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In this article, an adaptive slidingmode fault tolerant control (FTC) is improved in the case of uncertain nonlinear systemwhich is
afected by bothmultiplicative and additive faults in actuator. Especially, when the nonlinear system is modeled by Takagi–Sugeno
(T-S) fuzzy system with local nonlinear model. Te main contribution of this paper is developing a model of multiplicative faults,
which ofers a more realistic dynamic evolution of the actuator degradation. Te degradation process is modeled by Wiener
process and estimated by the maximum likelihood estimation (MLE). Sliding mode observer (SMO) is conceived to realize the
additive actuator faults using convex multiobjective optimization. On these bases, the estimated multiplicative and additive
actuator faults are used to design the adaptive sliding mode controller (SMC). Finally, the proposed fault-tolerant control scheme
is demonstrated by the results of inverted pendulum system simulation.

1. Introduction

During the past few decades, the felds of fault estimation
(FE) technique and fault tolerant control (FTC) have been
the result drawing an intensive research interests due to the
increasing demands for system’s performance, safety, and
reliability. Active FTC and FE to a category of nonlinear
systems particularly T-S fuzzy models [1–3] have a signif-
cant position in recent control implementation, as well as in
supervision and reliability of actuators. In recent decades,
a variety of methods have been developed, using adaptive
observer [4–6] or SMO [7–9]. Te sliding mode scheme has
an excellent application prospect in fault estimation and
fault tolerant control due to its simple structure, strong
applicability, and good robustness. Several publications have
appeared in recent years regarding this issue. In [10], the
authors studied Takagi–Sugeno fuzzy systems with un-
certainties and multiplicative and additive actuator faults
and then developed an adaptive sliding mode FTC design.

However, in [11], a FTC design predicated using SMO for
T-S fuzzy systems is developed. In [12], the authors used
a nonquadratic Lyapunov function to estimate simulta-
neously actuator and sensor faults for T-S fuzzy systems. In
a recent paper [13], the authors developed the FE and FTC
for the T-S fuzzy systems subject to actuator and sensor
faults. For nonlinear systems, popular fault detection
methods have been elaborated in an efective and precise
manner. In [14, 15], the authors modelled fault as an additive
occurring in sensors or actuators. Te main disadvantage of
the previous techniques is that they regard sensor and ac-
tuator faults as additive. Nevertheless, some actuator and
sensor errors, in addition to component faults, are fre-
quently found in the multiplicative form. As a result,
multiplicative faults and the system’s inputs and outputs are
mixed. Estimating the magnitude and characteristics of
multiplicative faults has become an increasing attract in
control theory due to the practical importance of decoupling
their structure efects or parameter in the model or system
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and improving fault tolerant control concept for nonlinear
systems.We can use stochastic process to model the actuator
degradation [16–19]. Te actuator environment can infu-
ence the deterioration process and strongly depends on
several factors [20] (shock, temperature, and load variation)
of the monitored system. Degradation process for industrial
systems is infuenced by both external and internal factors
including operating conditions and dynamic environment
[21]. Stochastic dynamics are the common characteristics
involved in actuator increasing degradation process in ac-
tuator. Tis results in system uncertainties and measure-
ments errors. For the past few decades, extensive research
studies have been conducted in the area of stochastic deg-
radation modelling [22–24]. Degradation models can be
divided into shock-based degradation model [25], pro-
gressive degradation model [26, 27], and combined degra-
dation model [28]. Te degradation such as the wear out of
engineering devices, the fatigue, and the corrosion of metals
can be caused bymultiple degradation processes and induces
total failures of actuator.

In the following, the authors point out the main focus of
the present study on developing efective and robust active
FTC for a class of uncertain nonlinear system. Tis study
ofers a FE-based sliding mode FTC technique for nonlinear
uncertain system afected by bothmultiplicative and additive
faults. Te major contributions of this article are as follows:

(i) In this study, for more simplicity and to fnd
a model for the description of the interactions
between the control system behavior and the ac-
tuator stochastic degradation process, the de-
terioration of the entire control system would be
supposed to lie in the actuator loss of efciency. In
practice, when an actuator operates dynamically in
a random environment, its capacity decreases
overtime which is related to degradation process.
Terefore, the multiplicative faults model was
conceived based on not only the degradation pro-
cess but also the capacity of actuator. Actually, it is
straight forward to think multiplicative faults
should be estimated in order to conceive a fault
tolerant control design for dynamic systems. To
describe the actuator degradation behavior, we use
stochastic Wiener process model which ofers
a more realistic evolution of the deterioration. In
order to estimate the degradation process, the
maximum likelihood method is used.

(ii) We propose to conceive an adaptive SMO for T-S
systems with the existence of uncertainties to esti-
mate additive actuator faults. To study the stability
of the proposed SMO, we use a linear matrix in-
equality (LMI) and the theories of Lyapunov. To
improve the actuator faults estimation accuracy, we
use an adaptive update term.

(iii) Using FE, we study an adaptive SMC for the T-S
fuzzy system having models local nonlinear that
complies with the condition of Lipschitz with ad-
ditive and multiplicative faults. Particularly, it is

demonstrated that the suggested sliding mode FTC
is used for the parameters setting of the controller in
order to obtain the desired performances of actuator
even in the presence of both additive and multi-
plicative faults.

Compared to previous works, many studies have used
only actuator or senor faults in system [29]. Ten, most of
the previous studies do not take into account multiplicative
faults. Furthermore, we use adaptive law to design the SMO
which gives more freedom in comparison with [30]; the
model used incorporates output disturbance and Itô sto-
chastic noise; and they introduced time delay in the state.
However, in our case study, we suppose that the degradation
of the total control system lies in the actuator loss of ef-
ciency. Terefore, the multiplicative fault model was con-
ceived based on not only the degradation process but the
capacity of the actuator. To describe the actuator degrada-
tion behaviour, we use the stochastic Wiener process model
(continuous models) which ofers a more realistic de-
terioration. Compared to [31], the authors use only additive
faults in both actuator and sensor in the system. Tey
transform sensor faults into “pseudoactuator” faults by using
an augmented T-S fuzzy system that causes many con-
straints in the application of the hypotheses; in fact, the total
number of actuator faults must not exceed the number of
outputs. Tis model may not be practical and conventional
in all situations of stochastic degradation process in actuator.
Moreover, it cannot adequately capture the dynamics of the
actuator’s degradation process. Indeed, the model of faults
must describe the interaction between the actuator sto-
chastic degradation process and the control system behav-
iour. Tis includes the dynamics of the actuator’s
performance, the control system’s response to changes in the
actuator’s performance, and the uncertainty associated with
the actuator’s stochastic degradation process. Te model
must also take into account the physical characteristics of the
actuator and the system environment, as well as the impact
of external factors such as maintenance and other system
parameters. In our study, we develop a model of multipli-
cative faults, which ofers a more realistic dynamic evolution
of the actuator degradation. Te SMO is designed according
to adaptive law which ofers less conservative results and
gives more liberty in comparison with [32]. Yang et al. in
[33] have developed simultaneous multiplicative and ad-
ditive faults in jump systems, which may be considered as
a special class of stochastic systems. Tey use the adaptive
backstepping technique to construct the fuzzy logic system
based an online adaptive fault-tolerant compensation con-
troller. However, in our study, we use continuous degra-
dation models and we propose to conceive an adaptive SMO
for Takagi–Sugeno fuzzy systems having local nonlinear
models.

Te outline of the article is organized as follows. Section
2 describes a nonlinear system with local nonlinear models,
uncertainties, additive, and multiplicative (loss of efciency)
actuator faults. In Section 3, we useWiener process to model
the degradation process in the actuator and the maximum
likelihood method to estimate the stochastic model for
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multiplicative fault. In Section 4, the proposed adaptive
SMO is designed to estimate the additive faults of actuator.
Section 5 presents the sliding mode FTC design in order to
redress the impact of additive and multiplicative faults for
the stabilization of the system. A simulation of the inverted
pendulum and cart system is used in Section 6 in order to
validate and illustrate the efciency of the approach. Finally,
Section 7 draws some conclusions.

2. Problem Formulation

In this study, we refer to a class of nonlinear uncertain
systems afected both the additive and multiplicative actu-
ator faults. Consider a nonlinear uncertain system repre-
sented by the following equations:

_xt � φx1
xt(  + φx2

xt( ut + φx3
xt( ξ(x, t)

+ φx4
xt( Γ(x, t),

(1)

yt � φ xt( , (2)

yLt � φ
L

xt( . (3)

ut ∈ Rm is the control input, xt ∈ Rn represents the state
vector, yLt ∈ Rp1 stands for the controlled output, and
yt ∈ Rp represents the measurement vector of output. Te
functions φL(xt),φ(xt),φxi

(xt), and Γ(x, t) are always
nonlinear for i � 1, 2, 3, 4. ξ(x, t) ∈ Rl denotes the unknown
uncertainties vector.

In feedback control system, the actuator is a signifcant
part in the evaluation of the performance level. Tat is
because, considering a degradation process in an electrical or
mechanical element of the controlled system, the controlled
action is afected as well, which eventually causes a poor
performance of the control system.

Let us consider an actuator undergoing a progressive
degradation process. It is subjected to both electrical and
mechanical degradation that occurs stochastically over time,
particularly in the case of the electrical actuator degradation
where a rub impact between the rotor and the stator or a bend
shaft can occur. It should be noted that rotor faults as well as
stator faults are recognized electrical faults. Besides, there are
other types of faults that depend on the failuremode. During its
functioning, the actuator can be afected by several types of
faults. Our studywill focus on two types of faults: additive faults
and multiplicative faults (loss of efciency). In practice, the
actuator operates dynamically in a random environment.
Furthermore, its capacity decreases overtime which is related to
degradation and depends on environmental factors as well as
operational conditions of the feedback control system.
Moreover, the wear or natural ageing of the electrical and/or
mechanical components of the actuator due to the nondesired
impacts of the working condition decreases the efectiveness of
actuator in time.Te actuator degradation process is a cause of
the physical system performance deterioration. During the
initial period of operation, the actuators function fawlessly.

Te actual capacity of actuator Ka(t) � Kaint
where Kaint

is the initial nominal capacity. If d(t) outlined the actuator
degradation, the capacity of actuator (see Figure 1) can be
represented by the following equation:

Ka(t) � Kaint
− d(t). (4)

Te efciency factor (see Figure 2) can be written as
follows:

β �
Ka(t)

Kaint

. (5)

Te minimum efciency is reached when Ka(t) � Kmin,
and we defne the minimum efciency factor
ε � (Kmin/Kaint

)> 0 such as 0< ε≤ β≤ 1,∀t≥ tf and tf is
the time occurrence of multiplicative defect.

Te loss of actuator efectiveness is examined to con-
sequence from the dynamic progression of the degradation
process β � (Kaint

− d(t))/Kaint
.

In this way, the following three cases are defned:

(i) Ka(t) � Kaint
: the actuator operates without deg-

radation (d(t) � 0), and the efciency factor is
β � 1

(ii) Ka(t) � Kaint
− d(t): the actuator deteriorates, its

capacity Kamin
<Ka(t)<Kaint

, and the efciency
factor is β � (Kaint

− d(t))/Kaint

(iii) Ka(t) � Kamin
: the actuator operates with its mini-

mum capacity, and then the efciency factor is
β � ε � (Kamin

/Kaint
)

Te nonlinear system (1)–(3) afected by additive and
multiplicative faults at the same time can be described by the
following uncertain structure and local nonlinearities as
follows:

_xt � φx1
xt(  + φx2

xt( βut + φx3
xt( fa(t)

+ φx4
xt( Γ(x, t) + φx5

xt( ξ(x, t),
(6)

yt � φ xt( , (7)

yLt � φ
L

xt( , (8)

where fa(t) ∈ Rq is the additive actuator faults.
Multiplicative fault may be rearranged as follows:

φx2
xt( βut � φx2

xt( βut + φx2
xt( ut − φx2

xt( ut

� φx2
xt( ut + φx2

xt( (β − 1)ut

� φx2
xt( ut + F ut, t( ,

(9)

where F(ut, t) are the multiplicative faults.
Ten, the nonlinear system (1)–(3) afected by additive

andmultiplicative faults at the same time can be expressed in
terms of uncertain structures and local nonlinearities as
follows:
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_xt � φx1
xt(  + φx2

xt( ut + F(u, t)

+ φx3
xt( fa(t) + φx4

xt( Γ(x, t) + φx5
xt( ξ(x, t),

(10)

yt � φ xt( , (11)

yLt � φ
L

xt( . (12)

Te multiplicative faults are F(u, t) � φx2
(xt)

(β − 1)ut � φx2
(xt)((Kaint

− d(t)/Kaint
) − 1)ut, and the fol-

lowing three case are defned:

(i) d(t) � 0: the actuator operates without degradation,
the multiplicative faults are neglected F(u, t) � 0, so
we have only the additive faults

(ii) 0 < d(t) < L (L is a maximum degradation pro-
cess): the actuator operates with degradation pro-
cess, and the multiplicative faults are

F(u, t) � φx2
xt( 

Kaint
− d(t)

Kaint

− 1 ut. (13)

(iii) d(t) reached L: the multiplicative faults are
F(u, t) � φx2

(xt)((Kamin
/Kaint

) − 1)ut

Given the nonlinear system (10)–(12) afected by both
the additive and multiplicative actuator faults, respectively,

fa(t), F(u, t), and the uncertainties ξ(x, t), our objective to
achieve an adaptive sliding mode FTC resides principally on
solving the following three problems:

(1) First problem: develop and estimate the degradation
process to conceive a multiplicative faults model
which ofers a more realistic evolution of the de-
terioration in the actuator. It is very important to be
able to estimate the faults before the performance
systems degradation.

(2) Second problem: estimate T-S fuzzy system states
and additive actuator faults, with the adaptive SMO.

(3) Tird problem: we need to stabilize the closed loop of
nonlinear systems, with the simultaneous occurrence
of additive and multiplicative faults, using the robust
adaptive sliding mode controller (10)–(12).

3. Actuator Degradation Models Estimation

In this study, we suppose that the system (10)–(12) is subject
to Wiener process. Te actuator degradation is denoted by
a random variable dt at time t. In this paper, we suppose that
degradation is an increasing Lévy process [34] supported by
the following assumptions:

(i) Te initial degradation is denoted d0 � 0
(ii) Te degradation process is described with one-

dimensional stochastic process d{ }t≥0

(iii) Te increments d{ }t≥0 are independent and
stationary

In this way, Wiener process has been frequently used to
conceive a degradation model, particularly, when it was
successfully applied to describe the increasing degradation in
an actuator. Te Wiener process is one of the most classic
processes used in many progressive degradation modeling
area; the basic idea is to model the cumulative increasing
degradation dW,t by the stochastic Wiener process such that

dW,t � dW,t0
+ Wt(μ, σ),∀t≥ 0, (14)

where μ is a linear drift parameter and σ is a difusion
coefcient parameter and Wt(μ, σ) � μt + σBt.

We consider that the Wiener process [24] is used such
that the increment Wt2

− Wt1
follows a Gaussian distribution

with mean E(Wt2
− Wt1

) � μ(t2 − t1) and variance
Var(Wt2

− Wt1
) � σ2(t2 − t1). If we consider the initial

condition dW,t0
, we can approximate the degradation

measure dW,t with the following equation:

dW,t � dW,t0
+ W t − t0( ,∀t≥ 0. (15)

Here in, we can deduce that

dW,t � dW,t0
+ μ t − t0(  + σB t − t0( . (16)

In particular, if dW,t0
� 0, the degradation process

dW,t � Wt(μ, σ)

Te objective is to estimate the linear drift μ and dif-
fusion parameter σ. We apply the maximum likelihood
estimation (MLE) method.

1.2

β=1

0.8

0.6

β=ε

0.2

0

β

20 807050 60 9010 30 40
Time

Figure 2: Te efciency factor β.
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Figure 1: Te actuator capacity Ka(t).
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Considering the degradation increment Δdi,j � (di,j+1 −

di,j) of ith items at time j where ρ � (μ, σ), j � 1, 2, . . . m and
i � 1, 2, . . . n. Te degradation measurements for item i,
Δdi � (Δdi,1,Δdi,2, ....,Δdi,m). Te density function is given
by the following equation:

f μΔti,j ,σ2Δti,j( 
Δdi,j  �

1
��������
2πσ2Δti,j

 ∗ e
a
, (17)

where a � − ((Δdi,j − μΔti,j)
2/2σ2Δti,j).

Te likelihood function of the ith path Li(ρ) � fi(Δdi) �

fi(Δdi,1, . . . .,Δdi,m/μ, σ) is given by the following equation:

Li(ρ) � 
m

j�1

1
��������
2πσ2Δti,j

 e(a)
. (18)

Te log-likelihood function for the ith item can be
expressed by the following equation:

li(ρ) � ln 
m

j�1

1
�������
2πσ2Δti,j

 e
(a)⎤⎥⎥⎥⎥⎥⎥⎥⎦.

⎡⎢⎢⎢⎢⎢⎢⎢⎣ (19)

Since the measurements di,j are independents, we can
express l(ρ) � ln(Δd1,Δd2,Δd3, . . .Δdn) as

l(ρ) 
n

i�1
ln 

m

j�1

1
�������
2πσ2Δti,j

 e
− Δdi,j − μΔti,j( 

2
/2σ2Δti,j ⎞⎟⎟⎟⎠.⎛⎜⎜⎜⎝ (20)

We fnd the MLE ρ � [σ, μ] by maximizing with respect
to σ and μ, the partial derivatives of the log-likelihood
function.

As a result, we write the partial derivative of log-
likelihood function compared to μ as

zl(ρ)

zμ
� 

n

i�1


m

j�1

Δdi,j − μΔti,j

σ2
� 0, (21)

and compared to σ as

zl(ρ)

zσ
�

− mn
σ2

+ 
n

i�1


m

j�1

Δdi,j − μΔti,j
σ3Δti,j

� 0. (22)

Ten, we obtain the expression as follows:

μ �


n
i�1

m
j�1Δdi,j


n
i�1 

m
j�1 Δti,j

, (23)

σ2 �
1

mn


n

i�1


m

j�1

Δdi,j − μΔti,j

σ3Δti,j

. (24)

Te measurements data Δi,j are generated by MATLAB
with the parameters μ � 0.4, σ � 0.2. We compute equations
(23) and (24), and the estimated parameters are obtained as
follows: μ � 0.398 and σ � 0.213.

A design procedure for multiplicative fault development
and estimation is described as follows:

(i) Step 1: we defne the expression of the efciency
factor using the degradation process and the ac-
tuator capacity to conceive the multiplicative
faults model.

(ii) Step 2: we use the Wiener process to model the
stochastic degradation in actuator.

(iii) Step 3: the maximum likelihood method is used to
estimate the linear drift and difusion parameter.

4. Additive Actuator Faults Estimation

It was shown that using T-S fuzzy system with local non-
linear models concept was well suited to the study of
a several class of systems. Te nonlinear system (10)–(12)
afected by additive andmultiplicative faults at the same time
is written by the T-S fuzzy system with uncertainty and
models local nonlinear

_x(t) � 
k

i�1
μi ζt(  Aix(t) + Biu(t) + F(u, t) + Mifa(t) + Diξ(x, t) + Γ(x, t) , (25)

y(t) � 
k

i�1
μi ζt(  Cix(t) , (26)

yL(t) � 
k

i�1
μi ζt(  C(L,i)x(t) , (27)

where Mi, Di, Ci, Bi, and Ai are matrices with known real
values. F(u, t) is the multiplicative fault. We suppose that
(Ai, Bi) and (Ai, Ci) are, respectively, controllable and ob-
servable. fa(t) and F(u, t) represent the additive and
multiplicative fault in control channel.

Te functions μi(ζt) (fuzzy normalized membership)
must satisfy the properties of sum convex

∀i ∈ [1, 2, . . . , k], 
k

i�1
μi ζt(  � 1, 1≥ μi ζt( ≥ 0. (28)

We will use the following assumptions in this paper.

Assumption 1. We assume that the uncertainties and faults
are unknown and bounded. For the faults fa(t), F(u, t) and
the uncertainties ξ(x, t), there exist known positive
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constants ξ0, ρF and ρa such that ‖fa(t)‖≤ ρa, ‖F(u, t)‖≤ ρF

and ‖ξ(x, t)‖≤ ξ0.

Assumption 2. (Ai, Mi, Ci) is minimum phase and relative
degree one, and we verify that for all complex numbers s

when Re(s)≥ 0 that

rank
sIn − Ai − Mi

Ci 0
  � n + q, (29)

Ensures that the nonasymptotically stable modes are
observable which means it is detectable.

Assumption 3. Te distribution matrix Mi of the additive
fault in equation (24) satisfes

rank CiMi(  � q. (30)

Assumption 4. Γ(x, t) the known nonlinear function sat-
isfes the local condition of Lipschitz on M ⊂ Rn with

Γ xa1
, t  − Γ xa2

, t  
�����

�����≤ xa1
− xa2

 
�����

�����c,∀ xa2
, xa1

  ∈ M.

(31)

Te constant of Lipschitz c> 0 is unknown and Γ(x, t) is
globally Lipschitz if M � Rn. Edwards and Spurgeon [35]
have studied an SMO to estimate faults and stats taking into
account the following required assumptions.

Te following lemma and defnition are utilized to
achieving the principal results.

4.1.Defnition andNotation. Let Z ∈ Rn×m a randommatrix;
if Z+ ∈ Rm×n satisfes Z+Z � Im, then Z+ � (ZTZ)− 1ZT is
a left-inverse of Z.

Lemma 5. For the two matrix Y and Z, the next condition
carries

Z
T
Y + Y

T
Z≤ ε− 1

Z
T
Z + εYT

Y, (32)

ε> 0.

We develop a novel adaptive SMO defned as

_x(t) � 
k

i�1
μi ζt(  Aix(t) + Biu(t) + F(u, t) + Γ(x, t) + Gl,iey(t) + Gn,iυ(t) , (33)

y(t) � 
k

i�1
μi ζt(  Cix(t) , (34)

where y(t) and ey(t) denote, respectively, the output of the
observer and estimation error, x(t) represents the observer
state. Gn,i and Gl,i are suitable gain matrices. In this way, the
signal υ(t) of the robust adaptive sliding mode is written as
follows:

υ(t) ≔
η(t)

Pe

Pe

����
����

, if ey(t)≠ 0,

0, otherwise,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(35)

where Pe � P2ey(t), η(t) � ρ + ϱ with ϱ is a scalar positive,
P2 ∈ Rp×p is positive defnite and symmetric and ρ is the
adaptive term can be updated given by the following
equation:

_ρ � α Pe

����
����, ρ(0)≥ 0, (36)

α> 0 is a gain.
Under condition in equation (30), we can use a change of

coordinates as follows:

x1(t)

x2(t)
  � Tix(t). (37)

Te matrices Ai, Bi, Di, Mi, Ci, Gl,i, and Gn,i become

Ai �
A11,i A12,i

A21,i A22,i

 ,

Bi �
B1,i

B2,i

 ,

Di �
D1,i

D2,i

 ,

Mi �
0

M2,i

 ,

Ci � 0 C2,i ,

Gl,i �
Gl1,i

Gl2,i

 ,

Gn,i �
Gn1,i

Gn2,i

 ,

(38)

where A11,i ∈ Rnp×np , np � (n − p), D1,i ∈ Rnp×l, M2,i ∈
Rp×(q) and C2,i ∈ Rp×p is nonsingular.

e(t) � x(t) − x(t) is the estimated error of the state.
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_e1(t) � 
k

i�1
μi ζt(  A11,ie1(t) + A12,i − Gl1,i ey(t) − Γ1(x, t) + Γ1(x, t) + D1,iξ(x, t) − Gn1,iυ(t) + eFa1

(t)  (39)

_e2(t) � 
k

i�1
μi ζt(  A21,ie1(t) + A22,i − Gl2,i ey(t) − Γ2(x, t) + Γ2(x, t)

+D2,iξ(x, t) + M2,ifa(t) − Gn2,iυ(t) + eFa2
(t)

, (40)

where TiΓ(x, t) � ΓT1 (x, t) ΓT2 (x, t) 
T

and

eFa1
(t) eFa2

(t) 
T

� TieFa
(t) � Ti[Fa(t) − Fa(t)]

According to equation (37), the nonlinear gain is de-
scribed by the following equation:

Gn1,i

Gn2,i

  �
− LiC

− 1
2,i

C
− 1
2,i

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

Li � L1,i 0 .

(41)

4.2. Sliding Motion Stability. In addition, another change of
coordinates is expressed by the following equation:

TL,i �
In− p Li

0p×(n− p) C2,i

⎡⎣ ⎤⎦, (42)

where Li is discussed later. In the new coordinates system,
we obtain

Ai �
A11,i

A12,i

A21,i
A22,i

⎡⎣ ⎤⎦,

Di �
D1,i

D2,i

⎡⎣ ⎤⎦,

Mi �
0

M2,i

 ,

Ci � 0 Ip .

(43)

If A11,i � A11,i + LiA21,i should be stable,
D1,i � D1,i + LiD2,i,

D2,i � C2,iD2,i and M2,i � C2,iM2,i.
Te observer gain matrices are

Gn1,i

Gn2,i

⎡⎣ ⎤⎦ � TL,i

Gn1,i

Gn2,i

  �
0

Ip

⎡⎣ ⎤⎦,

Gl1,i

Gl2,i

⎡⎣ ⎤⎦ � TL,i

Gl1,i

Gl2,i

  �
A12,i

A22,i − A
s

22

⎡⎢⎣ ⎤⎥⎦,

(44)

where A
s

22 is the stable design matrix.
By referring to equation (42), the error system from

equations (39)–(40) can be handled as follows:

_e1(t) � 
k

i�1
μi ζt(  A11,ie1(t) + D1,iξ(x, u, t) + TL1,i

Γ1(x, t) + TL1,i
eFa1

(t) , (45)

_ey(t) � 
k

i�1
μi ζt(  A21,ie1(t) + A

s

22ey(t) + D2,iξ(x, t) + TL2,i

Γ2(x, t) + M2,ifa(t) − υ(t) + TL2,i
eFa2

(t)  , (46)

where Γ1(x, t) � Γ1(x, t) − Γ1(x, t) and
Γ2(x, t) � Γ2(x, t) − Γ2(x, t).

Our aim is to estimate the actuator faults and the states
variables in the presence of multiplicative faults. Defne

r(t) � H
e1(t)

ey(t)
⎡⎣ ⎤⎦

� He(t),

(47)

where H is the weight matrix and it is supposed that
H � di ag(H1, H2).

We defne the measure of performance in worst case as
follows:

‖H‖∞ ≔ sup
‖ξ‖2≠0

‖r(t)‖
2
2

‖ξ(x, u, t)‖
2
2

. (48)
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Theorem  . Consider the T-S fuzzy system (25)–(27) and
suppose that Assumptions 3 and 2 are checked. Te asymp-
totically stability is archived for the state estimation errors

(45)–(46) with both minimisation gain ς∗ for ξ(x, t) and
maximisation admissible of c∗ for Γ(x, t), if ∃ς, α, ε, 1≥ λ≥ 0
and matrices P1 > 0, P2 > 0, Wi as

Ξ1,i + H
T
1 H1 C

T
2,iA

T
3,iP2 P1D1,i + WiD2,i P1 0 In− p 0

(∗) Ξ2,i + H
T
2 H2 P2D2,i 0 P2 0 Ip

(∗) (∗) − ςI 0 0 0 0

(∗) (∗) (∗) − εI 0 0 0

(∗) (∗) (∗) (∗) − εI 0 0

(∗) (∗) (∗) (∗) (∗) − αIn− p 0

(∗) (∗) (∗) (∗) (∗) (∗) − αIp

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (49)

where

Ξ1,i � A
T
11,iP1 + P1A11,i + WiA21,i + A

T
21,iW

T
i + PF1

,

Ξ2,i � A
sT

22P2 + P2
A

s

22 + PF2
.

(50)

Proof. (see Appendix A)

Our aim is estimate the additive actuator faults in
nonlinear system (25)–(27). Te adaptive SMO donated by
equations (33)–(34) has been developed and satisfes the
condition of reachability, and then ey(t) � 0 and _ey(t) � 0.
Ten, equation (47) is then expressed as follows:

0 � 

k

i�1
μi ζt(  A21,ie1(t) + TL2,i

Γ2(N, t) + D2,iξ(N, t) + M2,ifa(t) + TL2,ieFa2
(t) − υ(t) , (51)

where N � T− 1
L,ix.

Te approximate equivalent of the output error injection
signal υeq(t) is

υeq(t) � η(t)
Pe

Pe

����
���� + σ

, (52)

where σ > 0 is a scalar to decrease the impact of chattering.
We defne the next relation

ϕ e1, x, t(  � 
k

i�1
μi ζt(  TL2,i

Γ2(N, t) + A21,ie1(t) + D2,iξ(N, t) + TL2,ieFa2
(t) . (53)

It is clear that

ϕ e1, x, u( 
����

����2≤ 

k

i�1
μi ζt( ςmax ,i, (54)

where ςmax ,i � ‖ D2,i‖2ξ0 + (‖A21,i‖2 + c)ϖ.
It remains to conclude from equation (54) that

ϕ e1, x, u( 
����

����≤ ςmax. (55)

Ten, approximately, for a small ςmax, it seems that

0 � 
k

i�1
μi ζt(  − υ(t) + M2,ifa(t) . (56)

Terefore, the additive actuator faults estimation is given
by

fa(t) ≈ 
k

i�1
μi ζt(  M2,i

⎛⎝ ⎞⎠

+

υ(t). (57)

Te method for FE with an adaptive SMO is outlined as

(i) Step 1: pick out the weight matrix in equation (47).
(ii) Step 2: pick out the suitable scalar “0≤ λ≤ 1” and

resolve the equation (49) (LMI optimization
problem). So, we can obtain P1; W; P2 and ε, ς and c.
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(iii) Step 3: design the adaptive SMO (32)-(33); then,
according to equations (51) and (57), the estimation
of additive actuator faults can be accomplished. □

5. Sliding Mode FTC Design

5.1. Structure of Adaptive Sliding Mode Controller. Tis part
of the article is devoted to explore an adaptive sliding mode
FTC design founded on estimated state variables as well as

actuator faults information (magnitude, type, and occur-
rence time). To stabilize the nonlinear system and com-
pensate additive and multiplicative actuator faults efects,
the proposed SMC with adaptive law was used to envisage
a corrective action. Terefore, we assume that the nonlinear
system with uncertainties (6)–(8) can be modeled by T-S
fuzzy representation with both local nonlinearities and
uncertainties as follows:

_x(t) � 
k

i�1
μi ζt(  Aix(t) + F(u, t) + Biu(t) + Diξ(x, t) + Γ(x, t) + Mifa(t) , (58)

y(t) � 
k

i�1
μi ζt(  Cix(t) , (59)

yL(t) � 
k

i�1
μi ζt(  C(L,i)x(t) . (60)

First, the sliding motion takes place on a sliding surface
denoted as S which is defned as follows:

S � Sc(t) � 0: yc(t) ∈ Rp
 . (61)

We describe the linear switching function Sc(t) ∈ Rm

using the feedback information of the output

Sc(t) � 
k

i�1
μi ζt(  Nc,iyc(t) , (62)

Nc,i � − h(− CiBi(CiBi)
+
(+Ip)) + (CiBi)

+ and
((CiBi)

+CiBi)
− 1(CiBi)

T � (CiBi)
+ where h ∈ Rm×p is an

arbitrary matrix.
Te control input may be described as follows:

u(t) � ul(t) + un(t). (63)

Te linear part denoted as ul(t) and depending on
system states as well as both additive and multiplicative
actuator faults estimation is expressed as follows:

ul(t) � 
k

j�1
μj ζt(  − Kjx(t) − qa

fa(t) − qF
F(u, t)  ,

(64)

where − qa(fa(t) + F(u, t)) is created to compensate the
additive and multiplicative faults infuence. Assume that
qa � B+

i Mi, qF � B+
i and Kj ∈ Rm×n.

Te adaptive nonlinear control input part un(t) is
proposed as follows:

un(t) ≔
ηc(t)

Sc(t)

Sc(t)
����

����
, if Sc(t)≠ 0,

0, otherwise,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(65)

ηc(t) � ρc + εc + ϱc where εc and ϱc are small and positive
constants. ηc(t) is determined by using ρc.

_ρSc
� Sc(t)

����
����ϵc, ρc(0)≥ 0, ϵc > 0. (66)

5.2. FTC Design. Using the part un(t) of control input, we
need to prove the sliding and the reaching of S in a fnite
time. Construct the function of Lyapunov as follows:

Vc(t) �
1
2ϵc

ρ2c +
1
2
S

T
c (t)Sc(t), (67)

ρc � ρc − ρc.
Referring to equation (58), the derivative of (67) is given

by the following equation:

_Vc(t) � 
k

i�1


k

j�1
μiμj ζt(  − ρc − Kj‖x(t)‖ − ηc(t) Sc(t)

����
���� − Sc(t)

����
����ρc

� 
k

i�1


k

j�1
μiμj ζt(  − Kj ‖x(t)‖ − ρc − εc Sc(t)

����
����.

(68)

Defne Ωc as

Ωc ≔ x: ‖x(t)‖ ≤ κc . (69)

If the sliding surface S is reached, the condition of
reachability is satisfed. Ten, 9c is select to fulfll
9c > κc(CiAi − Kj) as

− Sc(t)
����

����εc ≥ S
T
c (t)Sc(t). (70)

An perfect sliding motion is guaranteed to occur in fnite
time by the suggested SMC with adaptive law,
∀t≥ tc Sc(t) � _Sc(t) � 0. When the SM is required, we
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examine the stability. We suppose that ueq(t) such that
_Sc(t) � 0, as

ueq(t) � 
k

i�1
μi ζt(  − Γ(x, t) + Aix(t)  + ul(t) − Diξ(x, t) .

(71)

Te closed-loop dynamic system with equation (71) is

_x(t) � 
k

i�1


k

j�1
μiμj ζt(  − BiKj  + θiAi(  x(t) + Bi,jϕ(t) + θiΓ(x, t) , (72)

yc(t) � 
k

i�1
μi ζt(  y(t) , (73)

yL(t) � 
k

i�1
μi ζt(  C(L,i)x(t) , (74)

where θi � In, Bi,j � [BiKjMiInθiDi] and ϕ(t) �

e
T
(t)

e
T
fa

(t)

e
T
F(t)

ξT
(x, t)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Assumption 8. Te condition of Lipschitz is satisfed by

‖Γ(x, t)‖≤ ‖x(t)‖, (75)

c denotes the constant of Lipschitz.

Theorem 9. Te T-S fuzzy system with local nonlinear
models (72)–(74) is stable robustly with a maximization of the
Lipschitz constant c, positive scalars λc, αc, δc, and the
minimization of attenuation level ςc, if there exist the matrices
Y � YT, Qj and Px � P

T

x > 0 where the optimization problem
of multiobjective linear matrix inequality has a resolution.

Minimize [(1 − λc)ςc + λc(δc + αc)], subject to

Δcontrol,ij ≔

Υi, j BiQj Mi θiDi PxC
T
L,i Px In

(∗) − 2Y + ςcIn 0 0 0 0 0

(∗) (∗) − ςcIq 0 0 0 0

(∗) (∗) (∗) − ςcIl 0 0 0

(∗) (∗) (∗) (∗) − Ip1 0 0

(∗) (∗) (∗) (∗) (∗) − δcIn 0

(∗) (∗) (∗) (∗) (∗) (∗) − αcIn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (76)

where

Υi, j � θiAiPx + PxA
T
i θ

T
i − Q

T
j B

T
i − BiQj,

Y � μcPx.
(77)

According to the results, it is possible to obtain the
adaptive SMC from Kj � QjP

− 1
x .

Proof. (see Appendix B)
A design method for adaptive FTC with an adaptive

SMO is outlined as follows:

(i) Step 1: select “0≤ λc ≤ 1”, resolve the LMI optimi-
zation problem (76); so we get the matrices Qj and
the scalars δc, ςc and cc

(ii) Step 2: calculate Kj � QjP
− 1
x

(ii) Step 3: concept the Adaptive SMC (65), then the
stability of (51), (57) is accomplished. □

6. Case Study

Te sliding mode FTC design according to the sliding mode
observer is accomplished by considering the inverted pen-
dulum and cart system. Te objective is to conceive an
adaptive stabilization controller that the considered inverted
pendulum benchmark system [36, 37] consists of a moveable
carriage having one degree (see Figure 3). Te carriage is
freely rotatable in driving direction on which a pendulum is
mounted and actuated by a motor.

6.1.TeNonlinear SystemModelling. We start by examining
the model inverted pendulum and cart system
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_x1(t) � x2(t),

_x2(t) �
g sin x1(t)(  − m l a x

2
2(t) sin 2x1(t)( /2(  − ba cos x1(t)(  x4(t)

(4l/3) − m l a cos x1(t)( 
2 ,

−
a cos x1(t)(  βu(t) − fc( 

(4l/3) − m l a cos x1(t)( 
2 ,

_x3(t) � x4(t),

_x4(t) �
− m g a sin 2x1(t)( /2(  +(4m l a/3) x

2
2(t) sin x1(t)(  − b a x4(t)

(4/3) − m a cos x1(t)( 
2 ,

−
(4a/3) u(t) − fc( 

(4/3) − m a cos x1(t)( 
2 ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(78)

where β is the efciency factor. x4(t), x3(t), x2(t), and x1(t)

represent, respectively, speed of cart, angular velocity of
pendulum, cart position, and angle position of pendulum.
Let us consider fc � csign(x4(t)) and a � 1/(M + m).

Te parameters of the system are shown in Table 1.
Te approximation of the nonlinear faulty system may

be obtained by T-S fuzzy system. We use in this study the
models with local nonlinearity as follows:

_x(t) � 
k

i�1
μi ζt(  Aix(t) + Biu(t) + F(u, t) + Mifa(t) + Diξ(x, t) + Γ(x, t) ,

y(t) � 
k

i�1
μi ζt(  Cix(t) ,

yL(t) � 
k

i�1
μi ζt(  C(L,i)x(t) .

(79)

0 x -H

u
-V

V

H

θ

I

I

mg

y

Figure 3: Inverted pendulum.
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In this case, Γ(x, t) � x2
2(t)lmsin(x1(t)) − fc, the fuzzy

weights, are defned by the following equations:

μ1(t) �
1 − 1/1 + exp − 14 x1(t) − (Π/8)( ( ( 

1 + exp − 14 x1(t) − (Π/8)( ( 
,

μ2(t) � 1 − μ1(t).

(80)

We assume that the actuator faults as well as the control
input are in the same direction Bi � Mi. Te matrices of the
local nonlinear models are

A1 �

0 1 0 0
17.3118 0 0 0.0106

0 0 0 1
− 1.7312 0 0 − 0.0053

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B1 �

0
− 0.1765

0
0.1176

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

A2 �

0 1 0 0
14.3223 0 0 0.0069

0 0 0 1
− 1.0127 0 0 − 0.049

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B2 �

0
− 0.1147

0
0.1081

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

D1 � D2 �

− 1
− 1
0

− 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

C1 � C2 �

1 0 0 0
0 1 0 0
0 0 1 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

CL1 � CL2 �

1 0 0 0
0 1 0 0
0 0 1 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(81)

6.2. Adaptive Sliding Mode Observer and Controller Design.
We will design an adaptive SMC based on the requirements
of the observer information to stabilize the system.

6.3. SMO Design. Te parameters are A
s

22 � diag(− 3,

− 5, − 7), λ � 0.5, H1 � I1×1, H2 � 10∗ I3×3.

We obtain using Teorem 6

ε∗ α∗ c
∗

  � 1.4913 09233 0.8522 ,

L1 � 1.8794 0 0 ,

L2 � 2.0548 0 0 ,

P1 � 3.6952,

P2 �

1.4048 0 − 0.23

0 5.3765 0

− 0.2300 0 2.6683

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

(82)

Te adaptive sliding mode observer (33) and (34) design
is as follows:

Gl,1 �

31.8794 0 − 1.5

73.6923 − 0.0106 − 104.9894

0 49 1

− 1.7318 − 49.9947 69.9947

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Gl,2 �

3.5548 0 − 1.0607

17.4045 − 0.0069 − 3.7054

0 1.5 1

− 1.0127 − 2.4951 3.4951

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Gn,1 �

1 0 0

1.8794 0 − 1.5

0 1 0

0 − 1 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Gn,2 �

1 0 0

2.548 0 − 1.0607

0 1 0

1 − 1 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(83)

6.4. SMCDesign. By using Teorem 9 for λc � 0.95, we fnd
that

ς∗c � 0.3465,

δ∗c � 6.0749,

α∗ � 17.5312,

c
∗

� 0.0969,

Px �

0.4532 − 1.3951 0.2459 − 0.6225

− 1.3951 7.1217 − 0.0516 − 1.6025

0.2459 − 0.0516 5.6132 − 4.8928

− 0.6225 − 1.6025 − 4.8928 8.0061

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(84)

Te sliding mode controller gains are expressed by the
following equation:

Table 1: System parameters.

Symbol Description Value Unit
m Pendulum point mass 0.2 kg
M Cart mass 0.8 kg
l From mass point to joint distance 0.5 m
g Gravitational constant 9.81 ms− 2

L Rail length 2 m
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K1 � K2 � − 1898 − 486.4 − 238.3 − 370 . (85)

6.5. Simulation Results. It is worth mentioning that the
results are obtained using online simultaneous additive and
multiplicative faults estimation.

Figure 4 illustrates multiplicative actuator fault esti-
mation. In our example, we consider an additive linear time
varying actuator fault. Te developed adaptive sliding mode
observer (33) and (34) can reject the efects of system un-
certainties and make an estimation of actuator fault with
satisfactory accuracy. Meanwhile, at t � 2, the additive ac-
tuator fault (Figure 5) has been introduced, in order to
demonstrate the capacity of the developed estimation
method to additive faults.

As shown in Figure 5, it is worth noting that in spite of the
existence of uncertainties, the SMO can still track the additive
faults fa(t). Hence, the simulation results outline that the
suggested fault estimation with the adaptive law for the

inverted pendulum and cart system described by T-S fuzzy
representation with local nonlinear models accomplishes the
frst objective of this article (actuator faults estimation) with
an excellent performance in terms of robustness and precision
despite the presence of the uncertainties.

Figures 6–8 compare nonlinear output referring to three
cases: output without faults, output without sliding mode
FTC, and output responses with the conceived FTC design.

As can be seen from the comparison with the output
responses without faults, the conceived adaptive sliding mode
controller (63) is capable of the stabilization of the system.

Zoomed versions of the nonlinear inverted pendulum
and cart system output responses illustrated in Figures 6–8
highlight a good satisfactory precision of the proposed
adaptive FTC, which ensures the stability of the system
subject to both additive and multiplicative faults. More
precisely, it can be seen clearly that the integrated adaptive
law is an efective way to improve both faults estimation and
compensation.

Real Multiplicative Fault
Estimated Multiplicative Fault

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8
5 10 15 20 250

Time

Figure 4: Multiplicative actuator FE.

Real additive actuator fault
Estimated additive actuator fault

0.5

0

-0.5

-1

-1.5

-2

-2.5

-3

-3.5
5 10 15 20 250

Time

Figure 5: Additive actuator FE.
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y1 with free fault case
y1 with fault without FTC
y1 with fault with the proposed FTC
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Figure 6: y1 (black line) with free faults, y1 (red line) without FTC, and y1 (blue line) with FTC.
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Figure 7: y2 (black line) with free faults, y2 (red line) without FTC, and y2 (blue line) with FTC.
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Figure 8: y3 (black line) with free faults, y3 (red line) without FTC, and y3 (blue line) with FTC.
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7. Conclusions

Tis paper addresses two powerful problems: the SMO
scheme and the FE-based sliding mode FTC, concerning
system described by T-S fuzzy representation and local
nonlinear models. We start by the study of the multiplicative
faults, and the actuator degradation process is considered as
a source of performance deterioration. Te degradation
process in the actuator is modeled by Wiener process. Te
additive actuator faults are estimated using robust adaptive
SMO in the existence of uncertainties so that the proposed
observer’s stability has been derived using H∞ performances
in order to minimize the uncertainties’ efect on the dy-
namics of estimation error and solved within the linear
matrix inequalities (LMI’s) optimization design. To com-
pensate the efects of both additive and multiplicative ac-
tuator faults and guarantee the system stability, an adaptive
FTC with sliding mode control is studied. Te existence
conditions are expressed via Lyapunov approach in terms of
LMI. Convex multiobjective optimization is employed to
simultaneously maximize the nonlinear term Lipschitz
constant in the T-S fuzzy modeling in addition to the un-
certainties attenuation level, in order to obtain satisfactory

gain of the adaptive SMO and controller. Te results of the
simulation on the application clearly display the efciency of
the proposed additive actuator FE and the adaptive FTC
design with uncertainties in system. In our future work, we
can use shockmodels (Poisson process) or combinedmodels
to characterize the stochastic deterioration process in an
actuator. Indeed, the actuator is a device that operates dy-
namically in a random environment; its capacity may de-
crease in an accelerated way. So, we can integrate covariates
in the degradation model with accelerated mode de-
terioration. Te derivative of the output in the designer of
observers could be taken into account to increase the per-
formance of the estimation.

Appendix

Construct Lyapunov function as follows:

V(t) � Ve1
(t) + Vey

(t), (A.1)

Vey
(t) � (1/β)ρ2 + eT

y(t)Pe, Ve1
(t) � eT

1 (t)P1e1(t), P1 ∈
R(np)×(np). Taking _V(t) along a trajectory of the taken system
error,

_Ve1
(t) � 

k

i�1
μi ζt(  e

T
1 (t) A

T

11,iP1 + P1
A11,i e1(t) + 2e

T
1 (t)P1

D(1,i)ξ(x, t)

+ 2e
T
1 (t)P1TL1 ,i

Γ1(x, t) + 2e
T
1 (t)P1TL1 ,ieFa1

(t),

(A.2)

_Vey
(t) � 

k

i�1
μi ζt(  e

T
y(t) A

sT

22P2 + P2
A

s

22 ey(t) + 2e
T
y(t)P2

A21,ie1(t)

+ 2e
T
y(t)P2

D2,iξ(x, t) + 2e
T
y(t)P2TL2 ,i

Γ2(x, t) + 2e
T
y(t)P2TL2 ,ieFa2

(t)

+ 2e
T
y(t)P2

M2,ifa(t) − υ(t)  −
1
β

ρ _ρ},

(A.3)

where ρ � ρ − ρ.
By applying Lemma 5 and Assumption 4, it could be

proving that

2e
T
1 (t)P1TL1,i

Γ1(x, t)≤ εc2
e1(t)

����
����
2

+
1
ε
e

T
1 (t)P

2
1e1(t),

2e
T
y(t)P2TL2 ,i

Γ2(x, t)≤ εc2
ey(t)

�����

�����
2

+
1
ε
e

T
y(t)P

2
2ey(t),

(A.4)
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c � c‖TL1,i‖, where c is the constant of Lipschitz of Γ(x, t) From the expression of υ(t) in equation (34), we deduce
that

e
T
y(t)P2M2,i − υ(t) + fa(t)(  −

1
β

ρ _ρ≤ e
T
y(t)M

T
2,iP2 fa(t)

����
���� − η(t)e

T
y(t)P2

Pe

Pe

����
����

− ρ Pe

����
����

≤ e
T
y(t)M

T
2,iP2 fa(t)

����
���� − (ρ + ϱ) Pe

����
���� − ρ Pe

����
����

≤ κi,max Pe

����
���� − ϱ Pe

����
����

< 0,

(A.5)

where ρ‖M2,i‖max � κi,max, ρ≥ κi,max.

For themultiplicative fault, we can write the inequality as
follows:

2e
T
1 (t) P1TL1,i eFa1

(t)≤ e
T
1 (t)P1e1(t) + δF1

,

2e
T
y(t) P2TL2,i eFa2

(t)≤ e
T
y(t)P2ey(t) + δF2

,
(A.6)

where δF2
� ‖eFa2

(t)‖2λmax(XT
2 P− 1

2 X2) and δF1
� ‖eFa1

(t)‖2λmax(XT
1 P− 1

1 X1).
Te time derivative of Ve(t) and Vey

(t)

_Ve(t)≤ 
k

i�1
μi ζt(  e

T
1 (t) A

T

11,iP1 + P1
A11,i +

1
ε
P
2
1 + εc2

In− p + P1 e1(t)

+ 2e
T
1 (t)P1

D1,iξ(x, t),

(A.7)

and

_Vey
(t)≤ 

k

i�1
μi ζt( e

T
y(t) P2

A
s

22 + A
sT

22P2 +
1
ε
P
2
2 + εc2

Ip + P2 ey(t)

+ 2e
T
y(t)P2

D2,iξ(x, t) + 2e
T
y(t)P2

A21,ie1(t).

(A.8)

To obtain the robustness of the proposed adaptive SMO
(33)-(34), let V0(t) be defned as

V0(t) ≔ _V(t) − ςξT
(x, t)ξ(x, t) + r

T
(t)r(t). (A.9)

We defne the following variable α as

α ≔
1
εc2⟶ c �

1
��
αε

√ . (A.10)

To maximize c for Γ(x, t), we simultaneously minimize
both ε and α. Referring to equation (A.10), we shall write the
abovementioned expression (A.9) as follows:

V0(t)≤ 
k

i�1
μi ζt( 

e1(t)

ey(t)

ξ(x, t)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦Δest,i

e1(t)

ey(t)

ξ(x, t)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
, (A.11)

where

Δest,i �

Π1,i
A

T

21,iP2 P1
D1,i

P2
A21,i Π2,i P2

D2,i

D
T

1,iP1
D2,iP2 − ςIl

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Π1,i � A
T

11,iP1 + P1
A11,i +

1
ε
P
2
1 + α− 1

In− p + PF1
,

Π2,i � A
sT

22P2 + P2
A

s

22 +
1
ε
P
2
2 + α− 1

Ip + PF2
.

(A.12)

Tus, we conclude that V0(t) is negative, if
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k

i�1
μi ζt( Δest,i < 0. (A.13)

From the Schur complement, we deduce that the relation
(A.13) and the relation (49) are equivalent. If equation (49) is
satisfed, V0(t) is negative.

For proving that the error system of equation (45)–(47)
is stable asymptotically with ς such that

‖r(t)‖
2
2 ≤ ‖ξ(x, t)‖

2
2ς, (A.14)

where ς is the attenuation level.

Tis completes the proof.

B

To guarantee the stability of system, we should investigate
the next Lyapunov function

Vx(t) � x
T
(t)Pxx(t), (B.1)

Px ∈ Rn×n is defnite positive symmetric.
According to (72)–(74),

_Vx(t) � 
k

i�1


k

j�1
μiμj ζt(  x

T
(t) − BiKj + θiAi 

T
Px + Px − BiKj + θiAi  x(t)

+ 2x
T

(t)Px Bi,jϕ(t) + θiΓ(x, t) .

(B.2)

Using Assumption 8 and Lemma 5, we obtain

2x
T
(t)PxθiΓ(x, t)≤ δcΓ

T
(x, t)θT

i θiΓ(x, t) +
1
δc

x
T
(t)PxPxx(t)

≤x
T
(t) δc c θi

����
���� 

2
+
1
δc

P
2
x x(t).

(B.3)

Let us defne J(t)

J(t) � y
T
L (t)yL(t) + _Vx(t) − ςcϕ

T
(t)ϕ(t). (B.4)

We write equation (B.4) as follows:

J(t) � 
k

i�1


k

j�1
μiμj ζt(  x

T
(t) +Px − BiKj + θiAi  + − BiKj + θiAi 

T
Px + C

T
L CL

+ δcc
2
c +

1
δc

P
2
xx(t)− ςcϕ

T
(t)ϕ(t) + 2x

T
(t)PxBi,jϕ(t),

(B.5)

where (‖θi‖c) � cc.
A novel variable is defned as

αc ≔
1

δccc
2⟺ cc �

1
����
αcδc

 . (B.6)

Te simultaneous minimization of αc and δc, i.e.,
minimization of αc + δc, can maximize cc according to the
nonlinear function of Lipschitz

Terefore, it must be proved that J(t) are negative, if

ψi,j PxBi,j

B
T

i,jPx − Iςc

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦< 0,

ψi,j � − BiKj + θiAi 
T
Px + Px − BiKj + θiAi  + C

T
L,iCL,i +

1
δc

P
2
x + α− 1

c In.

(B.7)

Using the Shur complement, the following relation is
easily obtained as follows:
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Θi,j PxBiKj PxMi PxθiDi C
T
L,i Px In

(∗) − ςcIn 0 0 0 0 0

(∗) (∗) − ςcIq 0 0 0 0

(∗) (∗) (∗) − ςcIl 0 0 0

(∗) (∗) (∗) (∗) − Ip1 0 0

(∗) (∗) (∗) (∗) (∗) − δcIn 0

(∗) (∗) (∗) (∗) (∗) (∗) − αcIn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0 ,

(B.8)

where Θi,j � PxθiAi + θT
i AT

i Px − PxBiKj − KT
j BT

i Px.
Te following matrix X will be made as

X � di ag (Px)− 1, (Px)− 1, Iq, Il, Ip1
, In, In  post, pre-

multiplying by XT, X in (B.8), we obtain

Υi, j BiQj Mi θiDi PxC
T
L,i Px In

(∗) − ςcPxPx 0 0 0 0 0

(∗) (∗) − ςcIq 0 0 0 0

(∗) (∗) (∗) − ςcIl 0 0 0

(∗) (∗) (∗) (∗) − Ip1 0 0

(∗) (∗) (∗) (∗) (∗) − δcIn 0

(∗) (∗) (∗) (∗) (∗) (∗) − αcIn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0

(B.9)

where

Υi,j � θiAiPx + PxA
T
i θ

T
i − Q

T
i B

T
i − BiQj, P

− 1
x � Px

KjP
− 1
x � Qj.

(B.10)

Using Lemma 5, we obtain

− PxPxςc ≤ − 2Pxςc + Inςc. (B.11)

We can deduce that (B.11) holds, if



k

i�1


k

j�1
μiμj ζt( Δcontrol,ij < 0 (B.12)

where Δcontrol,ij has a similar structure as (76). Moreover,
whether (B.12) is fulflled, then J(t) are negative, the T-S
fuzzy system (72)–(74) is robustly stable in regard to c

and ςc.
Te proof is completed.
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