l (Equation 30)

end for

ESQ

if rand<0:5
Evaluate position xnew2 (Equation 31)

if f ðxnÞ< f ðxnew2Þ
if rand <
Evaluate position xnew3 (Equation 35)

end

end

end

Modernize positions xw and xb
end for

Modernize position xbest
it= it+ 1

end

Part 3. return xbest

ALGORITHM 1: The Pseudocode of RUN.
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An example is the hybrid of the whale optimization algorithm
and the graygrey wolf optimizer, which showed better perfor-
mance than the individual algorithms [8]. Figure 5 shows the
general flowchart of metaheuristic algorithms [9].

The RUN algorithm was designed to be a powerful and
more accurate optimizer that avoids local optima. The RUN
finds the global best in solving optimization problems using
the ESQ to increase the convergence speed and avoid premature
convergence [3]. Although the RUN performs better than other
metaheuristic algorithms, it suffers limitations when solving
multimodal problems [3]. To solve this problem, researchers
have proposed several methods of improving the RUN’s perfor-
mance. Some of these methods are discussed below.

CENGİZ et al. [9] proposed a method to improve the
RUN algorithm using the FDB (fitness distance balance)
method. In the RUN algorithm, local minima traps can occur
during execution; hence, the global optimal solutions are not
attained. The FDB method was proposed to enhance the
exploration phase, guiding the algorithm toward global solu-
tions. There are 10 cases presented by CENGİZ et al. [9] to
modify the base RUN by incorporating FDB to enhance its

performance. Some of these cases include modifying
Equation (33) in the following ways:

xavg ¼
x fdb; :ð Þ þ x fdb; :ð Þ þ x fdb; :ð Þ

3
; ð36Þ

or

xavg ¼
x fdb; :ð Þ þ x fdb; :ð Þ þ x C; :ð Þ

3
; ð37Þ

where fdb is the FDB operator.
The FDBRUN produced better results compared to the

base algorithm in the study conducted by CENGİZ et al. [9].
The readers are encouraged to read this paper [9] to view the
other cases and how they are implemented.

Devi et al. [10] proposed another way to improve the RUN
algorithm to avoid premature convergence and enhance the
accuracy of solutions. They proposed integrating a local escap-
ing operator (LEO) in the RUN [10]. The LEO improves it by
bypassing local minima and thus increasing its convergence.
The readers are encouraged to read this paper by Devi et al.

Defining the optimization
problem (objective

function, design
parameters etc.)

Defining algorithm
parameters and creating
a community of solution

candidates

Calculation of fitness
values of candidate

solutions

Search process lifecycle
Content of cycle

Selection process

Exploration and
exploitation process

Update the solution
candidate community

End the search
process and save the

best solution
candidate

Is the termination
criterion met?

Yes

No

FIGURE 5: General flowchart for metaheuristic algorithm.
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[10] to understand better the formulation of the LEO and its
integration in the base RUN.

The above methods improve the performance of the RUN
algorithm, but the most widely used method to improve meta-
heuristic algorithms is enhancing them using chaotic maps.
Several optimizers have been improved by introducing chaos,
such as the chaotic Mayfly algorithm, the chaotic whale opti-
mizer, and the chaotic bat algorithm [11–15]. These metaheur-
istic algorithms’ performance and quality parameters have
been tested by applying them to real-world design problems.
For example, the chaotic Harris Hawks optimizer developed by
Gezici and Livatyali [12] provided better performance and
results than the traditional Harris Hawks optimizer [16].

Therefore, from existing research, Yıldız et al. [5] pro-
posed using chaos to enhance the base RUN by making it
chaotic (CRUN) to increase its ability to avoid local optima. The
CRUN was applied to the real-world design problems and
showed superior performance regarding the diversity of
solutions and convergence speed compared to the original
RUN [5].

In this paper, the approach used to design the CMRUN is
similar to that used by Yıldız et al. [5] to design the CRUN.
Chaotic maps are integrated into the core RUN structure to
strike a refined balance between exploration and exploita-
tion, enabling the algorithm to navigate nonconvex and com-
plex optimization problems. Furthermore, utilizing chaos in
the ESQ improves the convergence speed while navigating the
algorithm toward global solutions [5]. The algorithm is then
modified to generate Pareto Fronts to handle complex pro-
blems with multiple objectives [6].

3. Theoretical Background

3.1. Chaotic Maps. In essence, chaotic maps are mathemati-
cal functions that behave chaotically, such that slight varia-
tions in the original conditions have radically diverse effects.
Chaotic maps are typically utilized in control and optimiza-
tion algorithms to broaden the range of potential solutions
and avoid local minima traps [11]. The Logistic, Tent, Cir-
cular, Gaussian, and Chebyshev maps are examples of cha-
otic maps.

Due to their tendency to get stuck in local optima, tradi-
tional algorithms struggle to optimize nonconvex and multi-
modal objective functions. By adding unpredictability to the
optimization process, chaotic maps offer a solution to this
issue [12–15]. The optimization algorithm can better traverse
the search space and avoid local optima by using chaotic
maps to produce random solutions or perturb the present
solution. This is especially helpful in high-dimensional
search spaces, where many local optima may exist [5].

Chaotic maps can be incorporated in several ways into
optimization algorithms. One method is to use chaotic maps
to produce the initial population of solutions in an evolu-
tionary algorithm. A group of random solutions can be pro-
duced using the chaotic map, and these solutions can then be
evolved by crossover, mutation, and selection processes [15].

Another approach is when a local search algorithm like
simulated annealing or tabu search uses chaotic maps to alter

the existing solution. The chaotic map can produce a minor
perturbation to the present solution, which is accepted or
rejected according to a probability distribution [11].

Finally, the parameters of a chaotic system itself can also
be optimized using chaotic maps. The chaotic map changes
the system’s parameters and alters the behavior of the objec-
tive function as it determines the system’s complexity or
randomness [5].

Overall, chaotic maps provide an effective tool for exploring
complex, nonlinear search spaces and avoiding local optima in
the optimization algorithms. Chaotic maps can enhance the
effectiveness and efficiency of optimization algorithms in var-
ious applications by bringing randomness and diversity into
the optimization process [16]. Randomization helps to bal-
ance the exploitation and exploration phases for optimal per-
formance [15].

In this paper, 10 chaotic maps are integrated to determine
the best chaotic map in circuit design. They are obtained from
[5] and are shown in Table 1.

Figure 6 shows each map’s characteristics when imple-
mented in MATLAB.

3.2. Multi-Objective Optimization Techniques. In the engi-
neering world, engineers often encounter several problems
with multiple objectives that must be optimized simulta-
neously. In most cases, these objectives have some sort of
conflict, such as improving one objective deteriorates another.
Additionally, these objectives have different units of measure-
ment and are called multi-objective optimization problems
(MOPs). Unlike in single-objective problems where a single
optimal result is obtained by determining which solution is
better, MOPs do not have a clear-cut method of determining
which solution is better due to conflicts and different mea-
surement units [6].

Circuit design often involves the optimization of multiple
objectives, such as the gain output of a system and the cost of
components. Thus, in this paper, the RUN algorithm will be
made multi-objective to handle several objectives simulta-
neously. There are several ways of making an algorithm
multi-objective for solving MOPs. These methods include
many methods as described below.

3.2.1. Weighted Sum Method. This technique involves the
combination of several objectives into one objective in
MOPs. Each objective is assigned a weight, and then a linear
combination is applied to all weighted objectives [6]. The
weights reflect the relative importance of each objective
and hence can be used to balance the tradeoffs between
objectives. For example, consider a MOP with two objectives,
y1ðxÞ and y2ðxÞ. The objectives can be combined using the
weighted sum method as shown below:

z xð Þ ¼ w1 × y1 xð Þ þ w2 × y2 xð Þ; ð38Þ

where w1 and w2 are the weights of y1ðxÞ and y2ðxÞ,
respectively.

The optimal solution can be found by minimizing zðxÞ
and will depend on the values of w1 and w2, which can be
tuned to give the relative importance of each objective.
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3.2.2. Scalarizing Method. This technique involves convert-
ing an MOP into a single-objective optimization problem by
defining a scalarizing function that maps several objectives
into one objective. For example, consider a MOP with two
objectives, y1ðxÞ and y2ðxÞ. The problem is modified to con-
tain one objective, as shown below:

f xð Þ ¼ g y1 xð Þ; y2 xð Þð Þ; ð39Þ

where f ðxÞ is the scalarizing function.

Based on the specified needs of the problem, the scalar-
izing function is defined in several ways. For example, it
could be a function that reflects the tradeoffs between objec-
tives or as a weighted sum of objectives [6]. The function is
then mapped back to the original MOP once an optimal
solution is found.

3.2.3. Pareto Optimization. This technique involves finding a
set of nondominated solutions, which means that improving
one objective has the effect of deteriorating one or more of
the other objectives. If no solution exists that is better in at

R1
R

RC
R

R2
R RE

Q?
2N22192

3
1

R CE
C

RL
R

Cc
C

Cin
C

FIGURE 7: Typical circuit for a single-stage amplifier.

1

0.5

0i
Chebyshev map

–0.5

–1
0 50 100

xi

150

Circle map Gauss/mouse map Iterative map
1

0.8

0.6

0.4

i

Logistic map

0.2

0
0 50 100

xi

150

1

0.8

0.6

0.4

i

0.2

0
0 50 100

xi

150

1

0.8

0.6

0.4

i

0.2

0
0 50 100

xi

150

1

0.8

0.6

0.4

i

0.2

0
0 50 100

xi

150

Piecewise map Sine map Singer map Sinusoidal map
1

0.8

0.6

0.4

i

Tent map

0.2

0
0 50 100

xi

150

1

0.8

0.6

0.4

i

0.2

0
0 50 100

xi

150

1

0.8

0.6

0.4

i

0.2

0
0 50 100

xi

150

1

0.8

0.6

0.4

i

0.2

0
0 50 100

xi

150

1

0.8

0.6

0.4

i

0.2

0
0 50 100

xi

150

FIGURE 6: MATLAB implementation of chaotic maps.

10 Mathematical Problems in Engineering



least one or all objectives, the solution obtained is considered
Pareto optimal [17, 18]. These nondominated solutions form
the Pareto front, which is a representation of all Pareto opti-
mal solutions.

3.2.4. Evolutionary Algorithms. Natural evolution processes
inspire these algorithms and come in handy in solving com-
plex MOPs that have conflicting objectives. The operation of
evolutionary algorithms involves the iterative generation of
populations of solutions, and the fitness function searches for
the optimal solution by evaluating the quality of each solu-
tion [6]. Modifying the solutions selected occurs through
crossover and mutation, creating a fresh set of solutions.
The processes are repeated until the optimal solution is
attained or a set condition is achieved [17]. Evolutionary
algorithms best solve problems with the wide search spaces
and complex nonlinear objectives.

3.2.5. Multi-Objective Gradient Descent Methods. This tech-
nique optimizes multiple objectives simultaneously using
modified gradient descent algorithms. Here, a multi-objective
loss function is defined, which combines all the objectives into
a single objective. The loss function reflects the tradeoffs
between objectives and should be differentiable to make the
gradient computation possible. The multi-objective gradient
descent algorithm then adjusts the model parameters to min-
imize the loss function iteratively, whereby at each iteration,
the gradient of the loss function is computed. Then, themodel
parameters are updated in a way that minimizes loss. This
process is repeated until a preset condition is achieved or the
loss function converges to a minimum.

3.2.6. Decomposition-Based Methods. These are algorithms
that divide MOPs into a series of subproblems and optimize
each subproblem separately. After obtaining individual solu-
tions to each subproblem, these solutions are combined into
one final solution to the original MOP.

The choice of a multi-objective optimization technique
typically depends on the unique aspects of the problem and
the optimization’s objectives. The choice of technique can
significantly affect the effectiveness and quality of the solu-
tion since each technique has advantages and disadvantages.

3.3. Optimized Circuit Design. Circuit design is designing
electronic circuits by choosing parameters that meet specific
performance criteria based on the theoretical expectations.
The performance of a circuit is measured using criteria such
as noise, stability, speed, and power consumption. Optimized
circuit design aims to achieve the desired performance while
minimizing the circuit’s cost, size, and complexity [1].

There are several approaches to optimized circuit design,
each with advantages and limitations. Here are some of the
most commonly used techniques:

(i) Top–down design: this approach involves starting
with the overall system requirements and working
downwards to the circuit level. The design is broken
down into a hierarchy of subcircuits, each designed
to meet specific requirements. The advantage of this
approach is that it ensures that the design meets the

overall system requirements, but it can be time-
consuming and may not always result in the most
efficient circuit.

(ii) Bottom-up design: this approach involves starting
with individual circuit components and building
the overall system. The advantage of this approach
is that it can be faster andmore efficient than top–down
design, but it may not always result in the best overall
performance.

(iii) Simulation-based design: this approach uses computer
simulations to model the circuit’s behavior and opti-
mize its performance. Simulation-based design can be
very effective at identifying designflaws and optimizing
circuit performance, but it can be time-consuming and
computationally expensive.

(iv) Optimization algorithms: optimization algorithms
such as genetic algorithms can optimize circuit
designs by generating a population of candidate
solutions and evaluating their performance using
simulations [2].

Of all the methods, optimization algorithms help to save
time by giving the optimal solution based on the range of
input parameters, eliminating the need for trial-and-error,
which is time-consuming.

The circuit design proposed in this paper is a single-stage
amplifier. Amplifiers are used to improve the strength of
weak signals. Multistage amplifiers provide superior perfor-
mance by allowing more flexibility for the input and output
impedances. Understanding the workings of a single-stage
amplifier is crucial since they are connected in a cascade to
form multistage amplifiers to provide even higher gain [19].

A single-stage amplifier comprises a single transistor
with a bias circuit and other components to facilitate the
desired gain output for quantities such as current, voltage,
and power [19]. The following components and parts are
included for a typical single-stage amplifier design.

(i) Transistor: the transistor is the active device in the
amplifier circuit and is responsible for amplifying
the input signal. Different types of transistors can be
used depending on the specific requirements of the
circuit.

(ii) Biasing circuit: the biasing circuit sets the operating
point of the transistor, which is important for
ensuring that the amplifier operates in the linear
region and avoids distortion [19]. The biasing cir-
cuit typically consists of resistors and capacitors
connected to the transistor.

(iii) Input coupling capacitor: used to isolate the input
signal from the DC bias of the amplifier circuit.

(iv) Output coupling capacitor: the output coupling
capacitor isolates the amplifier circuit from the
load or the next stage in the circuit by blocking
DC signals [19].

(v) Load resistor: converts the output current into an
output voltage. It determines the gain of the

Mathematical Problems in Engineering 11



amplifier and is typically chosen to match the load’s
impedance.

(vi) Feedback network: the feedback network provides
negative feedback to the amplifier, which helps
reduce distortion and improve stability. The feed-
back network typically consists of resistors and
capacitors connected between the amplifier’s output
and input.

(vii) Power supply: it powers the amplifier circuit. It typ-
ically consists of a DC voltage source and filtering
capacitors to remove any AC noise or ripple from
the supply voltage.

Several parameters can be optimized for optimum per-
formance in designing a single-stage amplifier. These are:

(i) Gain: increasing the gain of the amplifier can improve
its sensitivity and ability to amplify weak signals.

(ii) Bandwidth: increasing the amplifier’s bandwidth can
improve its ability to amplify high-frequency signals.

(iii) Input and output impedance: optimizing the input
and output impedance can improve the matching
between the amplifier and the signal source and
load, respectively.

(iv) Distortion: distortion is any unwanted modification
of the input signal, and it can be caused by nonline-
arity in the amplifier circuit. Minimizing distortion
can improve the fidelity and accuracy of the output
signal.

(v) Noise: noise is any unwanted signal that the amplifier
circuit adds to the output signal. Minimizing noise
can improve the output signal-to-noise ratio (SNR).

(vi) Power consumption: minimizing power consump-
tion can improve the amplifier’s efficiency and pro-
long the battery life in the portable devices.

(vii) Stability: stability refers to the ability of the amplifier
to operate reliably and predictably over time without
oscillations or instability. An unstable amplifier can
produce unwanted oscillations, which can cause dis-
tortion, noise, and other performance issues.

Figure 7 shows a typical single-stage amplifier circuit.
Single-stage amplifiers are used in tape recorders, radio, tele-
vision receivers, CD players, and public address systems.
Therefore, the design of optimal single-stage amplifiers is
essential in electronics.

4. Methodology

4.1. Chaotic Multi-Objective Runge–Kutta Optimization
Algorithm (CMRUN). The following steps were undertaken
to improve the base RUN algorithm to handle multiple
objectives while incorporating chaos to improve the balance
between exploitation and exploration searches.

4.1.1. Selecting What Part of the Base RUN to Improve by
Chaos. Many optimization algorithms fall short due to the
local minima traps, especially when solving nonconvex and

multimodal problems. Researchers, therefore, came up with
a solution to enhance their performance by increasing the
diversity of solutions and thus avoiding local minima traps
[12–15]. As mentioned in Section 3, several ways to imple-
ment chaos in optimization algorithms exist. One way is 7 to
use chaotic maps to generate the initial population of solu-
tions, which undergoes selection, crossover, and mutation
operations.

Another way is the chaotic map can be used to generate a
small perturbation to the current solution, which is then accepted
or rejected based on a probability distribution. The final way is
chaotic maps can also be used to optimize the parameters of a
chaotic system itself [12]. Implementing the CMRUN can take
all the above approaches, but this paper uses the approach of
creating a perturbation to the current solutions.

From Section 2, the best solution (xb) is essential in
enhancing the global search space to find the optimal solu-
tion in the original RUN algorithm. The best and worst
solutions obtained at each iteration determine the searching
mechanism of the RUN algorithm. Ahmadianfar et al. [3] used
the rand parameter to introduce randomness and enhance the
exploration search. Furthermore, Equations (13)–(15) provide
search diversification to avoid local optima traps.

The range between adjacent positions:

Δx ¼ 2 × rand × Stpj j: ð40Þ

The step size:

Stp¼ rand × xb − rand × xavg
À Áþ γ
À Á

: ð41Þ

The scale factor:

γ ¼ rand × xn − rand × u − lð Þð Þ × exp −4 ×
i

Maxi

� �
:

ð42Þ

By their contribution to the global search of the RUN algo-
rithm, these equations were selected to be improved by chaos,
thus improving the overall performance of the original RUN.

The 10 chaotic maps used are represented as a vector,
and each map is selected by inputting its index value as in
Table 1. The initial value chosen for all the maps is 0.7. The
final values of all the maps should lie in the range [0, 1], and
thus all values in [−1, 1] are normalized so that they are
within the acceptable [0, 1] range. Usually, chaotic parameters
are used in the parts of algorithms that require random param-
eters. In this paper, the rand parameter for Equations (40)–(42)
was replaced with a chaotic parameter cp.

The chaos vector is first calculated, and then the index of
the chaotic map to be integrated determines which vector
values will be selected to introduce chaos in the RUN algo-
rithm. The parameters selected are improved at each itera-
tion to ensure new random values are produced with each
iteration. These values are then used to introduce chaos in
the RUN through Equations (40)–(42), which are modified
as follows:
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The range between adjacent positions is as follows:

Δx ¼ 2 × cp × Stpj j: ð43Þ

The step size is as follows:

Stp¼ cp × xb − cp × xavg
À Áþ γ
À Á

: ð44Þ

The scale factor is as follows:

γ ¼ cp × xn − cp × u − lð Þð Þ × exp −4 ×
i

Maxi

� �
; ð45Þ

where xn is the current position at each iteration.
The above parameters are used in the searchingmechanism,

and thus, they enhance the quality of solutions by increasing the
search space. Furthermore, the algorithm begins optimization
using a set of random initial solutions, which get updated after
each iteration using the RK method, which employs the search-
ing mechanism. This implies that the solutions after each itera-
tion have chaotic behavior, and thus, the global search is
enhanced. Equation (30) is further improved using the chaotic
maps to enhance the exploration and exploitation phases by
replacing r and with cp, as shown in Equation (46)

The same is done in the code’s ESQ section, as shown in
Equation (47).

if  cp<0:5

    exploration phaseð Þ
  xnþ1 ¼ xc þ r ⋅ SF ⋅ g ⋅ xcð Þ þ SF ⋅ SMþ μ ⋅ randn

⋅ xm − xcð Þ
 else

exploitation phaseð Þ
 xnþ1 ¼ xm þ r ⋅ SF ⋅ g ⋅ xmð Þ þ SF ⋅ SMþ μ ⋅ randn
⋅ xr1 − xr2ð Þ

end

ð46Þ

if  cp<0:5

  if  w<1

  xnew2 ¼ xnew1 þ r ⋅ w ⋅ xnew1 − xavg
À Áþ randn
�� ��

  else

 xnew2 ¼ xnew1 − xavg
À Áþ r ⋅ w ⋅ u ⋅ xnew1 − xavg

À Áþ randn
��

 end

end:

ð47Þ
The original RUN is modified to utilize chaos in updating

solutions and converging to the global optimum solution by
performing the above changes. Table 2 shows the pseudo-
code for the CMRUN algorithm.

4.1.2. Generating Pareto Fronts for the CMRUN. The original
RUN and the chaotic RUN described above can only

optimize single-objective problems. The first step to making
the chaotic RUN multi-objective is modifying the objective
function to take more than one objective. In this case, the
objective function was modified to take two objectives and
generate a set of solutions for each objective. The fitness
function was also modified to record the solutions for two
objectives, generating two convergence curves that form the
Pareto Front [5].

(1) The Pseudocode for the CMRUN algorithm.

Part 1. Initialization

Define the number of objective functions (nObj= 2)

Initialize the fitness function for both objective functions

Randomly generate the initial population for the CMRUN

Evaluate the objective function values of each populationmember

Sort the costs obtained from the objective function

Initialize the chaos parameters

Update the convergence curves of both objectives with the
first best costs

Part 2. CMRUN operations

for it= 1: MaxIt

Update the chaotic parameters

for n= 1: N

Apply chaotic parameters in updating the algorithm’s
equations

Determine the solutions xw, xb, and xbest for each objec-
tive function

Perform operations to improve and update the solutions

Update best costs for the objective functions

Check if solutions go outside the search space and bring
them back

Update chaos parameters for ESQ

Enhance the solution quality

for j= 1 : dim

Determine xnþ1; l from Equation 30

end for

Perform boundary check for solutions again

if

Evaluate position

if f ðxnÞ< f ðxnew2Þ
if rand <

Determine position xnew3
end

end

end

Modernize positions xw and xb
end for

Modernize position

it= it+ 1

end

Part 3. Return xbest and best costs

Update Convergence Curves

ALGORITHM 2: The pseudocode of CMRUN
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4.2. Evaluation of the Algorithm’s Performance. The 10 cha-
otic maps were integrated one by one into the CMRUN, and
their performances were evaluated using 15 selected benchmark
functions. The results of the best version of the CMRUN were
compared with those of 11 known multi-objective optimization
algorithms.

The benchmark test functions are of two kinds [3]:

(i) Unimodal Functions: have one global optimum and
test for an algorithm’s exploitation and convergence
to the global optimum.

(ii) Multimodal Functions: have multiple local optima
and are used to test for an algorithm’s exploration
and ability to avoid premature convergence.

The following parameters were kept constant to test the
CMRUN’s performance and the other 11 optimizers.

(i) Population number= 50
(ii) Dimension= 30
(iii) Maximum iterations= 200
(iv) Number of runs= 10.

The benchmark functions used are given in Table 2. The
following 11 algorithms were tested to compare their perfor-
mance with the CMRUN:

(1) Multi-Objective Evolutionary Algorithm based on
Decomposition (MOEA/D) [20]

(2) Multi-Objective Particle Swarm Optimization
(MOPSO) [21]

(3) Non-dominated Sorting Genetic Algorithm II
(NSGA-II) [22]

(4) Multi-Objective Firefly Algorithm (MOFA) [23]
(5) Multi-Objective Bat Algorithm (MOBA) [24]
(6) Strength Pareto Evolutionary Algorithm 2 (SPEA2) [25]

(7) Multi-Objective Cuckoo Search (MOCS) [26]
(8) Multi-Objective Flower Pollination Algorithm

(MOFPA) [27]
(9) Multi-Objective Mayfly Optimization Algorithm

(MOMA) [28]
(10) Hybrid NSGAII-MOPSO Algorithm [29]
(11) Multi-Objective Non-Sorted Moth FLAME (MOMFO)

(NSMFO) [30]

To evaluate the performance, the minimum score of each
optimizer for each test function was recorded for 10 runs.
These scores’ averages were then calculated with their stan-
dard deviations as the criteria for measuring performance.

4.3. Circuit Design. In this paper, a simple circuit for a single-
stage amplifier was designed. As discussed in Section 3, a
single-stage amplifier has many practical applications in
the real world. This paper proposes an algorithm that could
be used to optimize its circuit parameters. The circuit chosen
is simple to test the CMRUN’s convergence capability. Opti-
mizing a simple circuit and giving out the best parameters
would mean the algorithm is powerful enough to be applied
to more complex circuit design problems.

The objective functions chosen in this paper are:

(i) Noise
(ii) Distortion

Noise is any unwanted signal that arises at the output of a
circuit. Noise reduces the performance of an electronic device due
to errors and reduced sensitivity. Distortion, on the other hand, is
when the output signal has been changed by nonlinearity; hence,
the circuit does not produce an output consistent with the input.

For the circuit selected, the parameters to be optimized
are shown in Table 3.

From the values of resistances and frequencies obtained,
the values of capacitances can easily be calculated from the
standard formulae. This part of the paper aims to minimize
noise and distortion and obtain the values of frequencies and
resistances where the two objective functions are minimum
and, hence, find the optimum performance of the circuit
from the given ranges of inputs.

5. Results, Analysis, and Discussion

An HP Probook G3 with 8GB RAM and Intel(R) Core(TM)
i5-6200U CPU @ 2.30GHz 2.40GHz processor was used to
run and test the algorithms using MATLAB R2021a.

TABLE 2: Benchmark test functions.

Function Name Type Dimension Range

F1 SCHAFFER U 30 [−100, 100]
F2 POLONI U 30 [−100, 100]
F3 VIENNET2 U 30 [−4, 4]
F4 VIENNET3 U 30 [−3, 3]
F5 TANAKA U 30 [0 pi]
F6 ZDT2 M 30 [−100, 100]
F7 ZDT3 M 30 [−100, 100]
F8 ZDT4 M 30 [0, 1]
F9 ZDT5 M 30 [0, 1]
F10 ZDT6 M 30 [0, 1]
F11 DTLZ1 M 30 [−100, 100]
F12 DTLZ2 M 30 [−100, 100]
F13 DTLZ4 M 30 [−100, 100]
F14 KURSAWE M 30 [−5, 5]
F15 FONSECA-FLEMING M 30 [−4, 4]

U-Unimodal M-Multimodal

TABLE 3: Amplifier circuit parameters.

Variable Symbol Range

Input resistor Rin [5,000, 15,000]
Collector resistor Rc [500, 1,500]
Load resistor RL [5,000, 15,000]
Emitter resistor Re [500, 15,000]
Lower frequency fL [10K, 50K]
Upper frequency fH [1M, 20M]
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5.1. Benchmark Test Results of the Chaotic Multi-Objective
Runge–Kutta Optimization Algorithm. The CMRUN was
implemented using 10 chaotic maps and ran 10 times for
each benchmark function. The mean scores were recorded to
determine the best chaotic map out of the 10. The best
CMRUN version was selected for comparison with the other
11 multi-objective algorithms. The other algorithms were also
run 10 times, and their average scores and standard deviations
were recorded. The benchmark functions are categorized
into two:

(i) Unimodal test functions (F1–F5)
(ii) Multimodal test functions (F6–F15)

The comparison results of the chaotic maps are shown in
Table 4 (the bold numbers are the best results obtained for
each function). The results with lower values are the better
results. The CMRUN with the Chebyshev map had the best
averages for functions F2, F3, F5, F6, F11, F12, and F15. The
CMRUN with the Circle map realized the best averages for
functions F2, F3, F4, F5, F14, and F15. The CMRUN with the
Gauss map best performed in functions F2, F3, F4, F5, F7, F8,
and F11. The CMRUN with the Iterative map attained the
best averages for functions F1, F2, F3, and F5. The CMRUN
with the Logistic map, the Piecewise map, the Singer map,
and the Tent map realized the best averages for functions F2,
F3, and F5.

The CMRUN attained the best averages for functions F2,
F3, F5, F9, and F10 for the Sine map. Lastly, for the Sinui-
sodal map, the CMRUN achieved the best scores for func-
tions F2, F3, F5, and F13. All the maps realized the global
minima for functions F2 and F5. For function F3, the
CMRUN achieved global minima with all maps except
the Tent map. From these results, the best chaotic maps for
the CMRUN are the Chebyshev and Gauss maps, as they both
reached the best scores for 7 out of the 15 benchmark func-
tions. In this paper, the CMRUNwith the Chebyshev map was
chosen to compare with the 11 multi-objective algorithms.

From Table 5, the averages for each algorithm were com-
pared for every benchmark function (the best results are in
bold). In this paper, the CMRUN with the Chebyshev map is
considered for comparison with the other algorithms.

For the unimodal functions, CMRUN’s best performance
is in F3, where it ranks joint first with other algorithms, and
in F2 and F5, it ranks second. The CMRUN has the best
performance and edges other algorithms in only one of the
ten multimodal functions (F15). The CMRUN attains the
global optimum in one benchmark function (F3) and its
lowest standard deviation in function F5, which is zero.

An algorithm’s convergence rate and solution quality
should be considered to determine whether the algorithm
is stuck in local optima. The CMRUN struggles in optimizing
multimodal functions and ranks position 11 twice. This indi-
cates the CMRUN has difficulty maintaining the balance
between exploration and exploitation. The success of an
algorithm is linked to its balance between the two phases.

Exploitation focuses on utilizing the current knowledge
by concentrating the algorithm’s search around areas likely
to contain the best solutions. It refines the search around
high-quality solutions and hence finds the local optimum.
On the other hand, exploration ventures toward unexplored
areas in the search space to find potentially better solutions,
thus maintaining diversity. As the optimization progresses,
exploration finds potential global solutions. Then, the search
space focus shifts toward exploitation, which refines and
improves these solutions to find the best global solutions.

The unimodal functions test for an algorithm’s exploit-
ative behavior, and the CMRUN shows good exploitation
capabilities from the results. The multimodal functions test
an algorithm’s explorative behavior, and the CMRUN strug-
gles to explore the global search space depending on the
problem.

From the comparison of the average scores, the CMRUN
ranks as shown in Table 6.

5.2. Optimized Circuit Design. The CMRUN’s performance
in optimizing circuit design was compared to the perfor-
mance of the other 11 algorithms. The following parameters
were kept constant to conduct this part of the paper.

(i) Population number= 100
(ii) Dimension= 50
(iii) Maximum iterations= 1,000
(iv) Number of runs= 10

Table 7 shows the comparison results of optimizing cir-
cuit parameters for all 10 chaotic maps. The CMRUN with
the iterative map achieves the lowest noise value, while the
CMRUNwith the Gauss map realizes the highest noise value.
The maps rank as follows: Iterative, Logistic, Chebyshev,
Sinuisodal, Sine, Tent, Singer, Circle, Piecewise, and Gauss.

The CMRUN with the circle map attains the lowest dis-
tortion value, while the CMRUN with the logistic map has
the highest. The maps rank as follows: Circle, Sinuisodal,
Sine, Tent, Singer, Chebyshev, Piecewise, Iterative, Gauss,
and Logistic. The CMRUN with the iterative map offers

TABLE 6: CMRUN performance rank.

Function Rank

F1 10
F2 2
F3 1
F4 9
F5 2
F6 11
F7 10
F8 10
F9 7
F10 11
F11 9
F12 6
F13 9
F14 8
F15 1
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TABLE 9: Optimized design variables.

Variable Symbol Value

Input resistor Rin 11,300
Collector resistor Rc 800
Load resistor RL 5,150
Emitter resistor Re 8,740
Lower frequency fL 20,600
Upper frequency fH 14,400,000

0.06

0

0.01

0.02

0.03

D
ist

or
tio

n

Pareto Front

230 231 232 233229228227
Noise

0.04

0.05

ðaÞ

116.5

113.5

114

114.5

115
Pa

re
to

 su
m

 fi
tn

es
s

Chaotic multiobjective RUN optimization algorithm

600 800 1,0004002000
Iterations

CMRUN

115.5

116

ðbÞ

0.08

0

0.01

0.02

0.03

0.04

D
ist

or
tio

n

Nsga-II Pareto Front

260 270 280 290 300250240230220
Noise

0.05

0.06

0.07

ðcÞ

0.08

0

0.01

0.02

0.03

0.04

D
ist

or
tio

n

MOPSO Pareto Front

260 270 280 290 300250240230220
Noise

0.05

0.06

0.07

ðdÞ
FIGURE 8: Continued.

20 Mathematical Problems in Engineering



0.09

0

0.01

0.02

0.03

0.04D
ist

or
tio

n
MOBA Pareto Front

260 270 280 290 300250240230220
Noise

0.05

0.06

0.07

0.08

ðeÞ

0.09

0

0.01

0.02

0.03

0.04D
ist

or
tio

n

SPEA2 Pareto Front

260 270 280 290 300250240230220
Noise

0.05

0.06

0.07

0.08

ðfÞ

0.09

0

0.01

0.02

0.03

0.04D
ist

or
tio

n

MOMA Pareto Front

260 270 280 290 300250240230220
Noise

0.05

0.06

0.07

0.08

ðgÞ

0.09

0

0.01

0.02

0.03

0.04D
ist

or
tio

n
NSMFO Pareto Front

260 270 280 290 300250240230220
Noise

0.05

0.06

0.07

0.08

ðhÞ

0.084

0.076

0.077

0.078

0.079

0.08

D
ist

or
tio

n

MOEAD Pareto Front

228.4 228.6 228.8 229 229.2228.2228227.8227.6227.4
Noise

0.081

0.082

0.083

ðiÞ

0.09

0

0.01

0.02

0.03

0.04D
ist

or
tio

n

MOFA Pareto Front

260 270 280 290 300 310250240230220
Noise

0.05

0.06

0.07

0.08

ðjÞ
FIGURE 8: Continued.

Mathematical Problems in Engineering 21



the best performance as it provides the lowest Pareto sum for
all the maps, showing a balanced performance between the
two objectives.

Table 8 shows the results for optimized circuit design
parameters of the CMRUN map compared to the other 11
algorithms. For consistency, the results of the CMRUN with
the Chebyshev map were chosen for comparison. From the
results, the CMRUN outperforms the other algorithms in
optimizing the circuit parameters. It has the lowest Pareto
sum fitness of all the algorithms with weights of [0.5, 0.5] for
the objective functions.

The equal weights mean the objective functions are con-
sidered equally important. From the results, CMRUN has the
lowest noise value of 227.202, followed closely by MOMA.
The other algorithms have slightly higher noise values, with

MOPSO having the highest noise value. For the distortion
values, the algorithms MOFA, MOBA, SPEA-2, MOCS,
MOFPA, NSGA-II/MOPSO, and NSMFO achieved the low-
est distortion values of 0.0002 or less. CMRUN has a slightly
higher value for distortion, the sixth highest. Based on the
Pareto sum, CMRUN has the lowest Pareto sum, followed
closely by MOMA. Therefore, CMRUN performs generally
well compared to other algorithms despite having a higher
distortion value than the others because it offers the lowest
noise value and lowest Pareto sum, showing better balance in
optimizing both objectives.

The CMRUN’s performance in circuit optimization indi-
cates that it performs well in minimizing the fluctuations in
the noise values. Still, there are deviations in achieving the
lowest value possible for distortion values. This might be due
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MOEAD, (j) MOFA, (k) MOCS, (l) MOFPA, and (m) NSGA-II/MOPSO.
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to conflicts or tradeoffs between distortion and noise. Although
the CMRUN shows excellence in reducing noise, it sacrifices
distortion as improving noise performance deteriorates distor-
tion. Overall, the performance of CMRUN in circuit optimiza-
tion is superior as it defeats all the algorithms in Pareto sum and
offers the lowest noise value. The individual circuit parameters
were also recorded and tabulated.

The best parameters obtained are shown in the Table 9.
The convergence curves for CMRUN and the 11 algo-

rithms are shown in Figure 8. These curves show the algo-
rithms’ convergence rate when optimizing circuit parameters.

The convergence curves show that the CMRUNhas a very
fast convergence rate. This indicates the algorithm’s superior-
ity in obtaining optimal solutions using few iterations. The
CMRUN outperforms the other algorithms in search explo-
ration, quickly narrowing the feasible region and converging
to the global solution when optimizing circuit parameters.
Although a fast convergence could also indicate the algorithm
has converged prematurely, and the solutions are suboptimal,
this is not the case for the CMRUN, according to the results.

Therefore, it is essential to consider both the convergence
rate and the quality of solutions. From the solutions obtained
by CMRUN, the solutions are of quality. Thus, its fast con-
vergence rate is desirable, indicating that the algorithm
requires fewer iterations to achieve a satisfactory solution.
This can lead to significant time savings and computational
efficiency, especially in complex optimization problems with
a large search space or computationally expensive objective
functions.

6. Conclusion

This paper proposed a CMRUN to optimize circuit design.
Chaotic maps and Pareto Front were incorporated to
enhance the RUN to improve its exploration capability and
handle multiple objectives. The CMRUN excelled in exploi-
tation but struggled in exploration searches when optimizing
multimodal functions.

From the results, the CMRUN is susceptible to getting
stuck in local optima and thus converges prematurely, espe-
cially when optimizing multimodal functions. It shows it
may not perform well for some circuit design optimization
problems. This work can further be extended by implement-
ing standard operators in the CMRUN, such as levy walks
(LWs), crossover operators, mutation operators, or the opposite-
based learning method to better the solution quality [3].

Further research should be done to develop a more prac-
tical implementation of the CMRUN that can optimize com-
plex problems, especially multimodal ones. Also, it would be
noteworthy to test whether other chaotic mapping strategies
offer better randomization and, thus, a better balance between
the exploitation and exploration. The CMRUN could further
be upgraded to handle many-objective optimization problems.
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